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Abstract: Pruritoceptive (dermal) itch was long considered an accompanying symptom of diseases,
a side effect of drug applications, or a temporary sensation induced by invading pruritogens,
as produced by the stinging nettle. Due to extensive research in recent years, it was possible to
provide detailed insights into the mechanism of itch mediation and modulation. Hence, it became
apparent that pruritus is a complex symptom or disease in itself, which requires particular attention
to improve patients’ health. Here, we summarize recent findings in pruritoceptive itch, including how
this sensation is triggered and modulated by diverse endogenous and exogenous pruritogens and
their receptors. A differentiation between mediating pruritogen and modulating pruritogen seems
to be of great advantage to understand and decipher the molecular mechanism of itch perception.
Only a comprehensive view on itch sensation will provide a solid basis for targeting this long-neglected
adverse sensation accompanying numerous diseases and many drug side effects. Finally, we identify
critical aspects of itch perception that require future investigation.

Keywords: pruritus; itch; receptors; mediator; modulator; GPCR; interleukin; histamine;
non-histaminergic; dermal itch

1. Introduction

Itch is an unpleasant sensation that evokes a desire to scratch, in response to chemical, mechanical,
or thermal stimuli [1]. This sensation is a frequent symptom originating from numerous diseases
such as dermatological or systemic diseases and neurologic or autoimmune disorders. Eventually,
almost one-third of the global population will suffer from itch through the course of their lives [2].
Recent studies revealed that this frequently ignored symptom can have major consequences on physical
and emotional health [3–5]. Itch is a unique sensory modality in that it is restricted to the skin, mucous
membranes, and cornea, as no other tissue or organ is capable of experiencing itch [6]. So far, itch has
been the least understood and researched somatosensory modality in the scientific community. Itch
has attracted surprisingly little attention until recently despite the advent of the molecular era of
biomedical research in the 20th century [7]. Reasons for such low interest and slow progress related to
itch are as manifold as the causes for the symptom.

The molecular mechanisms involved in itch sensation are highly complex and remain elusive
in most of these diseases. However, from studies in patients and animal models, a large number of
controversial mediators, modulators, and receptors responsible for scratching behavior have been
identified [8]. The most well-supported distinction between types of itch is that of histaminergic and
non-histaminergic itch [9]. These observations have paralleled a much-needed increase of investigation
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into the mechanisms underlying itch and will eventually lead to new and effective therapeutics [7,10].
The scope of this review is to summarize the current knowledge and recent advances pertaining to the
molecular mechanisms of itch, and classify the receptors by mediators and modulators.

2. Types of Itch

Itch is classified into four different clinical categories [11,12]. These are neuropathic, systemic,
psychogenic, and pruritoceptive [11]. These categories are based on advances in understanding of
the peripheral and central origins of itch. In many patients, more than one of these categories can
coexist [13]. This review emphasis is placed on pruritoceptive (dermal-generated) itch following
molecular mechanisms of pruritus. Neuropathic itch is a result of damage to the central or peripheral
nervous system and could occur along the afferent itch pathway that results in a sensation to
scratch [14,15]. Systemic itch refers to itch generated from the central nervous system in response to
circulating pruritogens, as in cholestasis, or in response to intraspinal morphine [12]. Psychogenic
pruritus is defined as itch not related to dermatologic or systemic causes. It can be categorized as
a pruritic disease with psychiatric sequelae, a pruritic disease aggravated by psychosocial factors,
or a psychiatric disease-causing pruritus [16]. Pruritoceptive itch starts in the skin, usually by an
inflammatory or other visible pathological process (e.g., scabies, urticaria) [17]. This type of itch
accounts for many cases of clinical pruritus because nearly everything from endogenous mediators to
exogenous allergens that invade the skin can induce pruritoceptive itch [18]. As mentioned before,
transmission of pruritus can be divided into histaminergic and non-histaminergic [9,19]. Acute pruritus
is mediated via both pathways [20–22]. In contrast, chronic pruritus is mainly mediated by the
non-histaminergic pathway [7]. Further, chronic pruritus can be a seriously debilitating symptom
accompanying various cutaneous and systemic disorders [23]. The classification of these two systems
originates in the periphery, where the primary afferent nerves express their dedicated receptors [24,25].
Until recently, it was thought that histamine was the final mediator of itch, but clinical observations
showed that itch could be initiated without flare by cutaneous electrical or mechanical stimuli,
suggesting a histamine independent pathway [26].

On a molecular level, pruritoceptive itch is initiated when endogenous or exogenous pruritogens
interact with itch receptors or pruriceptors (pruritus + receptor). Pruriceptors reside in the membrane
of the free nerve endings of peripheral afferent nerve fibers (Figure 1) [27]. These itch-sensory
(pruriceptive) nerve fibers are primary sensory neurons, comprised of C fibers (peptidergic and
nonpeptidergic) and Aδ fibers [25,28–30]. Peptidergic or nonpeptidergic C fibers are unmyelinated
and range into the epidermis, responding to itch stimuli, whereas Aδ fibers are lightly myelinated and
distributed throughout the dermis, responding to pain and itch stimuli [31,32]. Further, large-scale
single-cell RNA sequencing grouped these pruriceptive neurons into three different classes based on
the expression of itch receptor types [25,33]. Once these receptors are activated, the signal is transmitted
via spinal dorsal horn to the brain [31]. It was revealed, that the transmission of itch sensation by
pruriceptive sensory neurons is dependent on the gastrin-releasing peptide receptor (GRPR) within the
spinal cord [34], indicating a modulating effect of itch sensation within the central nervous system [1].
For example, it was demonstrated that the µ- and κ-opioid receptors interact with GRPR modifying
itch perception in the spinal cord of mice [35–37]. More information about itch circuits and its central
modulation can be found in the following reviews [1,38,39]. The succeeding paragraphs discuss
peripheral receptors followed by their mediators and modulators which are reported to contribute to
pruritoceptive itch sensation.
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Figure 1. Pathway of itch. Itch sensation is caused by exogenous (green) and endogenous (cyan)
pruritogens, that bind to itch receptors in free nerve endings of C fibers within the epidermis (yellow)
and Aδ fibers within the dermis (grey). In addition, endogenous pruritogens (cyan) can be produced
by epidermal keratinocytes and dermal immune cells (purple). The triggered signal is transmitted
through peripheral afferent nerve fibers (yellow and grey) of the peripheral nervous system to the
central nervous system (CNS), eventually resulting in itch sensation. (Figure adapted from [28]).

3. Itch Mediators, Modulators and their Receptors

Pruriceptors localize in the peripheral nervous system and are capable of detecting environmental
changes and then transducing this signal to the central nervous system [7]. The majority of itch
receptors are members of the class A G protein-coupled receptors (GPCR) (Figure 2). GPCRs are the
largest and most diverse group of membrane receptors found in eukaryotes. To date, about 35% of
all approved drugs target different classes of GPCRs, suggesting that GPCRs are predestined to be
targets to develop drugs relieving or modulating itch sensation in patients suffering from pruritus [40].
Figure 3 represents 13 receptors, their mediators, and modulators involved in itch sensation.

