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Abstract: Breast cancer (BC) patients experience increased stress with elevated cortisol levels, 
increasing risk of cancer recurrence. Cortisol binds to a cytoplasmic receptor, glucocorticoid 
receptor (GR) encoded by GR gene (NR3C1). We hypothesized that not only cancer cells, but even 
immune cells in the tumor microenvironment (TME) may contribute to GR expression in bulk tumor 
and influence prognosis. To test this, mRNA expression data was accessed from METABRIC and 
TCGA. “High” and “low” expression was based on highest and lowest quartiles of NR3C1 gene 
expression, respectively. Single-cell sequencing data were obtained from GSE75688 and GSE114725 
cohorts. Computer algorithms CIBERSORT, Gene Set Enrichment Analysis and TIMER were used. 
GR-high BC has better median disease-free and disease-specific survival. Single cell sequencing data 
showed higher GR expression on immune cells compared to cancer and stromal cells. Positive 
correlation between GR-high BC and CD8+ T-cells was noted. In GR-high tumors, higher cytolytic 
activity (CYT) with decreased T-regulatory and T-follicular helper cells was observed. High GR 
expression was associated with lower proliferation index Ki67, enriched in IL-2_STAT5, apoptosis, 
KRAS, TGF-β signaling, and epithelial-to-mesenchymal transition. Immune cells significantly 
contribute to GR expression of bulk BC. GR-high BC has a favorable TME with higher CYT with 
favorable outcomes. 

Keywords: glucocorticoid receptor; breast cancer; NR3C1; immune cells; TCGA; METABRIC; 
CIBERSORT 

 

1. Introduction 

Although often ignored and under-appreciated, breast cancer patients suffer from potentially 
debilitating stress, anxiety, depression, and impaired cognitive function [1,2]. Stress has been 
demonstrated to result in an increased incidence of cancer recurrence [3]. On the contrary, breast 
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cancer patients with no stressful or traumatic life events have significantly longer disease-free 
intervals compared to patients who have experienced these events [3]. 

Stress activates the hypothalamic–pituitary–adrenal axis with corticotropin-releasing factor 
produced in the hypothalamus, which stimulates the release of adrenocorticotrophic hormone 
(ACTH) from the anterior pituitary. ACTH signals the adrenal cortex to produce glucocorticoids—
the stress hormone ‘cortisol’ secreted by the zona fasciculata of the adrenal glands. Cortisol levels are 
elevated in patients with breast cancer and the diurnal cortisol rhythm is a predictor of breast cancer 
survival [4]. Cortisol generates physical response to stress by binding to its cytoplasmic receptor, 
glucocorticoid receptor (GR), which is the transcription factor encoded by the NR3C1 gene [5], thus 
promoting “stress response” [6,7]. 

The role of GR activation has been reported to be different between breast cancer subtypes, 
namely, estrogen receptor (ER)-negative and ER-positive breast cancer. Activation of GR in ER-
negative human breast cancer cell lines has been shown to promote cancer cell survival, 
chemotherapy resistance, and increased tumor growth in a pre-clinical xenograft model [8,9]. A 
retrospective meta-analysis in primary breast tumors showed that high gene expression of GR 
(NR3C1) in the bulk tumor was associated with significantly worse relapse-free survival (RFS) among 
ER-negative early stage breast cancer, but better survival in ER-positive breast cancer. It was 
speculated that this difference is due to an interaction of the GR and ER [10]. 

The levels of stress hormones, cortisol and corticosterone, were higher in the plasma of mice 
with metastatic breast cancer than in healthy controls. Obradovic et al. showed that increase in stress 
hormones during breast cancer progression results in activation of GR at distant metastatic sites, 
increased colonization and reduced survival [11]. Studies have shown that strategies to antagonize 
GR signaling can sensitize ovarian, prostate and triple negative breast cancer (TNBC) cell lines to 
chemotherapy. Therefore, inhibition of the GR pathway is being investigated in clinical trials 
combining GR/PR antagonist mifepristone with nab-paclitaxel [12]. 

Although the role of GR activation in chemoresistance and enhanced aggressive phenotype have 
been studied both in vitro [13] and in vivo [13], both models lack immune cells. It is well known that 
TNBC have more immune cell infiltration than ER-positive tumors [14]. Immune cells, including T-
cells, B-cells, monocytes, neutrophils, and macrophages, also express the GR, in addition to cancer 
cells in the bulk tumor [15]. In addition to the downstream effects of GR activation on tumor cells, 
over the last few years, there has been interest in understanding GR expression on immune cells in 
the bulk tumor [16] and the impact of its activation [17,18]. 

