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Abstract: Questions concerning the influences of nuclear receptors and their ligands on mammalian
B cells are vast in number. Here, we briefly review the effects of nuclear receptor ligands, including
estrogen and vitamins, on immunoglobulin production and protection from infectious diseases.
We describe nuclear receptor interactions with the B cell genome and the potential mechanisms of
gene regulation. Attention to the nuclear receptor/ligand regulation of B cell function may help
optimize B cell responses, improve pathogen clearance, and prevent damaging responses toward
inert- and self-antigens.
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1. Nuclear Receptors, Ligands, and the Mammalian Cell

The steroid/thyroid hormone nuclear receptors comprise a superfamily of transcription factors
characterized by a DNA-binding domain (DBD), a ligand-binding domain (LBD), and a transactivation
domain [1,2]. Type I receptors (including estrogen receptor (ER), glucocorticoid receptor (GR),
progesterone receptor (PR), and androgen receptor (AR)) are typically homodimers, while type II
receptors are typically heterodimers. Examples of type II receptors include retinoic acid receptor-retinoid
X receptor (RAR-RXR), vitamin D receptor-RXR (VDR-RXR) and thyroid receptor-RXR (TR-RXR).
Multiple isoforms exist for the protein subunits. RXR proteins, for example, include RXRα, RXRβ,
and RXRγ, each associated with different binding patterns and functions [1,3]. RAR proteins
include RARα, RARβ, and RARγ. Ligands for the nuclear receptors, both natural and synthetic,
are numerous. Examples include vitamin A metabolites (for RAR, RXR, and the peroxisome
proliferator-activated receptor β/δ (PPAR β/δ) [4]), 17-β estradiol (for ER), progesterone (for PR),
testosterone and dihydrotestosterone (for AR), 3,3′,5,5′ triiodo-L-thyroxine (for the thyroid receptor
[TR]), and dexamethasone and prednisolone (for GR). The natural ligand for RXR remains a topic of
debate. Although 9-cis retinoic acid has been discovered to bind RXR, this metabolite is difficult to
detect in many mammalian tissues. Other possible natural ligands for RXR include unsaturated fatty
acids such as docosahexaenoic acid, arachidonic acid and oleic acid [3].

The influences of nuclear receptors and their ligands on the mammalian cell are extraordinarily
complex. Vitamin A, for example, signals the mammalian cell as soon as it reaches the plasma
membrane [5]. Signals continue as vitamin traffics through the cell toward the nucleus, engaging
numerous chaperones along the way. Receptors such as RXR also exhibit cytoplasmic functions,
distinct from their activities as transcription factors. Within the nucleus, when vitamin A serves as
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a ligand for its nuclear receptors, it can instruct conformational changes [1,6–9]. Ligand-bound and
unbound receptors, when associated with DNA (either by direct DNA–protein interactions or by DNA
tethering via protein–protein interactions), can recruit, inhibit, and interact with other transcription
factors to instruct DNA configurations and gene expression patterns [1].

Class II heterodimers have been further characterized as ‘permissive’ or ‘non-permissive’. The
term ‘permissive’ was attributed to heterodimers that were activated in a controlled setting by ligand
binding either to RXR, its partner protein (e.g., PPAR), or both. The term ‘non-permissive’ was
attributed to heterodimers that could not be activated by ligand binding to RXR alone. Permissive
receptor proteins include PPAR, liver X receptor (LXR), farnesoid X receptor (FXR), pregnane X receptor
(PXR) and constitutive androstane receptor (CAR), each of which is responsive to diet-derived lipids.
Non-permissive receptor proteins include RAR, VDR, and TR [1,10–12].

A survey of nuclear receptor DNA-binding patterns has revealed consensus nucleotide motifs
(response elements) to which each receptor preferentially binds. As examples, type II receptors often
bind two tandem, hexad half-sites, RG(G/T)TCA, separated by a short spacer [13]. RAR-RXR binding
to DNA shows a preference for spacers of size 5 (direct repeat 5, DR5) or 2 (DR2), whereas VDR-RXR
binding to DNA shows a preference for spacers of size 3 (DR3) and TR-RXR shows a preference for
spacers of size 4 (DR4) [1]. Occasionally, the receptors bind individual half-sites or half-sites separated
by unusually long spacers. RXR can also function as a self-sufficient homodimer, able to bind a DR1
element. The estrogen receptor often binds a palindromic motif GGTCAnnnTGACC [14,15]. These
binding patterns are far from absolute and binding is often observed at sites that lack a canonical
sequence [1,7,9,16–29]. Nuclear receptor cross-regulation is supported by receptor sharing of (i) protein
partners (RXR is shared among the type II receptors), (ii) ligands (e.g., retinol binds RAR-RXR and
PPAR-RXR), and (iii) DNA binding sites.

