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Abstract: TRANSPARENT TESTA GLABRA1 (TTG1) is a WD40 repeat protein. The phenotypes
caused by loss-of-function of TTG1 were observed about half a century ago, but the TTG1 gene was
identified only about twenty years ago. Since then, TTG1 has been found to be a plant-specific regulator
with multiple roles and multiple functional mechanisms. TTG1 is involved in the regulation of cell
fate determination, secondary metabolisms, accumulation of seed storage reserves, plant responses to
biotic and abiotic stresses, and flowering time in plants. In some processes, TTG1 may directly or
indirectly regulate the expression of downstream target genes via forming transcription activator
complexes with R2R3 MYB and bHLH transcription factors. Whereas in other processes, TTG1 may
function alone or interact with other proteins to regulate downstream target genes. On the other hand,
the studies on the regulation of TTG1 are very limited. So far, only the B3-domain family transcription
factor FUSCA3 (FUS3) has been found to regulate the expression of TTG1, phosphorylation of
TTG1 affects its interaction with bHLH transcription factor TT2, and TTG1 proteins can be targeted
for degradation by the 26S proteasome. Here, we provide an overview of TTG1, including the
identification of TTG1, the functions of TTG1, the possible function mechanisms of TTG1, and the
regulation of TTG1. We also proposed potential research directions that may shed new light on the
regulation and functional mechanisms of TTG1 in plants.

Keywords: TTG1; MBW complex; cell fate determination; flavonoid biosynthesis; seed coat mucilage
production; stress response; Arabidopsis thaliana

1. Introduction

The phenotypes of Arabidopsis ttg (transparent testa, glabra) mutants were first reported about
50 years ago [1,2]. It was then proposed that the TRANSPARENT TESTA GLABRA (TTG) locus has
pleiotropic roles in the regulation of trichome initiation, anthocyanin biosynthesis, and seed coat
mucilage biosynthesis in Arabidopsis [3]. The TTG locus was mapped to chromosome 5 about 40 years
ago [4]. About 30 years ago, it was proposed that TTG1 might encode an MYC transcription factor [5].
However, TTG1 gene was finally cloned about 20 years ago and was found to encode a WD40 repeat
protein [6], a member of the WD40 repeat protein family, one of the largest protein families widely
distributed in all eukaryotic cells. So far, more than 200 WD40 repeat proteins have been predicted in
plants [7,8], and they are involved in the regulation of multiple processes in plants, such as signaling
transduction, cell cycling, chromatin modification, transcriptional regulation, and RNA processing [7,9].

Accumulated evidence shows that, in addition to trichome initiation, anthocyanin biosynthesis,
and seed coat mucilage production, TTG1 is also involved in the regulation of root hair
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formation [10], stomata development [11], seed development, post-embryonic development [3,6,12–17],
proanthocyanidins (PAs) biosynthesis [3,13,17–20], accumulation of seed storage reserves such as fatty
acids and proteins during the seed maturation process [15,16], as well as biotic and abiotic stress
responses in plants [21–23].

In recent years, remarkable achievements have been made in understanding the roles and function
mechanisms of TTG1 in regulating epidermal cell fate determination and secondary metabolism in
Arabidopsis and other plants [10–20]. It has been proposed that TTG1 can interact with different R2R3
MYB and basic helix-loop-helix (bHLH) transcription factors to form multiple MYB-bHLH-WD40
(MBW) activator complexes to regulate the expression of downstream genes, thereby regulating cell
fate determination including trichome initiation and root hair formation, and secondary metabolism
including flavonoid biosynthesis and seed coat mucilage production [24–29]. For example, TTG1
regulates trichome initiation by forming MBW activator complexes with the R2R3 MYB transcription
factor GLABRA1 (GL1), and the bHLH transcription factor GLABRA3 (GL3) or ENHANCER OF
GLABRA3 (EGL3) to activate the expression of GLABRA2 (GL2) [25,30]. The same MBW complexes
can also activate the expression of some R3 MYB genes. Whereas R3 MYBs can compete with GL1
for the binding of GL3 or EGL3, thus preventing the formation of the MBW activator complexes,
resulting in inhibition of trichome initiation [25–27,31]. TTG1 regulates root hair formation by
forming MBW complexes with the R2R3 MYB transcription factor WERWOLF (WER) and the bHLH
transcription factor GL3 or EGL3 to activate the expression of GL2 [27,32,33]. TTG1 regulates flavonoid
biosynthesis by forming MBW complexes with the R2R3 MYB transcription factors PRODUCTION OF
ANTHOCYANIN PIGMENT 1 (PAP1), PAP2, MYB113, MYB114 or TRANSPARENT TESTA 2 (TT2)
and the bHLH transcription factors TT8, GL3 or EGL3 to regulate the expression of the late biosynthesis
genes in the flavonoid biosynthesis pathway [24,26,28,34–38].

