

1 Article

Aldosterone induces DNA damage and activation of Nrf 2 mainly in tubuli of mouse kidneys

4	Ronja Balhorn ¹ , Christina Hartmann ¹ and Nicole Schupp ^{1,*}				
5	¹ Institute of Toxicology, University of Düsseldorf, 40225 Düsseldorf, Germany; Balhorn.Ronja@hhu.de				
6	(R.B.); Christina.Hartmann.2@hhu.de (C.H.)				

7 * Correspondence: <u>schupp@hhu.de</u>, Tel.: +49-211-8113001

- 8 Received: date; Accepted: date; Published: date
- 9

13

14

10 Supplemental material

- 11Table S1. Cytokines measured in serum of control and aldosterone-infused mice with the help of12the LEGENDplexTM inflammation-panel. The serum levels of the shown cytokines IL-6, IL-10, IL-
 - 12p70, IL-17A, IL-23 and IL-27 were normalized to the control group. Ald: aldosterone, IL: interleukin. Data are shown as mean + SEM, n=4-5. *p≤0.05 vs. control group.

Parameter	Control	75 μg/kg Ald	125 µg/kg Ald	250 µg/kg Ald
IL-6	1.00 ± 0.28	0.96 ± 0.18	0.79 ± 0.15	1.49 ± 0.34
IL-10	1.00 ± 0.29	2.50 ± 1.01	0.90 ± 0.32	2.02 ± 0.69
IL-12p70	1.00 ± 0.55	0.05 ± 0.00	0.05 ± 0.00	1.03 ± 0.48
IL-17A	1.00 ± 0.31	0.43 ± 0.20	$0.11 \pm 0.06^*$	0.39 ± 0.12
IL-23	1.00 ± 0.85	0.35 ± 0.05	0.16 ± 0.07	0.78 ± 0.20
IL-27	1.00 ± 0.45	1.81 ± 0.60	0.64 ± 0.25	5.52 ± 3.16

15

Figure S1. Oxidative DNA base damage caused by aldosterone infusion. Paraffin-embedded kidney sections were stained with an antibody against 8-oxodG, a marker of oxdative DNA damage. Staining of the oxidative base modification 8-oxodG in cortex (**a**) and medulla (**c**) and quantification of the percentage of positive nuclei (**b**). For the quantification of 8-oxodG-positive nuclei, 10 visual fields of cortical and 5 visual fields of medullary kidney sections were analyzed per animal via Image J. Examples of positive stained nuclei are marked with black arrows. 8-oxodG: 8-oxo-2'-deoxyguanosine, Ald: aldosterone. Data are shown as mean + SEM, n=5.

27 28

Figure S2. Expression of DNA damage response related genes and proteins in aldosterone infused mice. (a) The mRNA expression of Apex1, Atm, Brac1, Lig1, Lig4 and Ogg1 in kidneys of mice was 29 evaluated via RT-PCR. RNA was isolated from kidneys of control and aldosterone infused mice. 30 mRNA levels were referred to GAPDH and β -actin as housekeeper genes. Representative picture of 31 the western blots of the expression of PARP (113 kDa) in kidneys of mice (b). (c) Shown is the 32 quantification of band densities of the above mentioned protein measured via image J and related to 33 the housekeeper GAPDH (37 kDa). Paraffin-embedded kidney sections were stained with an antibody 34 against PCNA. Shown are representative pictures of cortex (d) and medulla (f) and quantification of 35 the percentage of PCNA-positive nuclei (e). For the quantification of PCNA-positive nuclei, 10 visual 36 fields of cortical and 5 visual fields of medullary kidney sections were analyzed per animal via Image 37 J. Examples of positive stained nuclei are marked with black arrows. Data are shown as mean + SEM, 38 n=5. Ald: aldosterone, Apex1: apurinic/apyrimidinic endonuclease 1, Atm: ataxia telangiectasia 39 mutated homologue, Brca1: breast cancer 1, GAPDH: glyceraldehyde 3-phosphate dehydrogenase, 40 Lig1: ligase 1, Lig4: ligase 4, Ogg1: 8-oxoguanine DNA-glycosylase 1, GAPDH: glyceraldehyde 3-41 phosphate dehydrogenase, PARP: Poly (ADP-ribose) polymerase, PCNA : proliferating cell nuclear 42 antigen. *p≤0.05, **p<0.01, ***p<0.001 vs. C: control group.