The outcome of nuclear receptor binding to DNA is difficult to predict due to the high complexity
of protein–DNA complexes. For example, the estrogen regulation of the GREB1 gene involves ERα and
RNA polymerase II (RNA Pol II) binding to three different estrogen response elements (ERE) within a
20 kb region and DNA looping that associates EREs with the gene’s transcriptional start site [30,31].

2. Antibody Expression by the Mature B Cell

In the developing fetus, the site of mammalian B cell development is the yolk sac. Post-birth,
conventional B cells develop in the bone marrow, dependent on bone marrow stroma. Stem cells
progress through multiple stages of B cell development. At the pro B cell stage, gene rearrangements
are initiated in the immunoglobulin heavy chain locus. Each B cell undergoes unique D-J and V-DJ gene
rearrangements with the excision of intervening sequences to create a V-D-J coding sequence. At the
pre-B cell stage, the transcription of V-D-J-C mRNA sequences and RNA splicing yield a µ heavy chain
protein that can be detected in the cytoplasm or in combination with a surrogate light chain on the B
cell surface. In Pre-B cells, there is also a rearrangement of V and J genes within the immunoglobulin
light chain loci (кor λ). Once the V-J-C light chains are expressed, two identical heavy chains and two
identical light chains join to produce the classical immunoglobulin M (IgM) molecule, now advancing
the cell to the immature B cell stage. After these antigen-independent processes occur in the bone
marrow, the cells move to the periphery and develop into mature B cells (also called naïve B cells)
expressing IgM and immunoglobulin D (IgD) via alternate RNA splicing [32]. B cells are activated
when antigen or mitogen engages their cell surface antibodies, at which time B cells proliferate and
can mature to antibody-secreting plasma cells and/or memory cells. While B cells are best known for
antibody production, they can also regulate other cells of the immune system [33].

After activation, the B cells may undergo somatic mutation and may also switch to immunoglobulin
isotypes G, E, and A (IgG, IgE or IgA) by class switch recombination (CSR). The CSR process loops
DNA in the immunoglobulin heavy chain locus, cuts DNA at the switch sites, deletes Cµ, Cδ and
other intervening sequences, and re-ligates DNA to reposition V-D-J near the Cγ, Cε, or Cα genes. The
mechanism of CSR begins with the production of sterile transcripts by RNA Pol II, initiated upstream
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of the targeted switch sites. Polymerase stalls in the switch regions and recruits activation-induced
cytidine deaminase (AID). AID converts cytidine to uracil, followed by the uracil DNA glycosylase
(UNG)-mediated removal of uracil. Then, the DNA is cleaved by apurinic/apyrimidinic endonucleases,
and non-homologous end joining completes the process [34].

Regulatory regions have been defined that influence immunoglobulin expression and CSR. In mice,
the 3′ regulatory region (3′RR) includes multiple DNase I hypersensitive sites (hs3a, hs1,2, hs3b, and
hs4) with enhancer activity, situated downstream of Cα. The 3′RR interacts in loop formation with
Eµ (a promoter/enhancer upstream of Cµ), and switch regions. When the 3′RR is absent, the mice
express low levels of IgM and are deficient in CSR [35–38]. The hs1,2 sequence is of particular interest,
because polymorphisms in this region in humans associate with an increased risk of systemic lupus
erythematosus (lupus), a disease with a 9:1 female:male ratio [39].

3. Sex and the Immune Response

The immune responses of males and females differ [40–46]. Females generally express more total
serum antibodies than males. Females also respond better to influenza virus vaccines and infections
compared to males, both in mice and humans [47–49]. In humans, estrogen levels have been correlated
with IgG responses toward an influenza virus vaccine [50]. Today, there is an unprecedented pandemic
of SARS-CoV-2 infections and consequent COVID-19 disease. The influences of sex on this disease are
already evident in that males suffer significantly more than females [51,52].