Considering that some previous reviews have covered some aspects of the functions and function
mechanisms of TTG1, for example, in the regulation of flavonoid biosynthesis [39,40] and evolution
of cellular diversity as a component of MBW complexes [41]. We provide here an overview of TTG1,
including the summary of its functions and possible functional mechanisms in regulating epidermal
cell fate determination and secondary metabolism with an emphasis on recent progress, but with a
specific focus on the identification history of TTG1, its functions that may not require the formation of
the MBW complexes, the functions of TTG1 orthologs in other plants, and perspectives on potential
future research directions.

2. Identification of TTG1

The Arabidopsis mutants showing a phenotype of yellow seeds and the absence of leaf trichomes
were first reported in 1971 [1]. In 1978, the name ttg was assigned to these mutants [2]. In 1981,
Koornneef found that the ttg mutants showed a pleiotropic phenotype including glabrous leaves,
a transparent testa seed coat, reduced anthocyanin accumulation, and seed coat mucilage production [3].
In 1980, the gene TTG1 was found to be located on chromosome 5 and is closely linked to ms [42].
In 1983, Koornneef et al. mapped the TTG1 locus between the molecular marker MS1 and GA3 [4].
In 1999, Walkers et al. finally cloned TTG1 gene by using positional cloning [6]. They generated two
sets of recombinants between ttg1-1 and the flanking genetic markers MS1 and GA3, and performed
RFLP (restriction fragment length polymorphisms) analysis by using a variety of probes. A total of 439
recombinants were subjected to large-scale mapping, and EG20H2, a clone from an Arabidopsis genomic
yeast artificial chromosome (YAC) library [43], was found to cover the TTG1 locus. Higher-resolution
mapping of the region covered by EG20H2 showed that, when probed with g4556, a clone from
an Arabidopsis genomic cosmid library [44], only a single recombinant could separate from ttg1-1,
which suggested that the g4556 was very close to the TTG1 locus. The g4556 and YAC EG20H2
clones were then used to screen an Arabidopsis genomic lambda (λ) library [45], and several λ clones
were obtained. DNA probing with the obtained λ clones showed that the deletion of the genomic
fragment in λ8 could account for the phenotype of ttg1-13, a fast-neutron bombardment ttg mutant [46].
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Complementation of the ttg1-1 mutant phenotype with entire and partial genomic fragments in λ8
confirmed that it contained the TTG1 locus, and sequence analysis showed that TTG1 encodes a WD40
repeat protein with high amino acid sequence identity and similarity to AN1 from petunia [6,47].

TTG1 has four WD40 repeat motifs [4], therefore, it is a member of the WD40 protein family.
WD40 proteins are one of the largest regulatory protein families conserved in all eukaryotic cells [9],
and the only conserved feature of WD40 proteins is the presence of the WD40 motifs, which typically
contain several copies of WD40 repeats, with each repeat containing 44–60 amino acid residues, with a
glycine-histidine (GH) dipeptide at the N-terminal and Trp-Asp (WD) residues at the C-terminal [9].
WD40 proteins are able to provide a platform for interactions with other proteins and are involved in the
regulation of growth and development, as well as some cellular functions such as signal transduction
and transcriptional regulation [7–9].

After being summarized previously [39], a few more Arabidopsis ttg1 mutants were identified, and
a complete list of Arabidopsis ttg1 mutants identified so far are presented in Table 1. By characterizing
these mutants, it has been found that TTG1 regulates multiple aspects of plant growth and development,
secondary metabolism, flowering time, and plant responses to environmental stresses.

Table 1. The Arabidopsis ttg1 mutants identified so far.