Itch sensation starts with the invasion of pruritogens on the skin. Endogenous or exogenous
pruritogens activate receptors which ultimately trigger an itch response (Figure 1). GPCRs, Interleukins,
and Toll-like receptors promote the opening of ion channels, namely transient receptor potential
vanilloid 1 or 4 (TRPV1/4), transient receptor potential ankyrin 1 (TRPA1), or both to generate action
potentials [7,24]. These channels are expressed on all cell types involved in itch signaling, such as
keratinocytes, immune, endothelial, and mast cells [43]. Thus, these channels contribute to acute and
chronic itch sensation. There are two pathways describing itch stimulation. First, the histaminergic
pathway, which activates the TRPV1 channel and second, the nonhistaminergic pathway that activates
TRPV1 or TRPA1 (Table 1) [7]. In both pathways, histaminergic and nonhistaminergic, TRPV1/TRPA1
activates NaV1.7, and subsequently, NaV1.7 controls action potentials in neurons [7,24,44].
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Figure 2. Two main types of itch receptors. Itch receptors can be grouped in two main types, interleukins
and G protein-coupled receptor (GPCRs). Toll-like receptors (TLRs) and interleukin receptors (ILRs)
are part of the Interleukin-1 Receptor/Toll-like Receptor Superfamily. GPCRs are divided into three
sub-types, classic GPCRs, protease activated receptors that dimerize [41,42], and GPCRs which require
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Figure 3. Schematic representation of the 13 major receptor groups involved in itch and their endogenous
pruritogens. Each receptor is colored based on two parameters: First, GPCR signaling (blue button)
or non-GPCR signaling (white button) and second, ion channel signaling pathway. TRPA1/TRPV1
signaling is represented by a blue sector, TRPV1 signaling is represented by a yellow sector and TRPA1
signaling is represented by an orange sector. The arrows indicate the type of contribution of the receptor
and its endogenous pruritogens to itch sensation. White arrows represent itch modulators and grey
arrows represent itch mediators.
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Table 1. Endogenous pruritogens and their signaling pathway. The receptors are grouped by ion
channel signaling, G- protein signaling, and kinase signaling. In addition, each receptor and its
endogenous pruritogen is categorized as mediator (ME) or modulator (MO). Color coded according to
Figure 3.
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3.1. Histamine 1 Receptor 

The four histamine receptors (H1-4R) belong to the class A GPCRs and bind to endogenous 
histamine [45]. H1R is expressed in smooth muscles, and endothelial cells throughout the CNS and 
cardiovascular system [46,47]. Thus, H1R signaling has an impact on inflammatory processes and 
circadian rhythm in humans [48,49]. Once activated by histamine, H1R signals through Gi/Go and 
Gq/G11 with subsequent activation of TRPV1 (Table 2) [50]. H1R shows the lowest potency of all four 
histamine receptors H3R = H4R > H2R > H1R [46,51]. Albeit it has the lowest potency, the H1R plays 
a major role in eliciting itch sensation in humans demonstrated by treatment with highly selective 

Here, itch signaling was divided into two classes of stimulants. The first class is endogenous or
exogenous mediators, which cause itch by direct activation of pruriceptors, termed itch mediators.
While the second class of pruritogens has an indirect effect on itch signaling, these are termed
modulators (Table 1 and Figure 3). Receptors activated by such modulators can enhance or reduce
itch sensation but do not, or only to a reduced extent, induce itch sensation. It is noteworthy that
mediators are capable of potentiating or influencing each other’s effect on itch sensation. Taken together,
a mediator can modulate but a modulator cannot mediate itch sensation on its own.
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3.1. Histamine 1 Receptor

The four histamine receptors (H1-4R) belong to the class A GPCRs and bind to endogenous
histamine [45]. H1R is expressed in smooth muscles, and endothelial cells throughout the CNS and
cardiovascular system [46,47]. Thus, H1R signaling has an impact on inflammatory processes and
circadian rhythm in humans [48,49]. Once activated by histamine, H1R signals through Gi/Go and
Gq/G11 with subsequent activation of TRPV1 (Table 2) [50]. H1R shows the lowest potency of all four
histamine receptors H3R = H4R > H2R > H1R [46,51]. Albeit it has the lowest potency, the H1R plays
a major role in eliciting itch sensation in humans demonstrated by treatment with highly selective
H1R antagonists and agonists [52–54]. Moreover, recent findings suggest that also H4R and to a lesser
degree H3R might have modulatory (additive) effects on pruritus in mice and humans [47,55–57].
In conclusion, there is convincing evidence that H1R is responsible for inducing itch sensation in
humans. However, more data are required to shed light on the precise role of the other histaminergic
receptors in pruritus. Thus far, it seems that H2R does not play a role in pruritus, whereas H3R and
H4R solely have a modulatory function in itch sensation.

Histamine has various functions as anaphylaxis mediator, neurotransmitter, and in gastric acid
secretion. Histamine is synthesized from histidine by removing the carboxyl group through histidine
decarboxylase [58]. Early on it has been shown that administration of histamine produces a triple
response of redness, flare and swelling in addition to itch [59]. Moreover, the release of endogenous
histamine upon insect bites explained the itching sensation thereafter [60]. The vast amount of
literature and research articles on histamine and itch sensation provides a thorough understanding
about histaminergic itch sensation and can therefore be considered as the prototypical pruritogen in
humans [61].

3.2. Serotonin Receptor

Serotonin receptors (5-HTR) belong to the class A GPCRs and can be divided into seven main
groups (e.g., 5-HTR1-7) [62]. In total, fourteen 5-HTRs are further subdivided based on sequence,
splice variants, specific agonists or antagonists and signal transduction [63]. Given the large group
and variety in signal transduction, it seems obvious that 5-HTRs are involved in many biological and
neurological processes through the regulation of hormones and neurotransmitters [64–66]. Current
research in mice demonstrated that 5-HTR1/2/3 and 5-HTR7 are involved in itch mediation, generally
application of serotonin induced elevated scratching [67–69] (Table 2). In contrast, treatment with
5-HTR2 and 5-HTR3 antagonists did not attenuate scratching behavior in rats, thus contradicting the
role of 5-HTR2/3 in pruritus [70]. Interestingly, different strains of rats reacted differently to 5-HT
receptor agonists or antagonists as shown by Tian Bin et al. [71]. Aside from the controversies, the role
of 5-HTR7 in acute itch seems to be well established. It was demonstrated that activation of 5-HTR7
leads to the opening of TRPA1 and subsequent acute itch sensation [69] (Table 1). Indeed, recent data
confirmed that 5-HTR7 signals in an TRPA1-dependent manner, whereas 5-HTR2 acts via an unusual
TRPV4 dependent pathway [72] (Table 1). It remains elusive how results obtained in rodents can be
applied to humans and thereby answer the role of 5-HT receptors in pruritus. Nevertheless, it was
shown that the selective serotonin reuptake inhibitor was capable of reducing pruritus in patients
suffering from AD [73,74]. Moreover, it was discovered that 5-HT1A and 5-HT2A were overexpressed
in lesional skin compared to healthy patients, indicating a neuromodulator role of serotonin and 5-HT
receptors in itch mediation [75]. In addition, recent research provided insight into the role of 5-HT1A
receptor, which potentiates itch sensation through gastrin-releasing peptide dependent scratching
behavior [76]. To date, it remains controversial if the pruritic influence of 5-HT receptors is fulfilled by
their immunomodulatory effect or as a direct itch mediator [74]. Taken together, itch mediated by 5-HT
receptors is a complex topic by itself and might be best answered by a dynamic interplay of several
5-HT receptors and their neuroimmunological roles interacting in concert to create the sensation of itch.

Serotonin was discovered in the 1940′s and identified as “tonic” substance from the “serum”,
hence serotonin [77]. Serotonin has the rare ability to act as hormone (periphery) and neurotransmitter
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(CNS) depending on the site of action. In the initial step of its synthesis, L-tryptophan is converted
to L-5OH-tryptophan by tryptophan hydroxylase, which is subsequently converted to serotonin by
L-amino acid decarboxylase [78]. Humoral Serotonin is responsible for a wide variety of functions in the
human body, starting from cardiovascular function, bowel motility, ejaculatory latency, bladder control,
platelet aggregation, circadian rhythm, mood, anxiety, appetite, temperature just to name a few [65].
It was also demonstrated that the application of serotonin potentiates and induces itch sensation in
mice [69,79]. Thereby, serotonin contributes to vasodilation, inflammation, immunomodulation and
pruritogenic effects by interacting with their receptor in the skin [74]. Thus, explaining pruritogenic
effects elicited by serotonin without considering the synergistic effects of inflammation, vasodilation,
and immunomodulation would be insufficient. It remains a tremendous and complex task to
decipher the individual contribution of each 5-HT receptor and serotonin to acute itch sensation in
human patients.