44 Figure S3. Expression of aldosterone- and Nrf2-regulated genes and proteins in aldosterone 45 infused mouse kidneys. (a) mRNA expression of the indicated genes in kidneys of mice was 46 evaluated via qRT-PCR. mRNA levels were measured and referred to GAPDH and β -actin as 47 housekeeper genes. (b) Representative pictures of western blots of the expression of SOD1 (16 kDa), 48 TrxR1 (71 kDa), MafK (18 kDa) and pp47phox (47 kDa) in kidneys of mice. Panels (c-f) show the 49 quantification of band densities of the above mentioned proteins measured via image J and related to 50 the housekeeper GAPDH (37 kDa). Ald: aldosterone, GAPDH: glyceraldehyde 3-phosphate 51 dehydrogenase, GCLM: γ-glutamate-cysteine ligase modifier subunit, GPx1: glutathione peroxidase 52 1, α ENaC: α -subunit of the epithelial sodium channel, HO-1: heme oxygenase 1, IL-6: interleukin 6, 53 IL-17A: interleukin 17A, MafK: musculoaponeurotic fibrosarcoma K, Nox2: NADPH oxidase 2 54 subunit p90, NQO1: NADPH quinone dehydrogenase 1, pp47phox: phosphorylated NADPH oxidase 55 2 activator, SOD1: superoxide dismutase 1, TrxR1: thioredoxin reductase 1. Data are shown as mean 56 + SEM, n=5. *p≤0.05, **p<0.01, ***p<0.001 vs. C: control group.

Figure S4. Expression of the Nrf2 target NQO1 in kidney tissue after aldosterone treatment. (a) Paraffin-embedded kidney sections were stained with an antibody against NQO1. Shown are representative pictures of cortex (**a**) and medulla (**c**) and quantification of the percentage of NQO1positive area (**b**). For the quantification of NQO1-positive area, 15 visual fields of cortical and 5 visual fields of medullary kidney sections were analyzed per animal via Image J. Examples of positive stained areas are marked with black arrows. Ald: aldosterone. NQO1: NADPH quinone dehydrogenase 1. Data are shown as mean + SEM, n=5.

57 58

59

60

61

62

63

64

Table S2: Primers used for qRT-PCR

Gene	Locus	Forward (5'-)	Reverse (5´-)
ß-actin	NM_007393	GCATTGCTGACAGGATGCAG	CCTGCTTGCTGATCCACATC
αENaC	NM_011324	TGCACCCTTAATCCTTACAGATACA	CCTGGCGAGTGTAGGAAGAG
Apex1	NM_009687	AGAAATTGACCTCCGTAACC	CGCCAACCAACATTCTTAGA
Atm	NM_007499	ACCAGAGGATGCTGTTCA	ATCATTAAGTCTATGTTGAGTCCAA
Brca1	NM_009764	TTGTGAGCGTTTGAATGA	ACCTGGCTTAGTTACTGT
Gapdh	NM_008084	TCTCCTGCGACTTCAACA	TCTCTTGCTCAGTGTCCTT
Gclm	NM_008129	TTCTCGGGTGAGGTTTCTGC	AACGAGGGAGCTGTTTCCTG
Gpx1	NM_008160	TTGGTGATTACTGGCTGC	TGATATTCAGCACTTTATTCTTAGTAG
Ho-1	NM_010442	CCAGAGTCCCTCACAGAT	CCCAAGAGAAGAGAGCCA
IL-6	NM_031168	AGTTGCCTTCTTGGGACTGA	CAGAATTGCCATTGCACAAC
IL-10	NM_010548	CATGGGTCTTGGGAAGAGAA	CATTCCCAGAGGAATTGCAT
IL-17A	NM_010552	TCTCCACCGCAATGAAGACC	AAAGTGAAGGGGCAGCTCTC
Lig1	NM_010715	ATTTCGGGTTTGCGTCTC	ACCACTTGATTCCTCTCCTT
Lig4	NM_176953	GTGTCCTGATGCTTAGTTGT	CTCCTTGAAGTGCCTGATT
Nox2	NM_007807	GCGGTGTGCAGTGCTATCAT	GGTTCCAGTGCGTGTTGCT
Nqo1	NM_008706	GGCCGATTCAGAGTGGCAT	CCAGACGGTTTCCAGACGTT
Ogg1	NM_010957	TGAGACTGCTGAGACAAGA	GGAAGCCATGATAAGTGACA
Sod1	NM_011434	ACCAGTTGTGTTGTCAGG	TTTCTTAGAGTGAGGATTAAAATGAG
TrxR1	NM_015762	CAGTTCGTCCCAACGAAAAT	GCACATTGGTCTGCTCTTCA

66

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).