Allele Origin Mutation Phenotype References

ttg1-1 EMS Q317-stop codon transparent testa, glabra [3,6]
ttg1-9 EMS S282F transparent testa, glabra [6,48]
ttg1-10 EMS g-a (5′UTR) transparent testa, glabra (−) [46]
ttg1-11 EMS G149R transparent testa, glabra [46]
ttg1-12 EMS G43R transparent testa, glabra [46]
ttg1-13 fast neutrons genome deletion transparent testa, glabra [46]

ttg1-15/16/17/18 EMS S310-stop codon transparent testa, glabra [6]
ttg1-19 EMS W183-stop codon transparent testa, glabra [6]
ttg1-20 EMS S30C, S310-stop codon transparent testa, glabra [6]
ttg1-21 T-DNA insert in 5′UTR transparent testa, NA [49,50]
ttg1-22 T-DNA insert in intron transparent testa, NA [49,50]
ttg1-23 EMS S197F transparent testa (−), glabra [51]
ttg1-24 EMS L339F transparent testa (−), glabra (−) [51]

ttg1-23 (T) T-DNA fragment deletion transparent testa, glabra [52]
ttg1-24 (T) T-DNA genome deletion transparent testa, glabra [51]

ttg1-213 NA W183-stop codon transparent testa, glabra [53]
urm23 EMS G302E glabra (− −) [53]

ttg1 (Est) EMS S101F transparent testa, glabra [54]
ttg1-P313 T-DNA Insertion (ND) glabra [55,56]
ttg1-P416 T-DNA insert in intron transparent testa, glabra [55,56]

ttg1-SK31268 T-DNA Insertion (ND) transparent testa, glabra [55,56]
ttg1-SK41546 T-DNA insert in intron transparent testa, glabra [55,56]

ttg1-21-CI CI insert in 5′UTR transparent testa, NA [57]

Phenotypes from strong to weak: glabra > glabra (−) > glabra (− −); transparent testa > transparent testa (−). Est:
Estland, EMS: Ethyl methanesulfonate, T-DNA: transfer-DNA, UTR: untranslated region, NA: no information
available, urm: unarmed, CI: carbon ion irradiation, ND: position of insertion was not determined.

3. Functions and Function Mechanisms of TTG1

TTG1 is a plant-specific WD40 protein widespread in angiosperms but not in gymnosperms and
early evolved plants [58]. TTG1 has similar functions in different plant species. At least some of its
functions including the regulation of trichome initiation, root hair formation, flavonoids biosynthesis,
and seed coat mucilage production are achieved via interacting with specific R2R3 MYB and bHLH
transcription factors to form different MBW complexes (Figure 1). However, it should be noted that
there is a study showing that TTG1 and GL1 compete for binding of GL3 to form TTG1-GL3 or
GL1-GL3 dimers, rather than simultaneously bind to GL3 to form TTG1-GL3-GL1 trimeric complex,
the interaction of GL3 with GL1 and TTG1 can be suppressed by additional TTG1 and GL1 protein,
and the competition/suppression occurs in a dosage-dependent manner [59].
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Figure 1. The functions of TTG1. TTG1 regulates cell fate determination and
secondary metabolism by forming MBW complexes with specific R2R3 MYB and bHLH
transcription factors. The TTG1-GL3/EGL3-GL1/MYB23/MYB82 complexes regulate trichome
initiation [25,30,60,61], the TTG1-GL3/EGL3-WER complexes regulate root hair formation [27,33],
the TTG1-GL3/EGL3-PAP1/2/MYB113/114 complexes regulate anthocyanin biosynthesis [24,34,36], the
TTG1-EGL3/TT8-TT2 complexes regulate proanthocyanidins (PAs) biosynthesis [24,28,34], and the
TTG1-EGL3/TT8-MYB5 complexes regulate seed coat mucilage production [24]. TTG1 compromises
the accumulation of seed storage reserves through inhibiting 2S3, and FUS3 can directly suppress the
expression of TTG1. SK11/12 can phosphorylate TTG1, therefore inhibit GL2 expression, and affect
fatty acid accumulation. TTG1 is also involved in regulating flowering, as well as biotic and abiotic
stress responses.

3.1. Regulation of Epidermal Cell Fate Determination

In Arabidopsis, TTG1 regulates the specification of several different types of epidermal cells
including trichomes, root hairs, and stomata. The ttg1-1 mutants do not produce trichomes [3,6],
suggesting that TTG1 is involved in the regulation of trichome initiation. Further studies indicate that
TTG1 regulates trichome initiation via associating with the R2R3 MYB transcription factor GL1 [62]
and the bHLH transcription factors GL3 or EGL3 [34,63] to form MBW activator complexes (Figure 1),
the complexes activate the expression of the downstream gene GL2 to promote trichome initiation and
development [32]. The TTG1-GL3/EGL3-GL1 complexes can also regulate the expression of several
single R3 MYB genes, whereas R3 MYBs can move from the trichome cells to the neighboring cells,
where they compete with GL1 for binding of GL3 or EGL3 to prevent the formation of the MBW
complexes, resulting in inhibition of trichome initiation [25–27,31,64]. TTG1 can also interact with
the miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors
SPL4 or SPL5, which affects the transcriptional activity of the MBW complexes and leads to inhibition
of trichome initiation [65].