The heightened immune response in females compared to males is not always evident and does
not always provide benefit. In fact, males exhibit better responses toward pneumococcus antigens
compared to females [48]. Moreover, females often suffer higher frequencies of auto-immune disease
compared to males. As noted above, there is a significant female predominance of lupus [53]. When
females are pregnant and estrogen levels are extremely high, auto-immune diseases like lupus can be
life-threatening [54,55]. Human females additionally suffer from asthma more than males, coincident
with increased estrogen levels at the time of female puberty [56].

Using a mouse model for lupus (females of the strain NZM2410), Sven et al. described protection
against autoimmune disease upon the knock-out of normal ERα expression (although conflicting
results have been described [57,58]). In small animal and tissue culture settings, supplemental estrogen
increased the antibody levels, including antibodies against self-antigens such as cardiolipin [48,56,59–64].
Whereas estrogen enhanced the immunoglobulin expression by human peripheral blood mononuclear
cells (PBMC), immunoglobulin production was reduced in the presence of testosterone [64,65]. In a
mouse model of allergen-induced dermatitis, an estrogen inhibitor reduced allergen-specific IgG1,
IgG2a and IgE, as well as clinical disease symptoms [66].

4. Vitamin D and the Immune Response

Vitamin D is ingested from plant (D2) or animal (D3) sources including dairy products (often
vitamin fortified) and fish. Vitamin D is also synthesized when 7-dehydrocholesterol in the skin is
converted to cholecalciferol upon exposure to sunlight (ultra violet B (UVB)) rays) [67]. In the liver,
25-hydroxylase converts cholecalciferol to 25 hydroxy-vitamin D (25(OH)D, also termed calcidiol),
a common metabolite in the blood. Escorts for 25(OH)D in the blood include the vitamin D binding
protein (VDBP) and albumin. Polymorphisms in VDBP are common and may influence the efficiency of
vitamin D uptake into tissues. Within tissues, 1α hydroxylase converts 25(OH)D to the end-metabolite
1,25 dihydroxy vitamin D (1,25(OH)2D, also termed calcitriol). The Office of Dietary Supplements
(ODS) in the United States recommends a vitamin D daily intake (recommended dietary allowance,
RDA) of 10 µg (~400 international units (IU)) for infants, 15 µg (~600 IU) for individuals of ages 1–70
years, and 20 µg (~800 IU) for individuals of ages >70 years (ods.od.nih.gov). Debates continue as to
the appropriate levels of vitamin D in blood, but most scientists agree that blood levels of >30 ng/mL
vitamin D will support a healthy immune system.
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Vitamin D deficiencies and insufficiencies are recognized throughout the world and affect
numerous mammalian systems and conditions including lung development and pregnancy [68].
Nutritional deficiencies occur in both developed and developing countries. In the developed world,
vitamin deficiencies are exacerbated by reduced sun exposures and emerging food deserts in low
income communities [69].

Vitamin D provides significant benefit to the immune response, both adaptive and innate.
For example, when macrophages are infected with M tuberculosis, they produce high levels of
1,25(OH)2D and effectively kill the pathogen. Vitamin D can also play an important regulatory role by
dampening allergic reactions such as asthma, eczema and food allergies or autoimmune disorders
such as multiple sclerosis or diabetes mellitus [70,71]. In humans, serum levels of 25(OH)D correlate
with total serum IgM and IgG3 [72] and correlate with an improved control of respiratory diseases
including tuberculosis [73–75].

