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Abstract: Regulation of microRNA (miRNA) expression has been extensively studied with respect 

to colorectal cancer (CRC), since CRC is one of the leading causes of cancer mortality worldwide. 

Transcriptional control of miRNAs creating clusters can be, to some extent, estimated from cluster 

position on a chromosome. Levels of miRNAs are also controlled by miRNAs “sponging” by long 

non-coding RNAs (ncRNAs). Both types of miRNA regulation strongly influence their function. We 

focused on clusters of miRNAs found to be down-regulated in CRC, containing miR-1, let-7, miR-

15, miR-16, miR-99, miR-100, miR-125, miR-133, miR-143, miR-145, miR-192, miR-194, miR-195, 

miR-206, miR-215, miR-302, miR-367 and miR-497 and analysed their genome position, regulation 

and functions. Only evidence provided with the use of CRC in vivo and/or in vitro models was taken 

into consideration. Comprehensive research revealed that down-regulated miRNA clusters in CRC 

are mostly located in a gene intron and, in a majority of cases, miRNA clusters possess cluster-

specific transcriptional regulation. For all selected clusters, regulation mediated by long ncRNA was 

experimentally demonstrated in CRC, at least in one cluster member. Oncostatic functions were 

predominantly linked with the reviewed miRNAs, and their high expression was usually associated 

with better survival. These findings implicate the potential of down-regulated clusters in CRC to 

become promising multi-targets for therapeutic manipulation. 

Keywords: proliferation; apoptosis; chemoresistance; survival; long ncRNA; methylation; 

angiogenesis; cell adhesion 

 

1. Introduction 

Colorectal cancer (CRC) is the fourth-most common cancer worldwide with high mortality [1]. 

In spite of progress in CRC diagnostics and the determination of patient prognosis, there is still a 

need for improvement. During last two decades, miRNAs have been frequently discussed as a 

potential tool for the assessment of cancer progression [2]. 

MicroRNAs (miRNAs) belong to a large family of non-coding RNAs (ncRNAs). The average 

length of miRNAs is only 22 nucleotides (nt). The canonical pathway of miRNA synthesis begins with 

transcription from a DNA template, similarly to mRNA, creating primary-miRNAs (pri-miRNAs). 

After transcription that is usually mediated by RNA polymerase II, pri-miRNAs are capped by a 5′-

7-methyl guanosine cap and polyadenylated [3]. Pri-miRNAs are characterised by a hairpin and 

flanking overhangs of single-stranded RNA. This structure is recognised by the microprocessor 

complex, which is composed of RNase III Drosha and DiGeorge syndrome critical region gene 8 

protein (DGCR8) dimer, which cleaves pri-miRNA at the stem of the hairpin to produce pre-miRNA 

from the precursor [3]. 
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This structural change of pre-miRNA hairpin allows for the interaction of pre-miRNAs with the 

nuclear transport receptor Exportin 5 and Ran GTPase, which facilitate the translocation of pre-

miRNAs from the nucleus into the cytoplasm. Next, RNase III Dicer is recruited to cut out a single-

stranded loop. In this way, Dicer produces a mature miRNA duplex with two to three nt overhangs 

at both ends. The mature miRNAs sequence excised from the 5′ arm is designated as 5p, and the 

sequence excised from the 3′ arm is designated as 3p [4,5]. 

Two strands of mature miRNAs have different roles in miRNA signalling executed by the RNA-

induced silencing complex (RISC). To assemble the RISC, cooperation between Dicer, mature 

miRNAs, some member of the Argonaute protein family (Ago) and transactivation response element 

RNA-binding protein (TRBP) are needed. After loading of the miRNA into the RISC and rewinding, 

one miRNA strand, the so-called guide strand is (via Ago) positioned in a conformation that allows 

for target mRNA pairing [6]. mRNA recognition is based on complementarity between the miRNA 

response element (MRE), which is frequently located in the 3′ untranslated region (3′ UTR) of an 

mRNA, and the “seed” sequence of miRNA, which is a segment between 2 and 8 nt from the 5′ end. 

miRNAs exert an inhibitory influence that is dependent on homology between miRNAs and target 

mRNA. If complementarity is high, the target mRNA is degraded, whereas if homology is less 

extensive, translation repression occurs [7]. Particular MRE is usually present at several mRNAs that 

are all targeted by corresponding miRNAs [8]. 