Different from trichome initiation, root hair formation follows a position-dependent manner.
In wild-type Arabidopsis, hair cells (H cells; trichoblasts) can form root hairs, whereas hairless cells
(N cells; atrichoblasts) cannot [66,67]. In the ttg1-1 mutants, the number of root hairs is increased due
to ectopic root hair formation in N cells [10]. However, a decrease in root hair formation was observed
in ttg1-23 and ttg1-24, two mutants with a single amino acid substitution in the TTG1 protein [51]
(Table 1). Similar to the regulation of trichome initiation, TTG1 regulates root hair formation via forming
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MBW complexes, however, GL1 is replaced by another R2R3 MYB transcription factor, WER [68].
The TTG1-GL3/EGL3-WER complexes induce the expression of GL2 and some R3 MYBs. Different from
their inhibitory function in regulating trichome initiation, R3 MYBs can promote root hair formation.
R3 MYBs can move from N cell to H cell, where they compete with WER for binding of GL3 or EGL3,
therefore, preventing the formation of the MBW complexes, resulting in the promotion of root hair
formation [60,69–71]. In the ttg1-23 and ttg1-24 mutants, the single amino acid substitution in TTG1
abolished its interaction with the bHLH transcription factor GL3/EGL3, therefore, differentially affected
the expression of the MBW complex target genes in the mutants. These results demonstrate that TTG1
may be able to balance the target genes expression to enable the plant to produce a proper amount of
different types of epidermal cells during the root development [51].

Unlike trichomes and root hairs, stomata are developed from precursor cells. The ttg1-1 mutants
produced more ectopic stomata on the hypocotyls, but stomata distribution in cotyledons and leaves
remained unchanged [11]. As the gl2 mutants also produced more ectopic stomata on the hypocotyls [11],
TTG1 might regulate stomata development via regulating the expression of GL2. Previous studies
showed that the TTG1 may function epistatic to GL2 in regulating root hair formation [10,32]. This could
also be the case for TTG1 in regulating stomata development [11].

Available evidence shows that TTG1 orthologs in several other plants are also able to regulate
epidermal cell fate determination. For example, transgenic Arabidopsis plants ectopically expressing
the Limonium bicolor TTG1 (LbTTG1) produced more trichomes and fewer root hairs [21]; expression of
TTG1 ortholog genes from other plant species including the Gossypium hirsutum TTG1 (GhTTG1) and
GhTTG3, the Malus domestica TTG1 (MdTTG1), and the maize PAC restored trichome defect phenotype
in the ttg1 mutants [72–74]; the Arabis alpina ttg1 (aattg1) mutants showed a glabrous phenotype
and produced more root hairs [75]; expression of the Cucumis sativus TTG1 (CsTTG1) in cucumber
promoted fruit trichome and spine formation, whereas silencing of CsTTG1 inhibited fruit spine
initiation. However, TTG1 in other plants may use different mechanisms to regulate epidermal cell fate
determination, as molecular and genetic analysis show that even though CsTTG1 acts in parallel to
CsGL1 in regulating fruit trichome initiation, CsTTG1 can directly interact with CsGL1, whereas in
Arabidopsis, TTG1 directly interacts GL3 but not GL1 [76].