Recent computational biological analyses of transcriptomic data of bulk tumors allow us to 
investigate human tumor immune microenvironment (TME) in large cohorts. Here, we hypothesized 
that not only cancer cells, but immune cells in the TME also contribute to the GR expression of the 
bulk tumor, which may contribute to differences in outcome. 

2. Results 

2.1. Demographic and Clinical Characteristics 

There were 1390 and 1022 patients with stage I–III breast cancer with clinical and genomic data 
available in Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and The 
Cancer Genome Atlas (TCGA), respectively. High and low tumor GR expression was defined as the 
highest and lowest quartile (25%) of NR3C1 expression, respectively (Figure S1). Table 1 shows the 
distribution of demographic (age at diagnosis) and clinical characteristics (stage at diagnosis, clinical 
subtypes, PAM50 subtypes) among GR-high and GR-low breast cancer based on GR expression in 
METABRIC and TCGA. There were 696 (METABRIC) and 512 patients (TCGA) in the top and bottom 
quartiles from the entire cohort of 1390 and 1022 patients, respectively. No statistically significant 
distribution in age at diagnosis was observed. Clinical subtypes were equally distributed between 
GR-high vs. GR-low cohorts except HER2-positive subtype, which was higher in GR low cohort in 
METABRIC. There were more patients with hormone receptor positive subtype in GR-high vs. more 
triple negative subtype (65.1%) in GR-low cohorts in TCGA. There were more stage 1 patients 
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observed in GR high cohort vs. more stage 2 patients in GR low cohort. Hence, there was a difference 
in stage distribution noted. Differences in clinical subtypes were observed in both cohorts and hence, 
subgroup analyses for receptor subtypes has been performed to understand the influence of GR 
expression in breast cancer subtypes. Both METABRIC and TCGA datasets are limited by the 
unavailability of treatment information. 

Table 1. Demographic and clinical characteristics of the GR High and GR low breast cancer patients 
in METABRIC and TCGA in the entire cohort. 

TitleDemographic 
and Clinical 

Characteristics 
METABRIC TCGA 

Clinical Variables 
(percent per GR 

status) 

GR-LOW 
n = 348 

GR-HIGH 
n = 348 

p-
value 

GR-LOW 
n = 256 

GR-HIGH 
n = 256 p-value 

Age at diagnosis  0.063  0.376 
Median 63 61  59 60  

IQR 53–71 52–69  50–69 50–66  

Stage at diagnosis  0.017  0.019 

I 104 
(29.9%) 

140 
(40.2%) 

 36 (14.0%) 56 (21.9%)  

II 215 
(61.8%) 

182 
(52.3%) 

 165 (64.5%) 135 (52.7%)  

III 29 (8.3%) 26 (7.5%)  55 (21.5%) 65 (25.4%)  

Clinical Subtypes  

ER Positive 257 
(48.1%) 

277 
(51.9%) 

0.088 183 (47.2%) 205 (52.8%) 0.020 

PR Positive 188 
(51.8%) 

175 
(48.2%) 

0.363 152 (45%) 186 (55%) 0.001 

HER2 Positive 59 (71.1%) 24 (28.9%) <0.001 54 (65.1%) 29 (34.9%) <0.001 
Triple Negative 55 (49.1%) 57 (50.9%) 0.918 28 (65.1%) 15 (34.9%) 0.033 

PAM50 Subtypes  <0.001  <0.001 

Luminal A 117 
(33.6%) 

137 
(39.4%) 

 65 (25.4%) 149 (58.2%)  

Luminal B 102 
(29.3%) 

64 (18.4%)  45 (17.6%) 34 (13.3%)  

HER2 59 (17%) 24 (6.9%)  21 (8.2%) 7 (2.7%)  

Basal 57 (16.4%) 47 (13.5%)  30 (11.7%) 27 (10.5%)  

Differences between GR-low and GR-high groups were tested for statistical significance using Fisher’s 
exact test. IQR = Interquartile range, HER2 = human epidermal growth factor receptor2. 