The second miRNAs strand, the so-called passenger strand, is present in the cytoplasm at much 

lower concentration compared with the guide strand and, in spite of its low concentration, can be to 

some extent also incorporated into the RISC [4,8,9]. 

miRNAs that are closely located in the genome create miRNA clusters. It has been shown that 

20–40% of more than 1800 human miRNA sequences are organised in polycistrons (clusters) that are 

transcribed together [5,10,11]. miRNA clusters are usually composed of 2 to 8 members, but more 

than 60% of clusters contain only two miRNAs [12]. miRNA clusters in the human genome are 

divided into two groups—homologous clusters and heterologous clusters. Homologous clusters are 

composed of miRNAs from the same family [5]. Gene families are groups of homologous genes that 

are likely to have highly similar functions mainly because of the same seed sequence [5]. miRNA 

families and miRNA clusters have complex distributions in the genome. One miRNA family may be 

located in one or more clusters, and one cluster may be involved in one or more families. More than 

60% of miRNA clusters in the human genome contain miRNAs from the same family [12]. 

The abovementioned miRNA organisation is also mirrored in their names. miRNAs with 

identical mature sequences but different precursor hairpins and locations in the genome are 

designated with a number in the suffix [13]. For example, miR-133a-1 is located on chromosome 18 

of the human genome and miR-133a-2 is located in chromosome 20, but both precursors are processed 

into a final mature miRNA with the same sequence [14]. miRNAs that differ only in one or two 

positions in their sequence can be distinguished by letter suffixes in the name (e.g., miR-133a and 

miR-133b) [13]. 

Long ncRNAs (lncRNAs) are typically 1000–10,000 nt long and, according their structure, can be 

split into linear lncRNAs (including pseudogenes) and circular RNAs (circRNAs) [15]. Similarly to 

miRNA, lncRNAs are transcribed from exonic, intronic or intergenic DNA sequences frequently 

showing polycistronic organisation; however, they utilise much more genome information compared 

to miRNAs [16]. Transcription of linear lncRNAs shows high similarity to that described for protein-

coding genes, except for the presence of the translated open-reading frame. lncRNAs strongly 

influence miRNA expression [7]. 

2. Biogenesis of miRNA 

In spite of huge progress in the measurement of miRNAs [2] there remain inconclusive and 

contradictory results about miRNA up- or down-regulation in CRC, e.g., miR-204, miR-203, miR-200, 

miR-150, miR-142 [17]. This inconsistency precludes these miRNAs from use as effective bio-tools. A 

recent review suggested that miRNAs organised in clusters may be more reliable biomarkers as they 
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can share the same way of transcriptional regulation. We focused on down-regulated clusters, as their 

levels are less likely to be masked by cell fragmentation due to cell death. 

Regulation of miRNA expression is frequently associated with their localisation in the genome. 

Approximately 40–60% of miRNAs are located in intronic areas of protein-coding genes or 

nonprotein-coding transcripts [5,7,18,19]. Many intronic miRNAs are expressed together with their 

host genes in one polycistronic transcript, and it is likely that their expression is regulated by a 

promoter of the host gene [11,18,20]. On the other hand, approximately one-third of intronic miRNAs 

in the human genome have their own promoters and may be transcribed independently of their host 

gene promoter [21,22]. Methylation of the promoter of miRNAs or their host gene promoters also 

contributes to regulation of miRNA expression (e.g., [23–25]). 