3.2. Regulation of Flavonoid Biosynthesis

Flavonoids including proanthocyanidins (PAs) and anthocyanins are secondary metabolites
in higher plants [19,34,35]. The ttg1-1 mutants do not accumulate anthocyanins and can produce
yellow seeds [3,6,18,24], suggesting that TTG1 is involved in the regulation of PA and anthocyanin
biosynthesis. Similar to the regulation of cell fate determination, TTG1 in Arabidopsis regulates
flavonoid biosynthesis via forming MBW complexes. TTG1 can form MBW complexes with the
R2R3 MYB transcription factors PAP1, PAP2, MYB113, MYB114 or TT2, and the bHLH transcription
factors GL3, EGL3 or TT8 [24,26,28,34–38,77,78]. It has been shown that different MBW complexes
regulate the biosynthesis of different flavonoids. The TTG1-TT8/GL3-PAP1/PAP2/MYB113/MYB114
complexes regulate anthocyanin biosynthesis by activating the expression of late biosynthetic genes
including DIHYDROFLAVONOL 4-REDUCTASE (DFR), ANTHOCYANIDIN SYNTHASE (ANS)
and UDP-GLUCOSE:FLAVONOID 3-O-GLUCOSYLTRANSFERASE (UF3GT) in the anthocyanin
biosynthetic pathway [36,78,79]. Whereas the TTG1-GL3/TT8–TT2 complexes regulate PA accumulation
by activating the expression of DFR, ANS, BANYULS (BAN), TT19, and TT12 [28,38,79]. Whole
genome-wide identification studies of the TTG1-dependent MBW complex target genes found that the
TTG1-dependent MBW complexes are able to bind directly to the promoters of TTG2, TT8, FLAVANONE
3-HYDROXYLASE (F3′H), DFR, and ANS genes to regulate their expression [80].

The TTG1 orthologs in other plant species have also been found to regulate flavonoid biosynthesis.
For example, ectopic expression of the Freesia hybrida TTG1 (FhTTG1) in the ttg1-1 mutants partially
restored the anthocyanin biosynthesis deficient phenotype [81]. Ectopic expression of CsWD40,
a TTG1 homolog gene in Camellia sinensis and tobacco increased anthocyanin accumulation [82].



Int. J. Mol. Sci. 2020, 21, 4881 6 of 15

Salvia miltiorrhiza TTG1 (SmTTG1) is also involved in the regulation of anthocyanin accumulation [83].
It has been shown that FhTTG1 is able to interact with FhTT8L and FhGL3L [81], and CsWD40 is able
to interact with CsGL3/CsTT8 and CsAN2/CsMYB5e [82], suggesting that TTG1 in these plants may
use similar mechanisms as in Arabidopsis to regulate flavonoid biosynthesis. On the other hand, the
bHLH transcription factor in Arabidopsis often functions as a bridge between MYB transcription factors
and TTG1 [28,84,85]. However, in both bimolecular fluorescence complementation (BiFC) and yeast
two-hybrid (Y2H) experiments, SmMYB111 interacted with SmTTG1 and SmbHLH51, but SmTTG1
did not interact with SmbHLH51 [82]. This suggests that SmMYB111 may function as a bridge between
SmTTG1 and SmbHLH51 to form a SmTTG1-SmMYB111-SmbHLH51 complex in S. miltiorrhiza.

3.3. Regulation of Seed Coat Mucilage Production

In addition to the defects on cell fate determination and flavonoid biosynthesis, the ttg1-1 mutants
also have defects in seed coat mucilage production [3], suggesting that TTG1 is involved in the regulation
of seed coat mucilage production. Similar to that in the regulation of cell fate determination and
flavonoid biosynthesis, TTG1 regulates seed coat mucilage production via forming MBW complexes.
TTG1 can form MBW complexes with the bHLH transcription factors TT8 or EGL3 and the R2R3 MYB
transcription factors MYB5 or TT2 [24,86–88]. The MBW complexes can activate the expression of TTG2
and GL2 [89,90], GL2, in turn, activates the expression of MUCILAGE MODIFIED 4 (MUM4), a mucilage
biosynthesis gene, leading to the production of seed coat mucilage [90]. It should be noted that not
all the MBW complex components play an equal role in regulating seed coat mucilage production,
as an example, MYB5 plays a key role in the regulation of seed coat mucilage production, whereas TT2
has only a minor effect [38,91,92]. It should be also noted that some regulators such as APETALA2
(AP2), NAC-REGULATED SEED MORPHOLOGY1(NARS1), NARS2, MYB52, MYB61, and LUENIG
HOMOLOG (LUH) can regulate seed coat mucilage production independent of TTG1 [17,29,93–95].