2.2. GR-high Breast Cancer has Better Survival 

Survival characteristics of GR expression in METABRIC and TCGA cohorts are shown in Figure 
1. GR-high tumors have better median disease-free survival (mDFS) 21.7 vs. 19.3yrs {HR 0.60 (0.46–
0.77), p < 0.001} and better median disease-specific survival (mDSS) NR vs. 19.9yrs {HR 0.55 (0.42–
0.72), p < 0.001} in METABRIC. This survival difference was consistent in TCGA cohort, but more 
significant in the METABRIC cohort, which had a larger cohort size. GR-high tumors were also noted 
to have better median overall survival (mOS) 16.6 vs. 10.1yrs {HR 0.63 (0.52–0.77), p < 0.001} in 
METABRIC. 

Due to a previously reported notion on the interaction between GR and ER, and different 
survival of GR-high vs. GR-low groups in ER-positive and TNBC subtypes as described previously 
[10], the influence of receptor subtype on survival characteristics was also analyzed. Estrogen 
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receptor (ER)-positive/human epidermal growth factor receptor (HER2)-negative subtype had better 
mDSS (p < 0.05) and mOS (p < 0.05) in GR-high compared with GR-low tumors in both cohorts. TNBC 
subtype was associated with better mDFS {HR 0.50 (0.26–0.99), p = 0.044}, mDSS {HR 0.45 (0.23–0.86), 
p = 0.013} and mOS {HR 0.59 (0.35–0.98), p = 0.041} in GR-high compared with GR-low tumors in 
METABRIC, but only a trend towards better survival without statistical significance in TCGA (Figure 
1). Survival difference between GR-high vs. GR-low breast cancer for the entire ER-positive breast 
cancer and HER2-positive breast cancer subtypes has been shown in Figure S2. Among ER-positive 
subtype, GR-high breast cancer was associated only with better mDFS validated in TCGA as has been 
shown before. Among HER-2 positive subtype, GR-high breast cancer was associated with better 
survival in METABRIC, but not validated in TCGA. Thus, our data shows that GR expression in the 
bulk tumor is associated with an improvement in survival, mostly in ER-positive/HER2-negative 
breast cancer subtype. 

 

Figure 1. GR expression and survival outcomes in breast cancer. Kaplan–Meier survival plots 
comparing patients with high and low GR expression along with logrank test p values and hazard 
ratios (HR) with confidence intervals are shown for disease-free (DFS), disease-specific (DSS) and 
overall survival (OS) for the entire cohort (Whole), or its sub-groups of estrogen receptor(ER)-
positive/human epidermal growth factor receptor (HER2)-negative and triple negative (TNBC) breast 
cancer. The cut-off of top and bottom quartile of NR3C1 expression was considered as GR high and 
GR low in the whole cohort and the respective subtypes. Log-rank test was used to compare the 
survival between GR high and GR low breast cancer. 

2.3. Immune Cells have High GR Expression than Tumor and Stromal Cells 

Single cell sequencing technology provides a higher resolution of the cellular differences and a 
better understanding of the function of an individual cell [19]. Since published literature shows 
differences in survival analyses of GR-high vs. GR-low groups between ER-positive and TNBC 
subtypes [10], hence, we hypothesized that there could be some contribution of non-tumor cells to 
GR expression. Therefore, single cell sequencing dataset was used to analyze GR expression 
differences between immune and tumor cells. Interestingly, higher GR expression was observed on 
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immune cells (T-cells, B-cells and myeloid cells) compared to stromal or cancer cells (p < 0.001) 
(GSE75688) (Figure 2A), with the highest GR expression on CD8+ T-cells compared to other immune 
cell subsets including regulatory T-cells (T-regs), CD4+ T-cells, neutrophils, monocytes, dendritic 
cells, mast cells, and macrophages (p < 0.001) (GSE114725) (Figure 2B). 

 
Figure 2. Single cell sequencing data of primary breast cancer. (A) GSE75688 shows that immune cells 
have higher GR expression than tumor and stromal cells. Data compiled from GSE cited was used to 
perform one-way ANOVA across all cell subsets. The p value is for the F statistic within ANOVA. (B) 
GSE114725 shows that CD8+ T-cells have higher GR expression than other immune cell subsets. Data 
compiled from GSE cited was used to perform one-way ANOVA across immune cell subsets. The p 
value is for the F statistic within ANOVA. Bonferroni correction was used to compare CD8+ T-cells to 
other immune cell subsets with higher average mean in post-hoc analysis. 