3.3. Protease-Activated Receptors

Protease-activated receptors (PAR) belong to the class A GPCRs and are unique from most
other GPCRs in their mechanism of activation. They are activated by proteolytic cleavage of their
own extracellular N terminus [80–82]. Once activated, PARs signal through Gi/Go and G12/G13,
whereas PAR1 is also capable of signaling through Gq/G11 heterotrimeric G proteins [51] (Table 2).
This family is comprised of four members, PAR1, PAR2, PAR3, and PAR4, which are involved in a
variety of physiological functions ranging from hemostasis, inflammation to cell differentiation and
proliferation [83,84]. Studies demonstrated that activation of PAR1, PAR2, and PAR4 can induce
non-histaminergic itch. [38,85]

There are various endogenous and exogenous mediators that have been shown to induce itch
sensations. These mediators belong to the protease family, examples are cathepsin S, mucunain, and
tryptase [86–88]. Cathepsin S is an endogenous lysosome protease that was shown to evoke itch and
activate PAR2 and PAR4. [89] Mucunain is an exogenous cysteine protease that was shown to also
activate PAR2 and PAR4. Mucunain is the active component of cowhage (Mucuna pruriens), a plant
found in tropical areas. It was reported that this compound elicits pruritus without the urticarial
response associated with histamine suggesting that mucunain could identify a non-histaminergic
pathway of pruritus [80,90]. Other plant-derived cysteine proteases such as bromelain, ficain,
and papain activated PAR2 and PAR4 in HeLa cells [91]. Given that these proteases act via the same
activation mechanism as mucunain, would suggest a histamine independent mechanism of action.
Aside from plants there are many other exogenous proteases originating from bacteria, amoebae,
insects, fungi, and reptiles activating members of the PAR family [83,92,93]. Nonetheless, the detailed
mechanism of how and if these exogenous proteases elicit an itch sensation exclusively through PARs
remains to be answered.

PARs are known to form homo- or heterodimer with other members of the PAR family [42,94–96].
How this dimerization impacts and modulates itch sensation is still under investigation. Obviously, the
dimerization interface of PARs provides an additional target site to reduce or modulate itch sensation
triggered by protease mediators. Additionally, activation of PAR1 and PAR2 recruit trimeric G proteins
(Gi, Gq, or G12/G13) whereas PAR4 signals, through Gq or G12/G13. Gq activation, stimulate further
downstream processes including TRPV1 and TRPV3 [42,88,97,98] (Tables 1 and 2). If all members of
PAR cause itch sensation involving TRPV1 activation or if other G proteins, biased signaling, and
additional receptors are engaged remains elusive.

3.4. Neurokinin Receptors

There are three types of neurokinin receptors: NK1R, NK2R, and NK3R. All belong to the class A
GPCRs. Moreover, all three members bind to peptide ligands and signal via Gq/G11, whereas NK1R
and NK2R are also capable of Gs signaling [51] (Table 2). Among NK receptors, NK1R is mainly
involved in itch because of its preferred ligand substance P (SP) [99,100]. Interaction with SP leads
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to activation of phospholipase CB (PLCB), and results in a transient increase in intracellular inositol
1,4,5 triphosphate (IP3) diacyl-glycerol and increased cytosolic calcium concentration [101]. NK1R is
expressed by sensory nerve endings, mast cells, keratinocytes, and fibroblasts and is highly abundant
in the central nervous system [100,102]. Moreover, it was reported that NK1R is overexpressed across
multiple chronic itch-induced conditions [103]. Thus, treatment of patients suffering from chronic
pruritus reported reduced itch sensation after various NK1R antagonist regimens [99,104,105]. Recent
research suggested an interplay between opioid receptors and NK1R because of their co-localization.
There is growing evidence that opioid receptors might modulate SP release and that NK1R is involved
in side effects of opioids [106]. Therefore, it is possible that the interplay between opioid receptors and
NK1R might also modulate the signaling of itch sensation through SP.

SP is a neuropeptide and consists of eleven amino acid residues [107,108]. This undecapeptide
belongs to the largest known peptide group, the tachykinin peptide hormone family (locus on the TAC1
gene) [109]. It was shown that overexpressing SP nerve fibers are augmented in human skin suffering
from chronic itch [110]. Thus, SP remains an interesting neuropeptide with regard to the mechanisms of
itch sensation. Even though SP binds to NK1R and MRGPRX2 only NK1R is involved in itch sensation
since the effect was reduced by administering NK1R specific antagonist which exclusively binds NK1R
but not MRGPRX2 [111]. Furthermore, SP is known to induce expression of leukotriene B4 which in
turn causes itch sensation through leukotriene receptors [112]. Thus, SP induced itch sensation might
be evoked by induced expression of leukotriene B4. Moreover, histamine and SP induced itch was
almost completely suppressed by antihistamines, whereas bradykinin- and serotonin-induced itch was
not. Suggesting that SP is a histamine-dependent pruritogen [113]. The complex interplay between
endogenous pruritogens demonstrates that further research is urgently required to fully understand
the role of each receptor and mediator in the orchestra of itch sensation.

3.5. Bradykinin Receptors

As the majority of pruritogenic receptors, also bradykinin receptors BDKRB1 and BDKRB2 belong
to the class A GPCRs. BDKRB1 and BDKRB2 signal through trimeric G proteins Gi/Go, Gq/G11 and
Gs, Gi/Go, Gq/G11, respectively [114] (Table 2). Another major difference between BDKRB1 and
BDKRB2 are the expression levels. While BDKRB2 is constitutively expressed, BDKRB1 is solely
expressed in traumatic or inflammatory conditions [115]. Even though bradykinin (BDK) is known to
activate both receptors the role of the two receptors in BDK induced itch remains enigmatic. Whether
both receptors BDKRB1 and BDKRB2 induce itch sensation to a similar extend, if they interact via
a complex interplay or via identical pathways is part of current research [116]. Previous studies
demonstrated that a BDKRB2 antagonist induces itch sensation and this sensation is increased in
combination with BDK [116]. Given that BDKRB1 causes itch sensation upon BDK application,
an obvious explanation would be that BDKRB1 is activated and BDKRB2 inactivated, causing the
synergistic effect of BDK and BDKRB2 antagonist. Conversely, another study concluded that itch
induced by sodium deoxycholic acid is reduced upon administration of BDKRB2 antagonists [117].
Activation of BDKRB1 mediates the alloknesis response in complete Freund’s adjuvant (CFA)-inflamed
mice [116]. Investigations showed that activation of BDKRB1 receptor with BDK caused histaminergic
independent itch sensation in inflamed tissue [113,116]. In addition, it was demonstrated that itch
related behavior was modulated but not entirely depleted upon prior application of histamine [118,119].
Thus, demonstrating histaminergic independent itch sensation induced by BDK [113]. Further, it was
also shown that the administration of BDK causes elevated concentrations of CGRP, substance P, and
prostaglandin E2, all of them are known to induce itch sensation [120]. Taken together, these findings
illustrate the controversial understanding of itch mediated by the two BDK receptors. The common
denominator of these studies is related to the fact that both receptors are involved in itch sensation
but through different pathways. Both of these pathways triggered by BDKRB1 and BDKRB2 require
further investigation to fully understand the interplay between the BDK receptors BDKRB1, BDKRB2,
and histaminergic or non-histaminergic pruritus.
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Aside from the controversies about the receptor signaling, it is well established that BDKRB1 and
BDKRB2 have the shared ligand bradykinin. BDK is a nonapeptide hormone (sequence RPPGFSPFR)
originating from the kinin-kallikrein system [121]. Thereby, the precursor kininogen is enzymatically
cleaved to produce BDK by kallikrein which itself is originating from the precursor prekallikrein [122].
Kinins, which are produced by the action of kallikrein enzymes, are blood-derived local-acting peptides
that were shown to have broad effects. The nonapeptide is generated mainly during pathophysiologic
conditions such as inflammation, trauma, burns, shock, and allergy, thus causing skin disorders
in humans and mice under chronic inflammation conditions [123]. In addition, it was shown that
an injection of highly diluted BDK (1: 100 Mio) is sufficient to elicit a physiological itch response,
which renders BDK a highly potent pruritogen [124].

3.6. Calcitonin Gene-Related Peptide Type 1 Receptor

The calcitonin gene-related peptide type 1 receptor (CALCRL) is an atypical member of the class
B1 GPCRs required to carry a modification in order to be functional. This modification is called
receptor activity-modifying protein (RAMP1), which results in a heterodimeric receptor entity required
for trafficking and receptor activity [125–127]. This heterodimeric receptor is called calcitonin gene
related peptide (CGRP) receptor and is capable of signaling via Gs heterotrimeric G proteins [128]
(Table 2). CGRP receptors are translated throughout the body and are involved in a variety of
physiological processes of which mediation of migraine is of particular interest [129]. Nevertheless,
it was shown that ablation of CGRP resulted in attenuated itch, suggesting a modulating effect of CGRP
receptors [130]. Moreover, it was demonstrated that neurons lacking expression of CGRP resulted
in reduced capsaicin/heat associated itch response in mice [131]. Taken together, CGRP receptors
are receptive to a variety of physical stressors ranging from heat, cold, mechanical stress to itch.
Therefore, it is topic of current research to elucidate the complex interplay of CGRP signals with other
neurotransmitters to elicit the above-mentioned sensation influenced by CGRP and its receptor.