In addition to directly regulate seed coat mucilage production as described above, TTG1 can also
indirectly regulate seed coat mucilage production via regulating fatty acid accumulation in seeds [15,96].
As the content of total proteins and fatty acids is increased in the ttg1 mutant embryos, the dry weight
of the ttg1 mutant embryos is significantly increased compared to the wild-type plants. Molecular and
genetic analysis indicated that TTG1 suppresses the accumulation of seed storage proteins partially
through inhibiting the expression of the 2S albumin precursor gene 2S3. On the other hand, TTG1
is a direct target of the seed maturation master regulator FUSCA3 (FUS3), which can inhibit the
expression of TTG1 in developing seeds [15]. The SHAGGY-like kinase 11 (SK11) and SK12 are able to
phosphorylate TTG1 at the serine 215, therefore preventing the interaction of TTG1 with TT2, leads to
an increase in fatty acid biosynthesis in the embryo, but a decrease in seed coat mucilage production in
the sk11 sk12 mutants [16].

Ectopic expression of Setaria italica TTG1 (SiTTG1) in the ttg1-13 mutant successfully restored its
phenotypes of a high content of fatty acids, transparent seed coat, storage protein contents, as well as
seed coat mucilage defects, indicating that SiTTG1 has similar functions to TTG1 in regulating seed
coat mucilage production and fatty acid accumulation [97].

3.4. Regulation of Flowering Time

Plant flowering is an important trait for the transition from the vegetative phase to the reproductive
phase. In long-day conditions, the ttg1 mutants flowered earlier and the TTG1 over-expression plants
flowered later than the wild-type plants [98], suggesting that TTG1 is involved in the regulation
of flowering time. It is known that FLOWERING LOCUS C (FLC) can repress the expression of
FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1) by binding to
their promoter regions [99]. Paffendorf et al. found that TTG1 can activate the expression of FLC [98].
They also found that TTG1 may also regulate the circadian clock component genes. By screening yeast
two-hybrid libraries, the author identified PSEUDO RESPONSE REGULATOR 5 (PRR5) and bHLH92
as TTG1 interactors, and they found that TTG1 is able to modulate bHLH92 localization [94].
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It has previously been reported that the expression of PRR5 can be directly regulated by
LIGHT-REGULATED WD 1 (LWD1) [100]. Whereas, LWD1 and LWD2 are two closely related
WD40 repeat proteins to TTG1, and they function redundantly in the photoperiodic pathway to
regulate flowering time in Arabidopsis, as the lwd1 lwd2 double mutants flowered early in long-day
condition and the expression level of FT was increased in the mutants [101]. These results indicate
that TTG1, LWD1, and LWD2 may function in the same pathway to regulate flowering time in plants.
On the other hand, the lwd1 lwd2 ttg1 triple mutants lack detectable circadian rhythms, indicating
that TTG1 is a regulator of the circadian system [102]. However, TTG1 could rescue the phenotypes
of ttg1 and lwd1 lwd2 mutants, but LWD1 and LWD2 could not rescue the epidermal defects of ttg1
mutants, suggesting that subfunctionalization happened following the divergence of the TTG1 and
LWD proteins in angiosperms [102].

3.5. Regulation of Biotic and Abiotic Stress Responses

Some available experimental evidence suggests that TTG1 is involved in the regulation of plant
response to abiotic stresses. First, the seed germination rate of the ttg1 mutants is lower than Col
in response to NaCl treatment, and NaCl treatment also affects leaf and root development in the
ttg1 mutant seedlings, indicating that TTG1 is involved in the regulation of plant response to salt
stress [21,97]. Second, the ttg1 mutants are also sensitive to sucrose stresses [96]. Third, ectopic
expression of SiTTG1 completely restores the salt and sucrose sensitivity phenotypes observed in the
ttg1 mutants, indicating that SiTTG1 and TTG1 have a similar function in regulating plant response to
salt and sucrose stresses [97]. Forth, ectopic expression of LbTTG1 in Arabidopsis enhanced salt stress
tolerance [21]. Under NaCl treatment, the transgenic plants accumulated less Na+ and malondialdehyde
(MDA), but more K+, proline, and soluble sugar when compared with that in the wild-type plants, and
an elevated expression level of salt-tolerance marker genes including SALT OVERLY SENSITIVE 1
(SOS1), SOS2, SOS3, and PYRPOLINE-5-CARBOXYLATE SYNTHASE 1 (P5CS1) was observed in the
LbTTG1 transgenic plants [21]. Fifth, ectopic expression of TaWD40D, the Triticum aestivum TTG1 also
enhanced salt and osmotic stress tolerance in Arabidopsis [22]. In addition, the expression of CsWD40 is
induced by ABA and sucrose treatments, indicating that CsWD40 may be involved in the regulation of
abiotic stress responses in tea plants [82].