2.4. CD8+ T-cells Significantly Correlate with GR Expression 

We observed that immune cells contribute to GR expression, hence, it was of interest to 
investigate if immune cell markers correlated with GR expression in the bulk tumor. We ran TCGA 
data through TIMER to quantify immune cell composition across GR gene expression. There was 
significant correlation between GR (Log-value) and absolute CD8+ T-cell fraction (as calculated by 
TIMER) as well as absolute macrophages and GR expression (Spearman r = 0.485 and 0.346 
respectively; p < 0.01). There were weak correlations between GR expression and B-Cells, dendritic 
cells, CD4+ T-cells, and neutrophils (Figure 3). Since we observed minimal GR expression on 
macrophages but a moderate positive correlation between GR expression and macrophages, we 
analyzed the correlation between GR expression and macrophages across different immune cell 
composition algorithms as shown in Figure S3. No correlation between GR expression and 
macrophages was observed with the other algorithms. TIMER is designed to analyze exclusively 
RNA-sequence data, thus METABRIC cohort, which utilized gene expression microarray, was not 
analyzed. 
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Figure 3. Spearman rho correlation was used to assess correlation between GR expression and 
immune cells. Correlation is quantified as weak (absolute value < 0.3), moderate (absolute value 
between 0.3 and 0.5) and strong (absolute value > 0.5) in either direction. Moderate correlation 
observed between CD8+ T-cells and macrophages and GR expression in breast cancer using TIMER. 
This moderate positive correlation between GR expression and macrophages was not, however, 
validated using other deconvolution algorithms. 

2.5. GR-high Breast Cancer has Higher Cytolytic Activity 

Since we observed higher GR expression on the immune cells compared to stromal and tumor 
cells in single cell sequencing dataset and positive correlation of CD8+ T-cells with GR expression, we 
investigated the relative distribution of individual immune cell subpopulation in bulk cancer 
between GR-high vs. GR-low groups in METABRIC using CIBERSORT algorithm. Immune cell 
subpopulations, including anti- and pro-cancerous immunosuppressive cells, were compared 
between the two groups. GR-high tumors had a significantly lower number of immunosuppressive 
T-regs (p < 0.001) (Figure 4A) but at the same time, GR-high cohort also had a lower number of anti-
cancerous T-follicular helper cells (p < 0.001). In addition, we also examined the differences in 
cytolytic activity (CYT) defined as the expression of granzyme A (GZMA) and perforin (PRF1) as 
described in Materials and Methods. Overall, GR-high cohort had higher CYT (p < 0.001), which could 
explain the higher DFS and DSS observed in this group (Figure 4A). Strikingly consistent results were 
seen within the TCGA cohort. Due to known differences in survival between GR-high vs. GR-low 
breast cancer in ER-positive and TNBC subtypes, we analyzed the contribution of immune cells and 
CYT in these subtypes. Figure 4B shows the distribution of these immune cells between GR-high and 
GR-low groups in ER-positive/HER2-negative breast cancer and TNBC subtypes. We observed 
similar findings with the lower number of T-follicular helper cells (p < 0.01) in the GR-high group in 
both METABRIC and TCGA in the two subtypes. In ER-positive/HER2-negative subtype, lower T-
regs were observed in GR-high breast cancer (p < 0.001); this finding was validated in TNBC in 
METABRIC, but not in TCGA. The subtype analyses further validated that there is higher CYT in the 
GR-high group. 
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Figure 4. Tukey boxplots of immune cells CD8+ T-cells, Natural Killer (NK) activated cells, M1 and 
M2 macrophages, T-follicular helper cells, T-regulatory cells, and cytolytic activity (CYT) in GR-high 
and GR-low breast cancer using CIBERSORT algorithm in METABRIC and TCGA cohorts (A) in the 
entire cohort (Whole) and (B) in estrogen receptor (ER)-positive/human epidermal growth factor 
receptor (HER2)-negative and triple negative (TNBC) subtypes. The cut-off of top and bottom quartile 
of NR3C1 expression was considered as GR high and GR low in the entire cohort and also in the 
respective subtypes. Y-axis shows the fraction of cells with GR-low or GR-high expression. Boxes 
depict medians and interquartile ranges. Depicted p values are calculated using one-way ANOVA. 