CGRP a member of the calcitonin peptide family, consisting of two members αCGRP and βCGRP
which both are 37 amino acids long and share 94% identity [132,133]. CGRP is the product of
transcription, translation, and post-translational modification of the calcitonin gene. Thereby, the two
mature CGRP result from splicing, post-translational modification, and protease cleavage [134]. These
mature isoforms of the neurotransmitters are then stored in vesicles at the sensory nerve terminals
which are frequently released together with substance P [135]. Given the interplay between substance P
and CGRP, the simplistic view of CGRP induced itch fails to explain the synergistic outcome of the two
endogenous modulators. Thus, only a comprehensive view on itch mediators as published by Rogoz
et al. provides a profound understanding of CGRP modulated itch sensation [130]. In addition, recent
studies have reported that prurigo nodularis, a disorder accompanied by intensive pruritus, is closely
associated with increased dermal levels of CGRP and SP [136]. Altogether, itch sensation modulated or
induced by CGRP is a complex subject involving various transmitters leading to synergistic effects.
Thus, only a combinatorial treatment against pruritus will be effective.

3.7. Mas-related GPR Family Member X1 (MRGPRX1)

MRGPRX1 belongs to the class A orphan GPCRs, albeit lacking the conventional Cys-Cys disulfide
bridge and ionic-lock, which are found in prototypical class A GPCRs [137]. Also, MRGPRX1
is a member of the MRGPR family, which comprises receptor genes found in mice, rats, and
humans [138,139]. The MRGPR family consists of eleven subfamilies with about 50 GPCRs in
total, seven subfamilies and ten GPCRs thereof were detected in humans [140]. It was found that
MRGPR is exclusively expressed in dorsal root ganglion neurons and these sensory neurons are
responsible for detection of painful stimuli [140,141]. Interestingly, these neurons containing MRGPRs
lack the expression of TRPV1, substance P, and partly CGRP in mice but not in humans [141,142].
The substantial difference in expression patterns of itch modulators and mediators such as substance
P, CGRP and TRPV1 between mice and humans obscures a direct transfer of results about MRGPR
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mediated pruritus [141]. In humans, MRGPRX1 receptor is activated by bovine adrenal medulla
peptide (8–22) (BAM8-22), compound 16, and chloroquine. Activated MRGPRX1 signals through the
Gq/G11 pathway resulting in stimulation of phospholipase C [21,143–145] (Table 2). It was shown in
mice that activation of MRGPRA3 and MRGPRC11 (MRGPRX1 mouse homolog) with BAM8-22 or
chloroquine ultimately leads to activation of TRPA1 channel which elicits itch sensation [146] (Table 1).
Chloroquine is commonly used as an anti-malaria therapeutic and found recent popularity during
the COVID-19 outbreak. In addition, pruritus is one of the most common side effects in chloroquine
treatment, which also shows poor response to systemic antihistamine pre-treatment [147–149]. The case
studies mentioned here together with the human patient trial of BAM8-22 provide strong evidence for
the role of MRGPRX1 in pruritus [150]. However, effective concentrations of endogenous agonists for
MRGPRX1 are rarely reached, thus the question of the role of MRGPRX1 remains open. One hypothesis
for the role of MRGPRX1 is related to the fact that this receptor is predominantly activated by warning of
toxic or harmful substances invading the organism [140]. Despite strong evidence for the itch inducing
role of MRGPRX1 in humans, it might not be the target of choice for treating pruritus or itch related
diseases, except if induced by chloroquine or any other known exogenous agonists mentioned above.

Bovine adrenal medulla (BAM) peptides are peptides secreted from the adrenal gland derived
from cleavage products of the pro-encephalin A gene [144,151]. It was shown that the first seven amino
acids of BAM22 do not contribute to the binding to MRGPRX1, whereas these initial amino acids are
crucial in binding to opioid receptors [152]. It was shown that application of BAM8-22 induced itch
sensation without wheal or flare in a histamine independent manner, but this was not induced by
BAM8-18 [153]. In addition, it was shown that MRGPR can be activated by the peptide SLIGRL, which
is released upon activation of PAR2 in mice [154]. Moreover, the truncated version SLIGR lacking
the leucine amino acid residue is capable of activating PAR2 but the mouse MRGPR lacks an itch
response [154]. This controversy indicates that itch mediated by SLIGRL might be evoked by the
activation of MRGPRX1 and not PAR2. Thorough research is required to precisely describe the role of
the two receptors and their impact in itch mediation.

3.8. Leukotriene Receptors

Leukotriene receptors are class A GPCRs that bind and are activated by leukotrienes (LT).
They include cysteinyl leukotriene receptor 1 and 2 that are activated by LTC4, LTD4, and LTE4 [155].
Additionally, leukotriene B4 receptor 1 (BLT1) and leukotriene B4 receptor 2 (BLT2) are activated by
leukotriene B4 (LTB4). BLT1 is signaling through Gi/Go and Gq/G11, whereas BLT2 mainly signals
through Gi/Go [51] (Table 2). Andoh et al. found that scratching behavior of mice could be induced
after the injection of LTB4 into mice skin. It was found that the levels of LTB4 were significantly elevated
in AD and psoriatic lesions which were usually accompanied with pruritus [156]. These studies in
mice showed a connection between LTB4 and itch sensation [157,158]. Furthermore, the application of
BLT antagonist ONO-4057 suppressed the itch sensation, indicating involvement of BLT receptors in
pruritus in mice [159]. However, LTB4 induced itch could not be recapitulated in healthy humans,
and only wheal and flare response was observed upon LTB4 application [160,161]. Thus, it is highly
controversial if leukotrienes are directly involved in itch sensation. Nevertheless, it is of common
understanding that leukotrienes play a crucial role in inflammation but in contrast play at most a
modulatory role in itch sensation [155].

The origin of LTs is found in the universal precursor arachidonic acid [162]. This subfamily of
molecules belongs to eicosanoids signaling pathways which are responsible for diverse physiological
and pathological functions [163]. LTB4 is known to bind both receptors; BLT1 with high affinity and
BLT2 with low affinity [155,164]. To date, extensive research showed a major contribution of LTB4 in
inflammatory diseases but clear evidence for an explicit role in itch sensation is still lacking.
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3.9. Platelet-Activating Factor Receptor (PAFR)

PAFR belongs also to the class A GPCR family as the majority of receptors involved in itch
sensation. PAFR is mainly localized in the plasma and nucleus membrane of inflammatory cells,
immune cells and cells of the hemostatic system [165]. Thereby, phospholipid ligands bind to PAFR
and induce conformational changes, which in turn recruit various heterotrimeric G proteins, such
as Gs, Gi/Go and Gq/G11 [114] (Table 2). This intracellular signal cascade leads to an amplification
of inflammatory and thrombotic events such as synthesis of interleukins and activation of target
cells [165]. Research administering a combination of platelet-activating factor (PAF) and the H1R
antihistamine mepyramin resulted in reduction of pruritic effects. Similar results were observed in
histamine-depleted skin [166]. Additionally, it was shown that intradermal administration of PAF
caused itch sensation through histamine, released from mast cells via neurogenic activation [167,168].
Yet, a detailed mechanism of how PAF activates these peptidergic neurons is still under investigation.

Platelet-activating factor (PAF) is produced through two different enzymatic pathways [169].
The first pathway comprises a remodeling pathway substituting an acetyl residue for the fatty acyl
residue of membrane derived phospholipids. The second pathway describes a de novo synthesis which
involves the two enzymes phospholipase A2 and lyso-PAF acetyltransferase thereby synthesizing PAF
from phosphocholine and an alkyl acetyl glycerol rest [170]. Additional information regarding the
synthesis and homeostasis of PAF and other lipid mediators can be found in the excellent review by
Prescott et al. [169]. PAF has a variety of physiological and pathophysiological effects. It acts as an
important mediator and activator in anaphylaxis, inflammation, platelet aggregation and degranulation,
and leukocyte chemotaxis. Normally, PAF is produced in low quantities by various cells (e.g., platelets,
neutrophils, macrophages, endothelial cells, and monocytes), but it emerges in larger quantities from
inflammatory cells in response to specific stimulators. Through specific receptors and a series of signal
transduction systems, PAF works to induce diverse biochemical responses. It has been demonstrated
that PAF initially evokes an inflammatory response in allergic reactions in the skin of mammals and
humans. Further, prolonged exposure of PAF antagonist resulted in a desensitization of the said
antagonist [171]. This mechanism indicates an upregulation of PAFR expression or increased receptor
activity after acquired pharmacodynamical tolerance to compensate for lost sensitivity. Whether
receptor sensitivity or receptor density was increased or if a third mechanism is responsible for the
acquired tolerance remains the subject of future studies.