5. Vitamin A and the Immune Response

Vitamin A can be ingested in the form of provitamin A carotenoids from plant foods including
green, orange and yellow vegetables such as carrots and sweet potatoes or retinoids (preformed
vitamin A) from foods including dairy products, fish, poultry, and other meats (particularly liver).
As for vitamin D, the RDA for vitamin A is a topic of continued debate. The ODS recommends a
daily intake of vitamin A in retinol activity equivalents (RAE) as approximately 400–500 µg for infants,
300 µg for individuals of ages 1–3 years, 400 µg for individuals of ages 4–8 years, 600 µg for individuals
of ages 9–13 years, and 700–1300 µg for individuals of ages >14 years depending on sex, pregnancy,
and breastfeeding (0.3 µg RAE = 1 international unit (IU) retinol, ods.od.nih.gov). Blood levels of
retinol defined as ‘deficient’ or ‘insufficient’ are also debated. Often, vitamin A deficiency (VAD) is
defined as <0.7 µM (~20 µg/deciliter (dL)) retinol and vitamin A insufficiency is defined as ≥0.7, but
<1.05 µM retinol. Vitamin A is usually stored in the liver in the form of retinyl esters and traffics
through the blood as retinol, chaperoned by retinol binding protein (RBP) in a 1:1 molar ratio. RBP is
also bound to a serum protein transthyretin (TTR) which assists retinol delivery to peripheral tissues.
Other chaperones for vitamin A in blood or lymph include albumin and chylomicrons. D’Ambrosio et
al. have estimated that 25–33% of all retinoids absorbed by the intestine are delivered by chylomicrons
or chylomicron remnants to tissues other than the liver (white adipose tissue, skeletal muscle, heart,
lungs, and kidneys), explaining the good health of humans and mice that lack RBP [76].

In tissues, retinol can be metabolized to retinal (catalyzed by alcohol dehydrogenase) and then
to retinoic acid (RA, catalyzed by retinaldehyde dehydrogenase, ALDH1A (also termed RALDH)),
an end-stage metabolite. While alcohol dehydrogenase is produced ubiquitously, ALDH1A is selectively
expressed, prominently found among dendritic cells in the gastrointestinal tract and among epithelial
cells surrounding the airways [77].

Vitamin A deficiencies (VAD) are common in the developed and developing world, although
conditions may go unnoticed and underreported in some countries [78]. In Memphis, TN, USA, a
significant fraction of children and adults are VAD or vitamin A insufficient [79].

Similar to other ligands for nuclear receptors, vitamin A exhibits a plethora of functions. Virtually
every organ system depends upon vitamin A, and this vitamin has a prominent role in immune
protection against infectious diseases. The integrity of epithelial cells that line airways, necessary as a
first line of defense against respiratory pathogens, is supported by vitamin A.

In vitamin A-deficient (VAD) mice, we observed poor local IgA responses toward respiratory
virus vaccines and poor T cell responses. [80,81]. In VAD mice, both T cells and dendritic cells
expressed unusually high levels of CD103 (the αE component of αEβ7, the receptor for e-cadherin),
likely contributing to aberrant immune cell trafficking [82,83]. The immune response was further
weakened when the mice were rendered double-deficient for vitamins A and D [84]. VAD is also
associated with reduced protection against bacterial infections [85–88] and in a murine B cell acute
lymphoblastoid leukemia model (B-ALL), VAD mice exhibited poor tumor clearance compared to
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vitamin-replete controls [89]. In the context of diet-induced obese (DIO) mice, vitamin A levels were
normal or above-normal in the blood, but were low in tissues. DIO mice accordingly exhibited poor
immune responses toward an influenza virus vaccine and poor control of a subsequent challenge with
influenza virus [90].

Vitamin A was correlated with IgG4 and IgA among Memphians and low levels of vitamin A
were associated with poor outcomes among children hospitalized with respiratory syncytial virus
(RSV) or human metapneumovirus (hMPV) infections [72,91].

6. Thyroid Hormones and the Immune Response

The thyroid hormones 3,3′,5,5′ tetraiodo-L-thyroxine (T4) and 3,3′,5,5′ triiodo-L-thyroxine (T3),
like sex hormones and vitamins, may affect multiple mammalian systems and processes including
pregnancy and hypersensitivity [92,93]. With regard to the immune response, both innate and adaptive
effectors are influenced by thyroid hormones. Cellular concentrations of T3 and T4 are regulated by
1,2 and 3 iodothyronine deiodinases (D1, D2, and D3). T3 binds TRs including TRα1, TRβ1, TRβ2,
and TRβ3 to influence gene expression in the nucleus, but similar to other nuclear receptors and
ligands, extranuclear signals are also at play. As an example, T4 binds the integrin αvβ3 to activate
kinase activities (5′ adenosine monophosphate-activated protein kinase (AMPK), phosphotidylinositol
3-kinase/Akt (PI3-K/Akt), and mitogen-activated protein kinase (MAPK)) in innate immune cells.
T3 supports natural killer (NK) cell activation and the production of interferon γ (IFNγ), and a positive
correlation has been demonstrated between serum T3 concentrations and NK cell activity in healthy,
elderly humans. T3 can additionally support dendritic cell viability, cell maturation, CCR7 expression,
cell migration to lymph nodes, and antigen presentation [94]. The relationships between thyroid
hormones and immune responses are circular in that abnormal thyroid hormone production will
dysregulate the immune response while a dysregulated immune response can attack the thyroid gland
to render hormone production abnormal [95].