Recently, it has been shown that SAR DEFICIENT 4 (SARD4), RECEPTOR LIKE PROTEIN
(RLP3), RLP27, RLP26, and PATHOGENESIS-RELATED GENE 6 (PR6) regulate plant immunity
in a TTG1-dependent manner [103]. It has also been reported that the TTG1 ortholog Tannin1
(Tan1) is responsible for pathogen-induced color variation in Sorghum bicolor [104], and tobacco TTG1
(NtTTG1) physically interacts with the oomycete-specific effector ParA1 to regulate plant immune
responses, including reactive oxygen species (ROS) production and programmed cell death [23]. These
experiments support that TTG1 plays a role in regulating plant response to biotic stresses.

3.6. Other Functions

In addition to the functions mentioned above, TTG1 may also have a few other functions. TTG1
can regulate wax ester biosynthesis by suppressing the expression of LONG-CHAIN ACYL-COA
SYNTHETASE 3 (LACS3), FATTY ACID REDUCTASE 6 (FAR6), WSD1, LIPID TRANSFER PROTEIN
5 (LTP5), LTP10 and ATP-BINDING CASSETTE G23 (ABCG23) [103]. TTG1 can also regulate cutin
biosynthesis by regulating the expression of CYTOCHROME P450, FAMILY 96, SUBFAMILY A,
POLYPEPTIDE 11 (CYP96A11), and CUS4 [103]. The expression of several hormone modification genes
including UDT-DEPENDENT GLYCOSYLTRANSFERASE 75 D (UGT75D), BETA GLUCOSIDASE 18
(BGLU18), and BRASSINOSTEROID INACTIVATOR 1 (BIA1) is regulated by TTG1, indicating that
TTG1 may regulate hormone metabolism [103]. It has been reported that the Salvia miltiorrhiza MYB111
(SmMYB111) positively regulates the biosynthesis of phenolic acids, Sal B, and rosmarinic acid (RA)
by forming the SmTTG1−SmbHLH51−SmMYB111 transcription complex, suggesting that TTG1 may
play a role in regulating the biosynthesis of phenolic acids, Sal B, and RA [83].
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4. Regulation of TTG1

4.1. Transcriptional Regulation

Studies on the transcriptional regulation of TTG1 are very limited. So far, only the B3-domain
family transcription factor FUS3 has been identified as a regulator of TTG1. Tsuchiya et al. found
that the expression level of TTG1 is increased in the embryos of the fus3 mutants, and the fus3 mutant
phenotypes including defects in anthocyanin biosynthesis and seed storage proteins accumulation
are recovered in the fus3 ttg1 double mutant, suggesting that expression of TTG1 is down-regulated
by FUS3 [14]. By using a dexamethasone-inducible transgenic plant system, Chen et al. found that
TTG1 may be an immediate target of FUS3, by using ChIP-PCR and an electrophoretic mobility shift
assay (EMSA), they found that the FUS3 can bind directly to the consensus binding site of B3-domain
family transcription factors in the promoter region of TTG1, indicating that TTG1 is a direct target of
FUS3 [15].

4.2. Posttranscriptional Regulation

Protein degradation by the ubiquitin/26S proteasome system (UPS) pathway affects protein
functions. Patra et al. demonstrated that the TTG1 proteins are short-lived and can be targeted by
UPS for degradation [105]. They generated transgenic plants overexpressing FLAG targeted TTG1 in
the ttg1 (Salk_104152) mutants and used anti-FLAG antibodies to examine TTG1 fusion protein in the
transgenic plants. They found that the amount of the TTG1 fusion protein was depleted significantly
when the seedlings were treated with cycloheximide (CHX), a protein synthesis inhibitor. Whereas
depletion of TTG1 fusion protein was inhibited by combined treatment of CHX and MG132, a peptide
aldehyde that can selectively inhibit the proteolytic activity of the 26S proteasome, suggesting that
TTG1 can be targeted by UPS for degradation [105].

Protein phosphorylation can also affect protein functions. Both SK11 and SK12 and the GSK3-like
kinase BRASSINOSTEROID-INSENSITIVE 2 (BIN2) have been shown to be able to phosphorylate
TTG1. SK11 and SK12 can interact with TTG1 and phosphorylate TTG1 at serine 215, thus preventing
the interaction of TTG1 with TT2, resulting in inhibition of the MBW complex formation [16]. Previous
studies have shown that the GSK3-like kinases may be involved in BR-mediated root epidermal cell
fate determination by acting upstream of the TTG1–GL3/EGL3–WER MBW complexes [106]. By using
GST pull-down and BiFC to test the interaction between the MBW complex component proteins and
the GSK3-like kinase BIN2, Cheng et al. found that BIN2 can interact with TTG1, and in vitro kinase
assays confirmed that BIN2 could also phosphorylate TTG1 [107].