3.10. Opioid Receptors

Opioid receptors belong to class A GPCRs as the majority of itch mediating receptors. It was
previously shown that out of the four different opioid receptors only µ- receptor (OPRM) as heterodimer
with gastrin-releasing peptide receptor (GRPR) and κ- receptor (OPRK) mediate itch sensation [37,
172–175]. Thereby, OPRM and OPRK both signal through Gi/Go heterotrimeric G proteins [176]
(Table 2). In addition, recent research showed that GRPR in the CNS is required for morphine induced
itch sensation [35]. Also, it was shown that up to ten percent of patients treated systemically with
opioids (morphine) developed pruritus [177]. It is a topic of current research whether expression
levels of OPRM in the skin are altered in patients with pruritus. It was recently demonstrated that
OPRK expression levels were indeed downregulated, whereas OPRM levels remain unchanged in
patients suffering from psoriatic itch [178,179]. Thus, it can be concluded that patients suffering
from itch might show an imbalance of epidermal opioid receptors being the cause or result of said
sensation [180]. Various OPRM antagonists were able to decrease morphine induced itch sensation in
human trials [181,182]. Similar effects were reported when OPRK agonists were applied to patients
suffering from pruritus [183]. Taken together, there is significant evidence that both OPRM and OPRK
receptors or imbalanced expression levels of these receptors are involved in pruritus and itch sensation.
Of note, it was shown that both OPRM antagonists and OPRK agonists are able to relieve symptoms of
opioid induced itch sensation.
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Dynorphin is the endogenous OPRK agonist and an opioid peptide derived from cleavage of
prodynorphin by proprotein convertase 2 in the nervous system [184]. In agreement with the OPRK
agonist treatment mentioned above, it was shown that the expression and presence of dynorphin
inhibited itch sensation in mice [185]. Endorphins are a group of OPRM agonists and are comprised of
three endogenous opioid peptides, which are produced and stored in the pituitary gland [186]. It was
shown that the plasma levels ofβ-endorphins are elevated in patients suffering from prurigo [187]. Thus,
it can be hypothesized that imbalanced endorphin levels may contribute to pruritus. How endorphins
and dynorphins act in patients suffering from pruritus is under investigation. However, there is clear
evidence showing the role of these opioid peptides in itch sensation but the effect of imbalanced
expression and distribution in pruritus remains to be answered.

3.11. Cannabinoid Receptors

Cannabinoid receptors are comprised of cannabinoid receptor 1 (CB1) and cannabinoid receptor 2
(CB2), both belong to the class A GPCRs [188]. The two receptors share 44% identity and signal through
Gi/Go heterotrimeric G proteins [189] (Table 2). CB1 is mainly distributed in the central nervous system,
while CB2 is distributed in the peripheral tissues mainly in immune and to a lesser degree in neuronal
cells [189]. Several studies showed that the topical application of cannabinoid derivatives relieve
itch sensation in patients suffering from pruritus [190–192]. Moreover, histamine-induced itch was
attenuated by CB agonist [193]. These findings clearly demonstrate the involvement of CB receptors in
itch sensation. In addition, it was shown that CB1 and TRPV1 receptors are co-localized in primary
afferent C-fibers [194]. This co-localization is of particular interest, since TRPV1 channels are involved
in histaminergic itch sensation, thus representing the bottleneck of histaminergic evoked itch [195–197].
The close interplay between TRPV1 and CB receptors render cannabinoids a preferred substance to
counteract histaminergic involved itch sensation. In conclusion, CB receptors might not induce itch
sensation but are potent modulators of pruritus.

Endocannabinoids (eCB) belong to derivatives of arachidonic acid and are comprised
of N-arachidonoylethanolamide (AEA) and 2-Arachidonoylglycerol (2-AG). These two
arachidonate-based lipids are synthesized from arachidonic acid by fatty acid amide hydrolase
and monoacylglycerol lipase [198,199]. Together with the two receptors CB1 and CB2 they comprise the
so-called endocannabinoid system [200]. Thereby, AEA binds with higher affinity to CB1 and to a lesser
degree to CB2, whereas 2-AG binds to both receptors with equal preference [201]. It is well established
that the endocannabinoid system is involved in a variety of processes including mood, memory, sleep,
appetite, and fertility [202]. In animal studies, it was found that cannabinoid (CB) could induce release
of 13- endorphins by binding to their receptor relieving pain and alleviate histamine-induced itching.
Furthermore, the endocannabinoid AEA is known to activate TRPV1 and thus release of CGRP [203]
(Table 1 and Figure 3). In addition, recent research showed that various cannabinoids are capable of
acting on a variety of TRP channels [204]. Thus, it might be possible that AEA- and CB- induced itch
sensation is caused by the release of CGRP and SP through activation of TRPV but not by directly
interacting with CB receptors (Table 1). These results indicate that eCB, including CB1 and CB2, may be
involved in the regulation of pain and pruritus as modulators but not as pruritogens.

3.12. Interleukin-1 Receptor/Toll-like Receptor Superfamily

3.12.1. Interleukin Receptors

Interleukin receptors belonging to the cytokine family are playing an important role in the
underlying mechanism of itch [205]. Interleukin receptors are activated by cytokines which are
released from leukocytes. Herein, we focus on itch related cytokine receptors IL2R, IL4R, IL13R, IL31R,
Oncostatin M receptor, and cytokine receptor like factor 2 heterodimerized with IL7Rα.

IL2R exists as combinations of three different proteins, namely IL2Rα, IL2Rβ, and IL2Rγ, and
these three proteins together form the high affinity receptor of IL-2 [206]. Once IL2R is activated
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by IL-2 it propagates the signal via two tyrosine kinases JAK1 and JAK3 associated with IL2Rβ and
IL2Rγ respectively (Table 2). Activation of these two kinases triggers the MAPK and PI-3K kinase
pathways [207–209]. A study carried out on 30 patients suffering from pruritus showed increased
IL-2 levels compared to healthy individuals [210]. Furthermore, application of IL-2 showed a low but
immediate pruritogenic effect upon subcutaneous administration [211]. These results demonstrate the
ability of IL-2 to induce itch sensation albeit to a moderate extent.

IL-2, the endogenous ligand of IL2R, is a 153 amino acid long protein belonging to the hematopoietin
family and is produced by CD4 T lymphocytes upon induced cell differentiation [212–214]. A study
carried out on thirty patients suffering from uremic pruritus and healthy control showed increased
levels of IL-2 between patients and control but no correlation among patients suffering from pruritus
and without [210]. Further, 10–29% of patients treated with Aldesleukin (IL-2) reported itching as a
side effect of the treatment [215]. Altogether, more research is required to decipher the precise role of
IL-2 in pruritus or mediation of itch sensation. Thus far, it seems plausible that IL-2 plays a modulatory
role in itch sensation but does not necessarily act as pruritogen in humans.

Unlike IL2R, IL4R can consist of two different heterodimers IL4Rα combined with either γc
or IL13Rα1, propagating the signal of both IL-4 and IL13R or only IL13R, respectively [216–219].
Binding of either IL-4 or IL13R results in activation of STAT6 through the JAK1, JAK3 or Tyk2, JAK2
pathways, depending on cell type and receptor heterodimer [220,221] (Table 2). A recent study
revealed the pruritogenic effect of IL-4 and IL13R administered to mice. They were able to show
an additive effect while administering IL-4 and IL13R in combination [222]. IL-4 and IL13R alone
did not evoke itch response in humans, thus these findings in mice could not be recapitulated [223].
Albeit, administration of histamine in combination with IL-4 resulted in increased scratching behavior,
indicating a modulatory role of IL-4 in itch responses [223]. These findings indicate that IL-4 might
be an endogenous modulator of pruritus but how and if IL-4 evokes an itching sensation in humans
remains to be answered.