7. Nuclear Receptor Cross Regulation Influences the Immune Response

Of note, male:female differences in immune patterns are not absolute, but are dependent on
genetic and microenvironmental factors including vitamin A. We previously showed that when mice
were rendered vitamin A deficient (VAD), isotype profiles changed. For male mice, VAD improved
the otherwise low levels of serum IgG2b [48]. In addition, we found that when males were VAD,
they lost their advantage over females in terms of protection from a bacterial challenge. This result is
shown in Figure 1. Whereas the bacterial burden trended lower in control C57BL/6 males compared
to females, the burden was significantly higher in VAD males compared to VAD females. This
presumed cross-regulation among nuclear receptors is predicted, given that, as described above,
nuclear receptors can share ligands, co-receptors and DNA binding locations. Previous examples of
receptor cross-regulation include interactions between ERα and PPAR [96], and ERα and RAR [97].
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Figure 1. Vitamin A deficient (VAD) male mice exhibit higher bacteria burdens than control males and
VAD females. To produce VAD mice, pregnant C57BL/6 (H2-b) mice were purchased from Jackson
Laboratories (Bar harbor, ME). Mice were placed on either a control or a VAD diet upon their arrival in
the animal facility at St. Jude (days 4–5 gestation). VAD (cat. no. 5WA2, Test Diets) and control (cat. no.
5W9M) diets differed only in vitamin A content, containing either 0 or 15 international units (IU)/g
vitamin A palmitate, respectively. Upon reaching adulthood, C57BL/6 control (CON) and VAD mice
were lightly anesthetized with isoflurane and intranasally infected with 0.5–1 × 105 CFU of Streptococcus
pneumoniae, strain A66.1 (as described previously [86,98,99]). Lung bacterial titers were determined
24 h post-infection, assigned the value ‘1′ if below detection. Each dot represents an individual mouse.
Results from two experiments are shown, respectively, indicated by circles and diamonds. Significant
differences between the paired groups were determined by Mann–Whitney U tests.

8. Nuclear Receptors, Ligands, and Important Gene Targets among B Cells

It was originally assumed that B cells were only indirect targets of nuclear receptors and their
ligands. Direct targets included antigen-presenting cells such as dendritic cells or macrophages [83].
As examples, Mora et al. showed that vitamin A supported the trafficking of dendritic cells to mucosal
sites [83] and Hughes et al. showed that progesterone regulated IFNα in dendritic cells [100–103].
It was then noted that estrogen and progesterone could act directly on B cells by up-regulating
AID [102,104,105].

In search of additional, direct influences of nuclear receptors on immunoglobulin expression,
we queried the immunoglobulin heavy chain locus for nuclear receptor response elements. We then
discovered hotspots for nuclear receptor type I and type II response elements (estrogen response
elements (ERE) and retinoic acid response elements (RARE)) in switch sites for Cµ, Cε, and Cα (Sµ,
Sε, and Sα) [7,106]. Using CRISPR/Cas9 technologies, we found that the removal of a single estrogen
response element (ERE) from Eµ or the 3′RR hs1,2 site in a B cell line reduced the CSR from IgM to
IgA [107].

We further observed a partnership of ERα and RNA Pol II [48,107–109], a critical component of CSR.
When supplemental estrogen was added to purified B cell cultures, sterile transcript levels improved
and there were changes in the positions of ERα and RNA Pol II binding within the immunoglobulin
heavy chain locus. For both proteins, there was a focus of binding on the ERE hotspot within Sµ. The
results suggested that estrogen-liganded ERα served as a chaperone to direct the positioning of RNA
Pol II during B cell activation and CSR. These results helped explain, at least in part, the mechanism by
which estrogen influenced immunoglobulin expression [109].