2.6. GR-high Breast Cancer has More T-cell Exhaustion Markers 

Due to differences in immune cells and CYT between GR-high and GR-low breast cancer, we 
explored the distribution of immune exhaustion gene expression markers. Based on the results from 
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CIBERSORT and TIMER, we hypothesized that T-cell exhaustion markers should be elevated in GR-
high tumors due to the higher presence of immune cells. T-cell exhaustion gene expressions were 
analyzed in GR-high vs. GR-low tumors. We observed a significantly higher expression of T-cell 
exhaustion genes PD-1, PD-L1, CTLA-4, IDO1, and TIGIT in GR-high tumors (p < 0.01) (Figure 5). 

 

Figure 5. Immune exhaustion gene markers in GR-high and GR-low groups using CIBERSORT 
algorithm in the entire cohort. The cut-off of top and bottom quartile of NR3C1 expression was 
considered as GR high and GR low in the entire cohort. Y-axis shows the fraction of cells with GR-
low or GR-high expression. All boxplots are of Tukey type, and the boxes depict medians and 
interquartile ranges. Depicted p values are calculated using one-way ANOVA. PD-1, programmed 
death-1; PD-L1, programmed death ligand 1/2; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; 
IDO, indoleamine 2,3-dioxygenase; LAG3, lymphocyte activation gene 3; TIGIT, T cell 
immunoreceptor with Ig and ITIM domains. 

2.7. GR-high Breast Cancer is Enriched in IL2 STAT5, Apoptosis, KRAS, TGF-β, EMT Pathways and GR-
low Breast Cancer has Higher Proliferation Markers 

Given our findings, we hypothesized that immune-related gene sets would be enriched in GR-
high tumors. In order to examine the different immunological pathways to explain the disparities, 
we ran GSEA on METABRIC and TCGA cohorts. Most notably, IL-2_STAT5 and apoptosis pathways 
were enriched in GR-high compared to GR-low breast cancer explaining higher inflammatory 
response and better survival. However, to our surprise, enrichment of TGF-β, KRAS and epithelial-
to-mesenchymal transition (EMT) pathways were also noted in the same group as well which are 
associated with worse prognosis and relative immune-resistance (other clinically insignificant 
pathways which are enriched include UV response, and complement pathways) (FDR < 0.25) (Figure 
6A). 

We also hypothesized that GR-low breast cancer would be associated with more proliferation 
and worse outcomes due to lower anti-tumor response with lower CYT. Strikingly, we observed that 
GR-low breast cancer was significantly enriched in gene sets related to cell proliferation 
MYC_TARGETS_v2. Furthermore, GR-low breast cancer was also significantly enriched in gene sets 
related to cell cycle, such as E2F TARGETS and G2M_CHECKPOINT (Figure 6B). 

This notion was further confirmed by the transcriptome analysis of Ki67, which is one of the 
most commonly used markers for cell proliferation. GR-high breast cancers were associated with 
significantly lower Ki67 expression (Figure 6C). Hence, GR-high tumors are enriched in gene sets for 
immune response and apoptosis with lower proliferation consistent with better survival. Figure S4 
shows all the hallmark gene sets with significant enrichment in GR high and GR low breast cancer 
with FDR < 0.25. 

TC
G

A

PD-1 PD-L1 IDO1 IDO2 LAG3CTLA-4 TIGIT

Ex
pr

es
si

on

M
ET

A
B

R
IC

Ex
pr

es
si

on

Low High

5.
0

5.
5

6.
0

6.
5

p<0.001

Low High

5.
2

5.
4

5.
6

5.
8

p= 0.007

Low High
5.

0
6.

0
7.

0
8.

0

p<0.001

Low High

5
6

7
8

9

p<0.001

Low High

5.
4

5.
8

6.
2

6.
6

p= 0.048

Low High

5.
5

6.
5

7.
5

8.
5

p= 0.249

Low High

5.
0

5.
4

5.
8

p<0.001

Low High

0
2

4
6

8

p<0.001

Low High

2
4

6
8

p<0.001

Low High

0
2

4
6

8
10

p<0.001

Low High

0
2

4
6

8
10

p<0.001

Low High

-4
-2

0
2

4

p<0.001

Low High

2
4

6
8

10

p= 0.247

Low High

0
2

4
6

8
10

p<0.001

GR

GR



Int. J. Mol. Sci. 2020, 21, 4635 9 of 17 

 