IL-4 is a pleiotropic cytokine of 153 amino acid residues and is predominantly expressed in mast
cells and T cells [224]. AD patients treated with dupilumab, a monoclonal antibody blocking IL4Rα,
showed amelioration of their conditions [225–227]. Furthermore, a study in mice showed that deletion
of IL4Rα sensitizes neurons to other pruritogens and that IL4Rα is required to elicit a chronic itch
sensation in AD-like skin inflammation. The same study also showed that JAK1 inhibition in patients
with CIP reduces pruritus [223]. Thus, there is supporting evidence showing that IL-4 does not act as
acute pruritogen but merely modulates itch sensation by increasing sensitivity to other pruritogens.

IL13R consists of a heterodimer similar to IL4R. The subunits IL13Rα (which also forms one
heterodimer receptor of IL4R) and IL13Rα1 compose the functional receptor IL13R [218]. It was shown
that IL13R binds to IL13R with high affinity of 10–15 M, allowing for exclusive signaling through IL13R
and not IL-4, despite their shared receptor moiety [228]. Once activated, IL13R signals through JAK1
and Tyk2 and STAT6 activation [229] (Table 2). As mentioned above (see IL4R), the research on IL-4
and IL13R showed that IL13R caused scratching behavior in mice [222]. In addition, research carried
out on mice suffering on IL13R induced topic dermatitis showed that additional IL13R administration
stimulated TRPA1 expression, which is known for its role in pruritus [230]. Thus, it is debatable if
IL13R is a pruritogen or if IL13R modulates itch sensation by enhancing the allergic responses of
sensory neurons.

IL13R is as IL-4 a pleiotropic cytokine of 146 amino acids, and shares about 30% sequence
homology with IL-4 [231,232]. IL13R is expressed by TH2 helper cells, mast cells, basophils, and
eosinophiles [233,234]. Aside from the close homology to IL-4, IL13R also activates similar responses
as IL-4, partially due to the shared receptor subunit IL13Rα1 [218]. IL13R induces proliferation and
immunoglobulin E synthesis in human B cells, this might suggest that IL13R impacts allergic reactions
and anti-inflammatory processes [235]. It was shown that mice suffering from AD induced by IL13R,
had elevated expression levels of TRPA1, which is one cause of chronic itch in AD [230]. In agreement
with this finding, it was published that IL-4 and IL13R elicit scratching behavior in mice [222]. Similar
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experiments in humans are still lacking. Thus, it is still under investigation whether IL13R is an
immediate pruritogen or if the described sensation in mice is due to the allergic or anti-inflammatory
role of IL13R.

IL-31 receptor (IL31R) is a heterodimeric receptor consisting of IL-31 receptor A (IL31RA) and
oncostatin M receptor (OSMR) [236]. OSMR increases the affinity of IL31R towards IL-31 and activates
PI3K/AKT and MAPK signaling pathways. In addition, IL31RA signals through JAK1/2 which
subsequently activate STAT1/3/5 upon binding to IL-31 [236–238] (Table 2). IL31R are expressed among
others in keratinocytes, epithelial cells, and by DRG pruriceptors [238,239]. Immunohistochemical
analyses revealed that IL31R protein levels seem to be increased in patients with AD [239,240].
In addition, it was shown that the IL31R is co-expressed with TRPV1 and TRPA1 in sensory nerves
which mediate T cell induced itch [241]. Aside of AD, IL31R overexpression and elevated IL-31 levels
are involved in various diseases such as allergic contact dermatitis, psoriasis, bullous pemphigoid,
chronic spontaneous urticarial, dermatomyositis, bowel disease and airway hypersensitivity [236,242].
Given the significant evidence of the connection between pruritus and prevalence of IL31R, it is
beyond doubt that IL31R is the cytokine receptor responsible for transmitting itch sensation in humans
suffering from pruritus, thus providing an excellent target for the treatment of pruritus and IL31R
related diseases.

IL-31 is 164 amino acid long and belongs to the interleukin 6 family of cytokines [237]. IL-31 is
preferably expressed in activated helper T cells, in particular TH2 helper cells, mast cells, macrophages,
dendritic cells and eosinophils comparable to IL13R [238,242]. Also, IL-31 plays an important role in the
homeostasis of the skin, airway, and intestinal epithelia, in general IL-31 is crucial for an intact innate or
adaptive immunity in tissues with direct contact to the environment [236,237]. It was shown that levels
of IL-31 were significantly elevated in pruritic lesional skin of patients with AD compared to nonpruritic
lesional skin of patients with psoriasis [243]. Similar findings were confirmed in mice, where elevated
IL-31 levels lead to pruritus, alopecia, and skin lesions [238,242,244,245]. Moreover, it was shown that
IL-31 is overexpressed in patients suffering from asthma [246]. Altogether, there is strong evidence
that IL-31 induces pruritus and plays a crucial role in autoimmune skin diseases. Future research is
required to answer the details of how IL-31 induces pruritus and causes atopic dermatitis.

Thymic stromal lymphopoietin (TSLP) receptor (TSLPR) is a heterodimeric receptor consisting of
IL7Rα and cytokine receptor-like factor 2 [247]. TSLPR is mainly found in immune cell types such
as monocytes, T cells, B cells, mast cells NKT cells, dendritic cells, and tissues from heart, skeletal,
muscle, kidney, and liver [248–250]. TSLPR is activated upon binding of TSLP, thus signaling as other
interleukin receptors through activation of JAK1/2 and subsequent activation of STAT1/3/4/5/6 [251–253]
(Table 2). Remarkably, it was shown that TSLP is able to induce itch sensation by directly activating
TRPA1-positive neurons. Still, the study demonstrated that both receptors TSLPR and TRPA1 are
required to induce itch sensation upon TLSP administration [254,255]. Taking together, TSLPR plays a
crucial role in itch mediation while the sensation may be modulated by direct activation of TRPA1.
Future research will provide more insights into the orchestration of itch sensation by TLSPR and
additional receptors activated by TLSP.

TSLP exists in two isoforms as a steadily expressed short form and as a long alternative splice
variant which is expressed upon inflammation [256,257]. The short isform counts 63 amino acids,
whereas the long isoform consists of 159 amino acid residues [258]. TSLP, a pleiotropic cytokine, belongs
to the IL-2 cytokine family and is a paralog of IL-7 [248]. Moreover, TSLP is mainly expressed in lung
and intestinal epithelial cells, skin keratinocytes, and fibroblasts [259–261]. Thereby, exposure of TSLP
stimulates CD4+ T helper type 2 differentiation [262,263]. Patients suffering from AD showed elevated
expression levels of TSLP in keratinocyte, whereas healthy individuals were lacking TSLP [260,264].
Furthermore, it was demonstrated that TSLP evokes itch via TRPA1 channel activation in mice and
human cell lines, thus rendering TSLP induced itch signaling histamine independent [255] (Table 1).
Studies in human tissue confirmed the role of TSLP as a “missing link” between itch and AD. Hence,
elevated ∆Np73 levels increased releasing of TSLP via NF-κβ activation [265]. Taken together, there is
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strong evidence that TSLP acts as a primary pruritogen and not as a modulator of pruritus unlike the
majority of interleukins.

Altogether, there is convincing evidence for cytokines IL-31 and TSLP to play a primary role in
eliciting itch sensation in humans. Moreover, other cytokines mentioned in this review and elsewhere
might have a limited effect on pruritus and thus acting predominantly as modulators of itch sensation
but not as primary pruritogens. In addition, a tremendous amount of experiments and research
is carried out on rodent models which provides a first and strong basis for determination of the
pathophysiology of itch, but ultimately the proof of concept in patients is still required. As stated by
Storan and O’Gorman et al., there is convincing evidence for the important role of several interleukins
in pruritus, while for cytokines such as oncostatin M, IL-2, IL-6, IL-8, and IL13R, direct evidence is still
lacking [266]. This clearly demonstrates that major effort has to be invested to determine the relevance
of interleukins in itch sensation in humans.