5. Challenges and Future Perspectives

As mentioned above, TTG1 has been found to regulate multiple aspects of plant growth and
development, secondary metabolism, as well as plant response to environmental stimuli, and the
functional mechanisms of TTG1 have also been extensively studied. Yet, more efforts are required to
further elucidate the regulation and functional mechanisms of TTG1 in plants.

It has been shown that in some processes, such as trichome initiation, root-hairs formation,
flavonoid biosynthesis, and seed coat mucilage production, TTG1 needs to interact with specific R2R3
MYB and bHLH transcription factors to form different MBW complexes to regulate the expression
of downstream genes [24–28]. However, it has also been shown that GL1 and TTG1 may compete
for binding with GL3 to form GL1-GL3 and GL3-TTG1 dimers [58], and dimers formed by an R2R3
MYB and a bHLH transcription factor are sufficient to activate the expression of GL2 and some R3
MYB genes [108], ectopic expression of maize R, a bHLH transcription factor gene complemented all
the phenotypes of ttg1 mutants [5], and TT2 binds to GL2 promoter independent of TTG1, but in the
absence of TT2, TTG1 can still bind to GL2 promoter [16]. This evidence suggests that formation of the
MBW complexes may not be necessary for TTG1 to regulate downstream gene expression. Considering
that regulators other than bHLH transcription factors, such as PRR5 and ParA1, which are involved in
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the regulation of flowering time and plant immune responses, respectively [23,98], have been shown to
be able to interact with TTG1, it will be of interest to examine if TTG1 may interact with other regulators
to regulate the cell fate determination, flavonoid biosynthesis, and seed coat mucilage production.
On the other hand, CsTTG1 interacts directly with CsGL1 to regulate fruit trichome initiation in
C. sativa [76], and SmTTG1 interacts with SmMYB111 to regulate phenolic acid biosynthesis complex in
S. miltiorrhiza [83], it will be of interest to examine why different plants may use the different bridge
proteins to form MBW complexes.

In addition, TTG1 interacts with different bHLH transcription factors to regulate specification of
different cell types and different secondary metabolisms [24–29]. It has been shown that phosphorylation
of TTG1 by SK11 and SK12 at the serine 215 is able to prevent the interaction of TTG1 with TT2,
therefore, affecting fatty acids biosynthesis in embryo, mucilage, and flavonoid production in the seed
coat [16], so it will be meaningful to detect whether the phosphorylation of TTG1 by SK11 and SK12
may also affect its interaction with other interactors involved in the regulation of cell fate determination,
therefore, affecting its functions in regulating cell fate determination, or if different kinases may be
involved in these processes.

Some experiments suggest the TTG1 may be required for the stabilization of the bHLH-MYB
dimers, as the absence of TTG1 weakened the interaction between MYB and bHLH transcription factor
in transfected protoplasts [28,63]. Consistent with this, it has been shown that the ttg1-10, a mutant with
a point mutation in the 5′-UTR region showed a transparent testa seed coat phenotype, but anthocyanin
synthesis and trichome initiation was largely unaffected, suggesting that reduced TTG1 protein level
may have a big effect on the stabilization of the TT8-TT2 dimer, but not the PAP1/PAP2/GL1-GL3
dimers [46]. TTG1 proteins are short-lived and can be targeted for UPS degradation [105], but the
ligases involved remain unknown. Identification of the ligases and the examination of how the
degradation of TTG1 may affect the stability of the bHLH-MYB dimers will also help to understand
the functional mechanisms of TTG1.

The regulation of TTG1 expression also needs to be further studied. FUS3 has been identified as a
negative regulator of TTG1 [15]. Identification and characterization of positive regulators of TTG1 may
help further explore the functional mechanisms of TTG1. It should be noted that similar to the fus3
mutant, the leafy cotyledon 1 (lec1) and lec2 mutants can produce cotyledon trichomes [109], LEC2 is also
a B3-domain family transcription factor [110], and is able to interact with FUS3 [111], it is worthwhile
to examine if LEC1 and LEC2 may also regulate the expression of TTG1.
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