 
Figure 6. Hallmark gene sets with significant enrichment in GR high and low breast cancer in both 
METABRIC and TCGA cohorts. Gene set enrichment (GSEA) plots along with normalized enrichment 
score (NES) and false discovery rate (FDR) are shown for the gene sets for which enrichment was seen 
in (A) GR high and (B) GR low tumors in both METABRIC and TCGA in the entire cohort. NES and 
FDR were determined with the classical GSEA method. The cut-off of highest and lowest quartiles 
(25%) of NR3C1 expression was considered as GR high and GR low. The statistical significance of 
GSEA was determined using FDR of 0.25. Nominal p-value estimates the significance of the observed 
enrichment score for a single gene set. However, FDR is the estimated probability that a gene set 
within a given enrichment score (normalized for gene set size) represents a false positive finding as 
recommended by Broad Institute. (C) GR low tumors were associated with high MKI67 transcriptome 
analysis in both METABRIC and TCGA in the entire cohort. Depicted p values are calculated using 
one-way ANOVA. 

3. Discussion 

In this study, we examined the tumor microenvironment differences between GR-high and GR-
low breast cancer and explored role of immune cells in GR expression of the bulk tumor to explain 
the disparities in outcomes in the two cohorts. This is in addition to the well-known direct 
transcriptional role of GR on tumor cells which plays a critical role in clinical outcomes. 
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of studies is less ideal than using a single cohort that has been curated and standardized in uniform 
manner, because of different sequencing techniques used (variable standardization). In addition to 
these differences, we investigated the contribution of immune cells to explain this discrepancy in 
outcomes. 

It is well known in literature that the presence of T-regs is associated with poor RFS and worse 
outcomes in breast cancer [21]. To our knowledge, this is the first study to find significant differences 
in the immune cell landscape in the GR-high vs. GR-low breast cancer. In our current study, we 
observed that there are a lesser number of immunosuppressive T-regs in GR-high tumors. On the 
other hand, we also found lower anti-tumor T-follicular helper cells [22] in the GR high tumors. 
Although there are both lower immunosuppressive and anti-tumor cells, overall we observed a 
higher cytolytic activity in GR-high tumors. It is interesting to note that although we observed 
enrichment of TGFβ signaling in GR-high breast cancer, there were lower Tregs in this group. Prior 
studies have shown that in addition to TGFβ, other cytokines such as IL-10, IL-4 and IL-13 are also 
involved in Treg generation and induction, and it is possible that these other cytokines could be 
implicated in regulating Tregs in our study [23]. In addition, we found that GR-high breast cancers 
have a higher immune response with higher IL-2 pathway and apoptosis and lower proliferation, 
explaining improved survival. However, this is in addition to higher TGF-β score, KRAS and EMT 
pathways. TGF-β may promote or inhibit tumor progression [24,25], whereas KRAS and EMT 
pathways are associated with worse prognosis, though there is still a lack of data for the role of KRAS 
in breast cancer [26,27]. It is interesting to note that while KRAS and EMT pathways that result in 
aggressive tumor biology are enriched in the GR-high group, immune pathways IL2 and apoptosis 
are also enriched, which may play a role in influencing overall survival. The importance of anti-tumor 
immune response in influencing overall prognosis and outcomes in breast cancer is evident from 
literature [28]. Prior studies have also shown a similar GR-associated modulation of immune 
response pathway genes [10] in ER-negative subtype, but we observed a difference in TME both in 
ER+/HER2 negative and TNBC subtypes. As is published in the literature, in addition to a direct 
transcriptional role of GR on the tumor cells, which could be mediated by EMT pathways elevated in 
the GR-high group, the contribution of immune cells to outcomes should also be acknowledged 
because of a potential interaction of GR activity with the TME. 