3.12.2. Toll-Like Receptors

In humans, the toll-like receptor (TLRs) family is comprised of ten receptors TLR1 to TLR10, which
are close homologs of the interleukin-1 receptor family [267]. Thereby, all TLR members are required
to form hetero- or homo- dimers to create a functional receptor entity. This dimeric entity consists of
two bitopic membrane proteins allowing for signal transduction across the membrane. TLRs regulate
the host immune response against pathogens by recognizing molecular components derived from
microorganisms [268]. Due to their function, TLRs are predominantly found in macrophages or dendritic
cells and are activated by an enormous variety of ligands. These ligands range from lipopeptides,
glycolipids, proteolipds, lipopolysaccharide, DNA, to single and double stranded RNA [269].
All TLRs, except TLR3 signal via myeloid differentiation primary response 88 (MyD88)-dependent
pathways which subsequently activate transcription factor NF-κβ and Mitogen-activated protein kinase
(MAPK) [268] (Table 2). Nevertheless, TLR3 signals through a TIR-domain-containing adapter-inducing
interferon-β (TRIF)-dependent pathway leading to production of interferon type I. Ultimately, activation
of NF-κβ leads to a similar outcome as the activation pathway of MyD88 [270] (Table 2). Additionally,
TLR4 is able to signal through both TIRF- and MyD88- dependent pathways, which renders TLR4
a favored target for therapeutics [271,272] (Table 2). Recent research revealed that TLR3, TLR4, and
TLR7 are expressed in small-sized pruriceptive/nociceptive neurons. Thus, there is strong evidence
that these three TLRs play a potential role in mediating and modulating pruritus [273].

TLR3 interacts with exogenous double stranded RNA. This interaction leads to the production
of Type I interferons, pro-inflammatory cytokines, and subsequent activation of NF-κβ [270,274,275].
It was shown that activation of TLR3 elicits an action potential in DRG neurons expressing TRPV1 and
gastrin-releasing peptide (GRP). In addition, knockout and knockdown of TLR3 resulted in modulation
of itch-evoked scratching behavior in mice [276]. Moreover, a study carried out on human keratinocytes
and mouse DRG demonstrated that the expression of TSLP and endothelin-1 (ET-1) is increased upon
exposure of polyinosinic:polycytidylic acid (PIC) [277]. PIC is a synthetic RNA homolog and acts as
TLR3 agonist. In conclusion, increased levels of TLR3, TSLP and ET-1 in dry skin support the previous
findings, where activation of TLR3 by PIC showed elevated itch sensation in mice. Conversely, elevated
TSLP expression by TLR3 could indicate that itch sensation is evoked by direct interaction between
TSLP and TRPA1 as mentioned above (Table 1 and Figure 3). Thus, rendering TLR3 an itch modulator.

TLR4 resides in the cell membrane of DRG neurons unlike TLR3 and TLR7 which are localized in
the membrane of endosomes and the endoplasmic reticulum [278]. Bacterial lipopolysaccharides are
the exogenous ligands of TLR4 [279]. An extensive review about synthetic and natural ligands of TLR4
from Peri et al. provides an intriguing insight into the versatility of the exogenous and endogenous
ligands of TLR4 [280]. DRG sensory neurons which express TLR4 also express TRPV1 and activation
of TLR4 sensitizes TRPV1 [281]. Thus, activation of these TLR4 does not elicit an acute itch sensation
in mice but modulates the histaminergic itch response [282]. This research in mice supports that TLR4
enhances the histaminergic itch response by potentiating TRPV1 signaling [281,282] (Table 2). Further,
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studies in mice revealed that acute itch induced by acetone and diethylether followed by water was
reduced upon inhibition or knockout of TLR4 [283]. In conclusion, TLR4 unlike TLR3 and TLR7, fails
to evoke acute itch sensation upon activation and therefore belongs to the histamine dependent itch
modulators. We have to bear in mind that the here mentioned studies about TLR4 were carried out
in mice. Moreover, there is 103 order difference in LPS sensitivity between human and mice [279].
Thus, itch related insights derived from rodent experiment have to be carefully assessed before applied
to humans.

Similar to TLR3, TLR7 is activated by the interaction with single stranded RNA, obviously
recognizing infections by viral genomes [274,284]. Again, similar to TLR3, small-size DRG neurons
which express TLR7 also express gastrin-releasing peptide, MRGPRA3 and TRPV1 in mice [285,286].
Thereby, TLR7 knockout mice did not show any impairment in pain and thermal sensitivity, or
histaminergic induced itch, suggesting that TLR7 mediates histamine independent pruritus [286].
In addition, imiquimod is used to reduce growth of warts, keratosis, and basal cell carcinoma. A major
side effect of the topical administered drug is itching, supporting the experimental results derived
from mice [287]. Research with the TLR7 agonist imiquimod confirmed a TRPV1 dependent pathway
evoking itch but proposed an TLR7 independent pathway [288] (Table 2). Altogether, there is yet
little and contradicting evidence for the role of TRL7 in pruritus. Thus, major effort is required to
understand the exact role of TLR3, TLR4, and TLR7 in pruritus. Moreover, results obtained in rodents
have to be complemented with data derived from human cells or patients to provide a detailed and
profound understanding of the role of TLRs in pruritus.
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Table 2. Exogenous and endogenous pruritogens, their receptors, expression levels and signaling.

Receptors Expression G-Protein Binding [289] Endogenous Pruritogens Exogenous Puritogens
Gs Gi/Go Gq/G11 G12/G13

5|18 14|18 10|18 6|18
Histamine receptor GPCR Monoamine

H1R

Keratinocytes [290], dermal fibroblasts [291],
Granulocytes, mast cells [292–294] smooth

muscles, endothelial cells, CNS, and
cardiovascular system [295]

Histamine [296] vilazodone [297]

Serotonin receptor GPCRs Monoamine

5-HTR2

Keratinocytes [298], dermal fibroblasts [299],
dermal langerhans cells [74] T cells, B cells,
granulocytes, dendritic cells, macrophages,

and monocytes [300,301]

5-hydroxytryptamine [302] alpha-methylserotonin [67]

5-HTR7

Keratinocytes [298], dermal fibroblasts [299],
dermal Langerhans cells [74], T cells, B cells,
granulocytes, macrophages, monocytes, and

dendritic cells [301]

5-hydroxytryptamine [303] LP44 [69]

Protease-activated
receptors GPCRs Proteases

PAR1 Keratinocytes [304], dermal fibroblast [305],
platelets, and vascular endothelial cells [306] Thrombin [83]

Hexapeptide derived from thedered
peptide sequence e.g., TFLLR [85]

bromelain, ficin, papain, mucunain, and
trypsin from animals [91]

PAR2

Keratinocytes [98], dermal fibroblast [307],
endothelial cells in pancreas, liver, kidney, GI
tract, and colon but not in the brain or skeletal

muscle [306,308]

Trypsin [83]

Hexapeptide derived from thedered
peptide sequence e.g., SLIGRL [85]

bromelain, ficin, papain, mucunain, and
trypsin from animals [91]

PAR4 Platelets, lung, thyroid, testis, small intestin,
and pancreas [306,309] Thrombin [83]

Hexapeptide derived from thedered
peptide sequence e.g., AYPGKF [85]

bromelain, ficin, papain, mucunain, and
trypsin from animals [91]

Neurokinin receptors GPCR Peptides

NK1R
Keratinocytes, dermal fibroblast [310], dermal
Langerhans cells [311], T cells, macrophages,

and monocytes [312,313]

substance P, neurokinin A,
neurokinin B, neuropeptide-γ,

neuropeptide K [314–316]
N/A

Bradykinin receptors GPCRs Peptides

BDKRB1 Keratinocytes [317], dermal fibroblasts [318],
Granulocytes, and T lymphocytes [319]

bradykinin, kallidin, T-kinin,
[des-Arg10] kallidin [320–322] diphenylcyclopropenone [123]

BDKRB2 N/A bradykinin, kallidin, T-kinin,
[des-Arg10] kallidin [320–322] sodium deoxycholic acid [117]
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Table 2. Cont.