Promoter-independent regulation of miRNAs is executed by competing endogenous RNAs 

(ceRNAs) that interact with miRNAs. Both types, linear as well as circular lncRNAs, can inhibit 

miRNA function by binding based on complementary sequences and prevent the interaction of 

miRNAs with target mRNAs. This mechanism is known as “sponging” [26]. Since miRNAs have been 

previously shown to play an important role in cancer progression [8], the effects of ceRNAs as 

modulators of miRNA activity are also of crucial importance in this respect [15]. 

Finally, it has been shown that miRNAs show sex-dependent regulation of expression. By 

comparison of the miRNA transcriptomes of males and females, it was revealed that there are 73 

female-biased and 163 male-biased miRNAs in the human circulation and tissues [27]. A difference 

in miRNA expression was also observed in colorectal cancer (CRC) tissue [9,28,29]. A reason for this 

finding has not been completely elucidated; however, it does not seem to be associated with the 

location of miRNAs on sex chromosomes [27]. The role of steroid hormones has been investigated in 

this respect [25]. A network of oestrogen-responsive miRNAs has been implicated in the 

development of sex-dependent features [30]. It has also been shown that oestrogen regulates miRNA 

expression in many stable cancer cell lines [31,32]. Other mechanisms of miRNA regulation are 

extensively reviewed elsewhere [25]. 

Since CRC is one of the leading causes of cancer mortality worldwide, recent review has been 

focused on the regulation of miRNA clusters formed from miRNAs that are deregulated in this 

disease. We focused on clusters with decreased expression because a convincing majority of studies 

using CRC tissues or corresponding models have shown the oncostatic capacity of these clusters and 

support their therapeutic potential. 

3. miRNA Clusters Down-Regulated in Human CRC 

Only miRNA genes in the same orientation, and not separated by a transcription unit or a 

miRNA in the opposite orientation, located within 50 kb of distance were recognised as clusters [20].  

In the following section, we analyse the available information about their regulation by 

transcription factors, lncRNAs and methylation, tumour suppressor or oncogenic potential and target 

genes in CRC. 

3.1. Clusters miR-100/let-7a-2/miR-125b-1, miR-99a/let-7c and miR-99b/let-7e/miR-125a 

Clusters miR-99a/let7c, miR-99b/let-7e/miR-125a and miR-100/let-7a/miR-125b-1 are located on 

separate chromosomes (Table 1), but are functionally related as they are composed of members 

belonging to the same families (Supplementary Table S1). Known information about the presence of 

miRNA-specific transcription start sites (TSSs) is shown in Table 1.  

Information about clusters miR-99a/let7c, miR-99b/let-7e/miR-125a and miR-100/let-7a/miR-

125b-1 regulation via transcription factors and lncRNAs is not always available for all clustered 

miRNAs in CRC models. The doublecortin-like kinase 1 (DCLK1) [33] and lncRNA ANRIL [34] have 

been found to be negative regulators of let-7a-5p expression in CRC cell lines. Expression of miR-

125a-5p is strongly influenced by hypermethylation in CRC tumours [23], and it has been shown to 

be sequestered by lncRNA HOXA11-AS [35] and circRNA VAPA (Supplementary Table S5) [36]. miR-

125b-5p/3p is subjected to complex regulation, including via the transcription factors peroxisome-

proliferator-activated receptor gamma (PPARG), nuclear factor kappa B subunit 1 (NFKB1), tumour 
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protein p53 (p53), MYC proto-oncogene, bHLH transcription factor (MYC), caudal type homeobox 2 

(CDX2), lncRNA NEAT1, MEG3, UCA1 and MALAT1 [37], and by methylation [23]. 