Breast cancer patients suffering from stress have shorter survival compared to patients who do 
not report stress [3]. Stress mediated cortisol release in peripheral blood acts on the cytoplasmic GR 
resulting in cancer cell survival, chemotherapy resistance, and increased tumor growth in pre-clinical 
models as well as plays a role in regulation of immune system [8,11,29,30]. Studies have investigated 
the variation in the expression of GR on immune cells [15] with stress and have shown different 
findings. Even among the immune cells, the relative expression of GR varies among different cells, 
with higher expression in eosinophils, followed by granulocytes, T lymphocytes and NK cells (p < 
0.05) [31], however, no correlation was observed between serum cortisol and GR expression on the 
leucocyte subpopulations [31]. On the other hand, another study showed reduced peripheral 
expression of the GRα isoform on the peripheral blood cells in individuals with post-traumatic stress 
disorder: a cumulative effect of trauma burden [32]. Although our study showed that CD8+ T cells 
have higher GR expression, however, we did not see any difference in their distribution between GR-
high and GR-low breast cancer. Similarly, although macrophages have minimal GR expression, a 
moderate positive correlation of GR expression with macrophages was observed using TIMER, 
however, this correlation was not validated in more robust deconvolution algorithms. At the same 
time, we did not see any difference in macrophage distribution between GR-high and GR-low breast 
cancer. This leads us to hypothesize that immune cells in addition to macrophages and CD8+ T-cells 
are likely to be contributing to the GR signature of the bulk tumor, though none of the immune cells 
were independently elevated in GR-high breast cancer. It is well known that GR signaling influences 
functions of different immune cells. Glucocorticoids exert anti-inflammatory activity by inhibiting 
neutrophil rolling, adhesion and activation; they inhibit dendritic cells to activate T-cells; favor T-cell 
apoptosis by acting on T-helper 1 (Th1) cell by decreasing T-bet transcriptional activity and 
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suppressing the production of pro-inflammatory molecules IL-2 and IFN-γ that favors T-reg 
expansion [33]. 

Single-cell RNA sequencing provides a new platform to understand the dynamic ecosystem that 
comprises of tumor cells, fibroblasts and immune cells. Gene expression data from bulk tumors is 
indispensable and continues to dominate the clinical and translational settings, however, TCGA 
designs have been focused on the cancer cells (high amount of cancer cells were one of the criteria of 
the sampling of the tissue), whereas single-cell RNA sequencing data can capture the gene 
expressions of cells in the surrounding stroma such as immune cells [34,35]. Single-cell sequencing 
technologies hold the potential to revolutionize the field of cancer [36]. We pursued analysis of single 
cell sequencing data in order to analyze the contribution of GR expression on the immune cells 
(contributing to the bulk genomic and transcriptomic signature). Interestingly, our single-cell 
sequencing data show that immune cells express significantly higher GR compared to other tumor 
and stromal cells, and thus, contribute to the GR expression of the bulk tumor. 

Since immune cells also express GR, we speculate that modulation of GR signaling in the 
presence of cortisol may cause their activation/suppression, which may additionally contribute to the 
different outcomes in GR-high versus GR-low groups. Our observation that there are lesser number 
of immunosuppressive pro-cancerous T-regs in GR-high tumors may consolidate the findings from 
a previous study [32] as patients with less stress (less cortisol) may have higher GR expression with 
lower number of T-regs, thus higher CYT and hence, improved survival. This provides a hypothesis 
that in addition to a direct transcriptional role of GR on tumor cells and interaction with ER, there 
may be an additional role of immune cells in GR-high vs. GR-low tumors in influencing prognosis 
and potentially as a therapeutic strategy in addition to targeting the GR expression on tumor cells. 
Our hypothesis is further strengthened by the recent approval of checkpoint inhibitors in breast 
cancer with high PD-L1 expression on immune cells [37], further highlighting that immune-mediated 
pathways are crucial and present an excellent opportunity for targeted approaches to overcome 
underlying immunosuppression in breast cancer and improve outcomes. 

Our study limitations include analysis from a publicly available database and also limited data 
interpretation by lack of a mechanistic approach and causality association as this study does not 
contain in vitro and in vivo data. The finding of different immune cell subpopulations in GR-high 
and GR-low groups and the contribution to outcomes is hypothesis-generating and needs 
mechanistic validation. Future work needed to advance this field further should focus on 
investigating if GR expression correlates with GR signaling by analyzing downstream pathways in 
different subtypes of breast cancer, especially receptor-tyrosine-kinase-like orphan receptor 1 (ROR1) 
signaling, which has been shown to be associated with aggressive disease and decreased survival in 
breast cancer [11,38]. In addition, this would also help elucidate if higher GR expression on immune 
cells corresponds to increased or decreased sensitivity towards GR signaling/activation and 
immunosuppression. 