A snapshot of these ERα and RNA Pol II binding features is illustrated in Figure 2A. This figure
was produced using Integrative Genomics Viewer (IGV) software to show ERα (top two rows) and
RNA pol II (third row) binding patterns in areas of Sµ, Cµ (IgM) and Cδ (IgD) regions when B cells
were stimulated with lipopolysaccharide (LPS) alone (top row) or LPS plus supplementary estrogen
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(100 nM estrogen, second and third rows). The splenic B cells were purified (by negative selection
with antibodies specific for CD43 and CD11b) from C57BL/6 mouse spleens and stimulated in tissue
culture overnight before harvest. The red dashes identify the positions of various sequences in forward
and reverse (REV) orientations. Figure 2A illustrates the previously described findings that for B cells
stimulated in the presence of supplemental estrogen, there was a focused binding of factors on Sµ and
also on adenosine–cytidine (AC) repeats in the immunoglobulin heavy chain locus [107–109].

Here, we extend our study by focusing on ERα binding shifts in areas near variable gene segments
within immunoglobulin heavy- and light-chain loci. In Figure 2B is shown the kappa variable gene
segment, IgкV9-129. When supplementary estrogen was added to B cell cultures, ERα binding was
more pronounced near the AC repeat downstream of IgкV9-129. Similar patterns were observed for
subsets of VH, Vλ and Vкgenes, in that they were often flanked either upstream and/or downstream by
AC repeats and ERα binding was focused on these sites when supplemental estrogen was added to B
cell cultures. We consider that shifts in ERα binding patterns might influence non-identical V gene
segment transcription rates [110] (Figure 2B).

Shifts in ERα binding to AC repeats in the context of supplemental estrogen were also noted
near non-immunoglobulin genes such as IL-6 (Figure 2C). IL-6 is known to upregulate following
the LPS stimulation of murine B cells, a feature associated with autoimmunity [111,112]. Further
experimentation is needed to determine if/how these estrogen-induced shifts of ERα toward the
binding of AC-rich regions may alter DNA looping, gene rearrangements, transcription, and/or
splicing [110,113–116] to influence gene expression patterns in developing or activated B cells.
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supplemental estrogen, followed by chromatin immunoprecipitation studies with antibodies toward
ERα (termed ER in this figure) or RNA Pol II, as described previously [48,107–109,117]. Briefly,
splenic B cells were isolated from adult, C57BL/6 female mouse spleens, by negative selection with
anti-CD43 and anti-CD11b antibodies. The cells were then stimulated overnight with LPS with or
without supplemental estrogen (100 nM). Immunoprecipitations were with anti-ERα or anti-RNA Pol
II antibodies. Integrative Genomics Viewer (IGV) software was used to generate the figures and to
identify motifs in forward and reverse (REV) orientations. (A) The switch site (Sµ), Cµ and a portion of
the Cδ gene fragment are shown from right to left. Potential ER binding sites are shown using the motif
RRYYRNNNTGANC (IGV ‘Find motif’ function). The positions of adenosine–cytidine (AC)-repeats
(CACACA) and poly A (AAAAA) are shown. (B) The Ig kappa V9-129 gene fragment is shown with
motifs listed. (C) The IL-6 gene is shown, with the same motifs listed as in (B). The detailed methods and
results from chromatin immunoprecipitation studies have been described previously [48,106–109,117].

9. When B Cells Need Correction

Two extremes of B cell malfunction include (i) an insufficient immune response against pathogens,
and (ii) an over-exuberant immune response toward inert antigens or self. In the first case, the host is
vulnerable to numerous viral, bacterial, and fungal infections, whereas in the second case, the host
suffers from unnecessary immunopathologies. In cases of influenza virus infections and the more
recent SARS-CoV-2 infections, both outcomes have been observed, wherein the immune system may
clear the virus too slowly, but following virus clearance, immune responses toward damaged tissues
and residual viral antigens may exacerbate disease.