Receptors Expression G-Protein Binding [289] Endogenous Pruritogens Exogenous Puritogens
Gs Gi/Go Gq/G11 G12/G13

5|18 14|18 10|18 6|18
Calcitonin

receptor-like receptor GPCR receptors Peptides

CGRP Keratinocytes [323,324], dermal fibroblasts
[325], Lung, uterus, and placenta [326]

adrenomedullin, adrenomedullin
2/intermedin, α-CGRP, β-CGRP

[327–329]
[Cys(Et)2,7]α-CGRP [330]

Mas-related GPR
family GPCR Peptide

MRGPRX1 Small dorsal root, and trigeminal sensory
neurons [144] BAM8-22 [331] chloroquine [21]

Leukotriene receptors GPCRs Leukotrienes

BLT1

Keratinocytes [332], Granulocytes,
B-lymphocytes, leukocytes, endothelial cells,

and dendritic cells [333–336]

20-hydroxy-LTB4, 12R-HETE,
Leukotriene B4 [337,338] oxazolone [339]

BLT2

Keratinocytes [340,341], spleen, liver, ovary,
leukocytes, and atherosclerotic lesions

[333,338]

20-hydroxy-LTB4, 12R-HETE,
Leukotriene B4 [337,338] oxazolone [339]

Phospholipid receptor GPCR Phospholipid

PAFR Keratinocytes [342], leukocytes, and
granulocytes [343,344]

platelet-activating factor,
methylcarbamyl PAF [345] N/A

Opoid receptors GPCRs Opioids

OPRM
Keratinocytes [346], dermal fibroblasts [347],
CNS, T/B lymphocytes, CD4+, monocytes,

macrophages, and neutrophils [348]

β-endorphin, enkephalin,
dynorphin [349,350] morphine [351]

OPRK Keratinocytes [352], dermal fibroblasts [353],
CNS, and immune cells [353–355]

dynorphin, β-endorphin,
enkephalin, neoendorphin

[349,356]
nor-binaltorphimine [357]

Cannabinoid receptors GPCRs Cannabinoids

CB1 Keratinocytes [358], CNS, and peripheral
neurons [359]

anandamide,
2-arachidonoylglycerol [360,361] Rimonabant [362]

CB2 Keratinocytes [358], spleen, tonsils, bone
marrow, and peripheral blood leukocytes [189]

anandamide,
2-arachidonoylglycerol [360,361] N/A
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Table 2. Cont.

Receptors Expression G-Protein Binding [289] Endogenous Pruritogens Exogenous Puritogens
Gs Gi/Go Gq/G11 G12/G13

5|18 14|18 10|18 6|18
Interleukin receptors non-GPCRs Interleukins

IL2R CD8 + T cells, and natural killer cells [363] JAK1/3 IL-2 Aldesleukin [215]

IL4R Keratinocytes [364], activated T-cells, and
hematopoietic immune cells [365] JAK1/2/3 IL-4 N/A

IL13R
B-cells, T-cells, basophils, eosinophils, mast

cells and endothelial cells of heart, liver,
skeletal muscle and ovary [366]

JAK1 IL-13 N/A

IL31R

CD14-, CD56- positive blood cells,
macrophages, keratinocytes, dorsal root

ganglia neurons, lung epithelial cells
[241,367–369]

JAK1/2 IL-31 N/A

OSMR keratinocytes, neural cells, fibroblast, and
epithelial cells [367,370] JAK1/2 Oncostatin M N/A

TSLPR keratinocytes [371], B-cells, T-cells, and
macrophage cell lines [372] JAK1/2 Thymic stromal lymphopoietin

(TSLP) N/A

Toll-like receptors non-GPCRs various

TLR3

keratinocytes [373], dermal langerhans cells
[374], dendritic cells, astrocytes, glia and

neurons; especially in placenta and pancreas
[375]

TRIF ds RNA Polyinosinic:polycytidylic acid [105]

TLR4 Keratinocytes [373], monocytes, macrophages,
dendritic cells, and T-cells [376,377] MyD88/TRIF LPS paclitaxel [378]

TLR7 Plasmacytoid dendritic cells, and B cells [379] MyD88 ss RNA Imiquimod [288]
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4. Conclusions

Besides classic chemical receptors and pathways described in this review, there are reports of
a new class of pruriceptors emerging on the horizon. Mechanosensitive pruriceptors are involved
in a mechanical induced itch sensation. This touch induced itch sensation involves fading of
mechanosensitive Merkel cells with advancing age (alloknesis) [380,381]. Recently, it was shown that
the lack of Piezo2 channel signaling (modulator) in Merkel cells is responsible for the conversion of
touch into itch sensation [382]. Similarly, TLR5 positive mechanoreceptors might mediate mechanical
itch conditions, because of lacking inhibition (modulation) by interneurons expressing neuropeptide
Y [383–385]. In addition, a recent study revealed that mechanical itch was developed in streptozotocin
induced diabetic mice by activation of TRPA1 [386], thus providing an explanation for itch and
hypoalgesia in type 1 diabetes [386]. Altogether, mechanosensitive cells, their receptors, and signaling
pathways are a potential source for itch sensation, which urgently requires future research to understand
their contribution to pruritus. Thus, revealing the detailed interaction between chemical and mechanical
itch pathway is of paramount interest.

Considering chemical receptors, pruritoceptive (dermal) itch is mediated through various
individual receptors which interact with different mediators and modulators. Moreover, it was
demonstrated that expression levels and clustering of different receptors within a cell influence itch
perception. Therefore, this sensation ought to be considered as a complex interplay of different players
as found in a well-rehearsed orchestra. Here, we differentiated by itch mediator and modulator. It was
found that many of the presented ligands are itch modulators and do not act as primary pruritogens
(Table 1 and Figure 3). As in other research fields, the majority of experiments concerning pruritus are
carried out in rodents. However, the translation of results obtained from rodents cannot be applied
directly to humans. Therefore, results related to itch sensation obtained in rodents have to be considered
with great caution if used to decipher human pruritus. Further, the reports should be carefully consulted,
and experiments have to be wisely selected to draw valid conclusions regarding the contribution
of a specific receptors and their ligands to itch sensation. In addition, itch sensation is frequently
accompanied by inflammation and sensations like pain or local heat [19]. These circumstances render
the topic of pruritus especially challenging because of the lack of delineated boundaries between
these states and sometimes even shared receptors and mediators. As is often the case, the whole is
greater than the sum of its parts, and this sentence holds especially true when trying to understand
the molecular mechanism of pruritoceptive itch. Nevertheless, remarkable effort and advances in the
field of pruritoceptive itch have provided a multitude of new potential targets. Future research has to
delineate the interaction between these targets and find ways to inhibit and modulate this sensation by
targeting a combination of receptors, mediators, and modulators within the orchestra of itch.
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Abbreviations

AEA arachidonoylethanolamide
BAM bovine adrenal medulla
BAM8-22 bovine adrenal medulla peptide (8-22)
BLT1, 2 leukotriene B4 receptor 1 or 2
BDK bradykinin
BDKRB1 bradykinin receptors 1 or 2
CALCRL calcitonin gene-related peptide type 1 receptor
CB Cannabinoid
CB1 Cannabinoid receptor 1 or 2
CFA Complete Freund’s adjuvant
CNS Central nervous system
CGPR Calcitonin gene-related peptide
eCB Endocannabinoids
ET-1 Endothelin-1
GRP Gastrin-releasing peptide
GRPR Gastrin-releasing peptide receptor
GPCR G protein coupled receptor
H1-4R Histamine receptors 1-4
IL1-14 Interleukins 1-14
IL1 – 14R Interleukin 1-14 receptor
IP3 Inositol 1,4,5 triphosphate
OPRK κ- opioid receptor
LT Leukotriene
LTB4 Leukotriene B4
MAPK Mitogen-activated protein kinase
ME mediator
MRGPRX1 Mas-related GPR family member X1
MO Modulator
MyD88 Myeloid differentiation primary response 88
OPRM µ- opioid receptor
OSMR Oncostatin M receptor
PAR Protease-activated receptors
PAFR Platelet-activating factor receptor
PIC Polyinosinic:polycytidylic acid
PLCB Phospholipase CB
RAMP1 Receptor activity-modifying protein
SP Substance P
TLR Toll-like receptor
TRIF TIR-domain-containing adapter-inducing interferon-β
TRPA1 Transient receptor potential cation channel, subfamily A, member 1
TRPV1, 3 Transient Receptor Potential Vanilloid 1 or 3
TSLP Thymic stromal lymphopoietin
TSLPR Thymic stromal lymphopoietin receptor
2-AG 2-Arachidonoylglycerol
5-HTR 5-Hydroxytryptamine receptor (serotonin receptor)
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