4. Materials and Methods 

4.1. Obtaining Data of METABRIC and TCGA 

Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset [39] was 
accessed from cBioPortal [40–44]. Annotated clinical and outcome data as well as gene expression 
data for 1903 breast cancer patients were downloaded and analyzed as we described previously 
[45,46]. The Cancer Genome Atlas (TCGA) was also accessed from cBioPortal [47]. RNA-Sequencing 
data of 1093 breast cancer patients were downloaded. Of these, we selected patients with American 
Joint Committee on Cancer (AJCC) staging I, II and III, and used them for the study. Clinical data, 
outcome data and immune composition data were downloaded from PANCAN publications and 
outcome measures reported as we have described previously [46,48–56]. Outcome measures were 
defined as per the original PANCAN Clinical Data Resource (CDR) Outcome as we have described 
previously [46,48–56]. Disease-free survival (DFS) was defined from the time of completion of 
primary treatment until clinical confirmation of tumor recurrence. Overall survival (OS) was defined 
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as the time from treatment completion until death. Disease-specific survival (DSS) was defined as the 
time from treatment completion until death, however, patients who die of causes other than the 
disease were excluded. We classified the patients into two groups based on GR expression. Highest 
and lowest quartile (25%) of NR3C1 expression was used as a cutoff to identify “high” and “low” GR 
(NR3C1) tumor expression, respectively. This study was deemed exempt from Institutional Review 
Board because all information within TCGA and METABRIC is publicly accessible and de-identified 
[50,54,55,57]. 

4.2. Immune Analysis using CIBEROSRT Algorithm 

Immune composition data were downloaded from PANCAN Immune landscape project [58]. 
The project used CIBERSORT, a bioinformatics algorithm [59], to predict immune composition 
among METABRIC and TCGA samples, utilizing a set of 22 immune cell reference profiles and 
developing a signature matrix to predict their absolute levels within each sample, as we described 
previously [45–47,60–62]. Cytolytic activity ‘CYT’ is defined as an algorithm calculated using the 
expression of granzyme A (GZMA) and perforin (PRF1) by Rooney et al. published in Cell 2015 [63]. 
Data for CYT has been described in previous work and appended into the analysis [47,61,63–67]. This 
is a simple and quantitative measure of immune cytolytic activity ‘CYT’ based on the transcript levels 
of two key cytolytic activity-related genes, GZMA and PRF1, which have been observed to be 
dramatically upregulated upon CD8+ T-cell activation. Tumor IMmune Estimation Resource (TIMER) 
online portal was accessed for independent validation of results [68]. 

4.3. Gene Set Expression Analysis 

Publicly available software provided by the Broad Institute was used to perform gene set 
enrichment analysis (GSEA) [69] as we have described previously [46,48,50,54,70–74]. In GSEA, the 
nominal p value estimates the significance of the observed enrichment score for a single gene set. For 
evaluation of multiple gene sets, false discovery rate (FDR) is used to correct for multiple hypothesis 
testing. The FDR is the estimated probability that a gene set within a given enrichment score 
(normalized for gene set size) represents a false positive finding. As recommended by the Broad 
Institute (that developed GSEA), FDR of less than 0.25 was used to define statistical significance of 
GSEA. An FDR of 25% indicated that the result is likely to be valid three out of four times, which is 
reasonable in the setting of exploratory discovery where one is interested in finding a candidate 
hypothesis to be further validated as a result of future research. Given the lack of coherence in most 
expression datasets and the relatively small number of gene sets being analyzed, using a more 
stringent FDR cutoff could lead us to overlook potentially significant results. Hallmark gene sets were 
used for this study. 

4.4. Statistical Analysis 

Clinical characteristics between groups were analyzed by χ squared distribution (for categorical 
variables) and student T-test, Wilcox rank sum and Kruskal Wallis (for continuous variables). 
Survival statistics were obtained using Kaplan–Meier method with log-rank test. Cumulative 
incidence of recurrence was calculated based on DFS, with death handled as a competing risk event. 
CIBERSORT immune cell composition was compared between the two cohorts via one-way ANOVA. 
Single cell sequencing data were obtained from primary breast cancer GSE75688 and GSE114725 
datasets. All statistical analyses were performed using STATA software (version 15.1; STATA, 
College Station, TX), R software (version 3.6.2). In all analysis, a two-sided p < 0.05 was considered as 
statistically significant. All boxplots are of Tukey type, and the boxes depict medians and inter-
quartile ranges. 

5. Conclusions 

Our study shows that GR-high tumors have favorable outcomes, mostly in ER positive breast 
cancer subtype, which is consistent with previous results. Immune cells significantly contribute to 
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GR expression of the bulk breast tumor in addition to tumor cells. GR expression correlated with 
higher CD8+ T-cells. GR-high tumors have a favorable tumor microenvironment with higher cytolytic 
activity. Additional work exploring the relative contribution and factors influencing the 
activation/inactivation of these immune cells with GR signaling in the tumor microenvironment is 
warranted. 
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