Can clinical corrections be made with a focus on nuclear receptors and their ligands? In the case
of VAD, vitamin supplementation may provide a simple form of correction and in the case of sex
hormones, the use of agonists/antagonists (e.g., estrogen/tamoxifen) may be used. As described above,
in VAD mice, we observed poor IgA responses toward respiratory virus vaccines. These could be
corrected if vitamin supplements were administered at the time of vaccination [80,81]. In the mouse
model of diet-induced obesity, vitamin A supplements supported antibody production and assisted
clearance of virus at a later stage when vaccinated obese mice were challenged [90]. The reductions
observed among the virus-specific immune responses in mice that were double deficient for vitamins
A and D could also be corrected [84]. Again, we found that vitamin supplements, in this case with
vitamins A and D, could be administered at the time of vaccination to correct the antibody response
toward vaccines [84].
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However, despite the apparent simplicity of supplementation methods, caution is advised in the
clinical arena. Outcomes of clinical supplementation studies have been highly variable, dependent on
the geographical location, diet, sex, and age of study participants. For example, studies have often
shown that vitamin A supplements provide benefit in the developing world, but different outcomes for
males and females have been noted [118–120] with males sometimes exhibiting greater benefit from
supplementation compared to females.

The timing of supplementation relative to vaccination or infection also affects outcome. Hussey et
al. described a randomized, double-blind clinical study in which children hospitalized with measles
were administered either a total oral dose of 400,000 international units (IU) retinyl palmitate or a
placebo control [121]. The authors found that the children who received the vitamin recovered more
rapidly from pneumonia and diarrhea compared to the controls and experienced shorter hospital
stays [120–122]. In contrast, Bresee et al. demonstrated that vitamin A supplements worsened the
outcome when given to children hospitalized with respiratory syncytial virus (RSV) infections in
the United States [123]. Our own study of influenza virus vaccinations in 2–8 year old children in
Memphis, TN, showed that baseline vitamin A levels correlated positively with the vaccine-induced
immune response whereas baseline vitamin D levels correlated negatively. When vitamin A + D
supplements were administered to these children at the time of vaccination, there were improved
responses compared to placebo controls, but only when children had low vitamin A and D levels at
baseline. The responses were worsened by vitamin A + D supplementation when the children were
vitamin replete at baseline [79]. In a separate study in Indonesia, six month-old infants received a
vitamin A supplement at the time of measles vaccination; at twelve months the supplemented children
had a lower sero-conversion rate toward the vaccine compared to the controls [124–126]. This result
contrasted with that of a study of nine month-old children given vitamin A supplements at the time of
a single measles vaccine dose in Guinea Bissau. Then, the geometric mean titers toward the vaccine
were significantly improved in the supplemented compared to the control children at 18 months,
particularly for boys [125,127].

Like vitamin supplements, thyroid and sex hormone supplements have yielded variable results in
the clinic. When T3 was administered to elderly participants to increase NK activity, improvements
were only indicated when baseline T3 concentrations were low [128]. The selective estrogen receptor
modulator (SERM) tamoxifen exhibited both supportive and inhibitory functions, depending on the
tissue target [129] and the benefit of estrogen replacement therapy in post-menopausal women to
improve vaccine and virus-specific immune responses has been a topic of continued debate [130–135].

The results described above demonstrate that supplementation cannot be implemented
globally using a one-size-fits-all strategy. Rather, the fine-tuning of supplementation programs
based on population genetics and microenvironments may be required to yield predictable and
beneficial outcomes.

Today, new technologies offer new treatment options. There are now a variety of methods
for blocking protein interactions with DNA or RNA (e.g., CRISPR-CAS9 technologies, anti-sense
oligonucleotides, DNA decoys or small inhibitory molecules [113,116,136–149]). Perhaps fine-tuned
and targeted manipulations of nuclear receptor binding sites within promoters, enhancers and switch
sites of the immunoglobulin loci will ultimately prove successful for the control and optimization of
immunoglobulin expression.
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Abbreviations

1,25 (OH)2D 1,25-dihydroxy vitamin D
25(OH)D 25-hydroxy vitamin D
VAD Vitamin A deficient
ER Estrogen receptor
ChIP Chromatin immunoprecipitation
DIO Diet induced obesity
RAR Retinoic acid receptor
PPAR Peroxisome proliferator activated receptor
RXR Retinoid X receptor
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