Levels of let-7c,-5p let-7e-5p, miR-99a-5p, miR-100-5p, miR-125a-5p and miR-125b-5p have been 

found to be decreased in CRC tumours compared to adjacent tissue (Supplementary Table S2). There 

is insufficient information to make statements about the deregulation of miR-99b in CRC. Most of the 

miRNAs belonging to the abovementioned clusters are positively associated with better survival and 

show tumour-suppressive functions (Supplementary Table S2), which are executed via a wide range 

of target genes (Supplementary Table S3). 

let-7a-5p induces cell cycle arrest and reduces cell growth through targeting genes encoding 

ubiquitin like with PHD and ring finger domains 2 (UHRF2) [38], the Rho effector rhotekin (RTKN) 

[39] and MYC [33] in CRC cell lines. The known target of let-7a-3p is the ABC transporter ATP-

binding cassette subfamily C member 1 (ABCC1), which is involved in the development of cell 

chemoresistance [34]. 

Low expression of let-7c-5p is associated with metastasis and cell growth in CRC tissues and up-

regulation of let-7c-5p in the highly metastatic Lovo cell line caused a decrease in migration and 

inhibition of cell growth through targeting matrix metallopeptidase 11 (MMP11) and PBX homeobox 

3 gene (PBX3) [40]. 

Increased expression of let-7e-5p in CRC cell lines leads to decreased cell migration and 

proliferation through targeting the gene coding for serine/threonine kinase DCLK1 [41], increased 

sensitivity to treatment with 5-fluorouracil (5FU) and decreased cell invasion through targeting ST8 

alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1 (ST8SIA1) [42]. let-7e-5p also induces cell 

cycle arrest through targeting genes encoding insulin-like growth factor 1 receptor (IGF1R), which 

also mediates the decreased sensitivity of CRC cells to both radio- and chemotherapy [43,44]. 

Table 1. Host gene, location and transcription start site of clusters down-regulated in colorectal cancer 

(CRC). 

Cluster 

Chromosome 

Host Gene [13] 

RNA Class 

Cluster 

Position 
Regulation of Cluster Transcription [45] 

miR-100/let-7a-2/miR-125b-1 

Chr11 

MIR100HG 

ncRNA 
intron 

Predicted transcription start site (TSS) miR-100/let-7a-

2, miR-125b-1 [46], whole cluster co-expression [47], 

co-expression of miR-125b with MIR100HG [48] 

miR-99a/let-7c 

Chr21 

MIR99AHG  

 ncRNA  
intron 

At least one host gene-independent TSS regulating the 

whole cluster [10,21], host promoter regulation [49], 

expression of miR-99a and let-7c correlate with 

MIR99AHG [50–52] 

miR-99b/let-7e/miR-125a 

Chr19 

SPACA6  

protein coding 

SPACA6R-AS 

long ncRNA 

(lncRNA) antp. 

mixed * 

 

exon 

 

At least one host gene-independent TSS regulating the 

whole cluster [21,46,47,49], expression of miR-99b, let-

7e and miR-125a correlate with SPACA6 [50–52] 

miR-1-2/133a-1 

Chr18 

MIR133A1HG  

lncRNA 

MIB1  

protein coding 

antp. 

exon 

 

intron 

 

 

Host gene-independent TSS for the whole cluster [47], 

expression of miR-1-2 and miR-133a-1 does not 

correlate with MIB1 [50–52] 

miR-1-1/133a-2 Chr20 
MIR1-1HG 

unknown 

mixed # 

 

Host gene-independent TSS for the whole cluster [53], 

expression of miR-1-1 and miR-133a-2 do not correlate 

with MIR1-1HG [50–52] 

miR-206/133b 

Chr6 

miR-206 

miR-133b 

LINCMD1 

ncRNA 

intergenic 

intron 

 

Host gene-independent TSS for the whole cluster 

[47,49,54] 

miR-192/194-2 

Chr11 

MIR194-2HG 

lncRNA 

mixed * 

 

At least one host gene-independent TSS regulating the 

whole cluster [49,55], promoter regulating miR-194 

[56] 

miR-215/194-1 

Chr1 

IARS2 

protein coding 

intron 

 

At least one independent TSS regulating the whole 

cluster [53,57,58], TSS for miR-215 [59], expression of 

miR-194-1 correlates with IARS2, expression of miR-

215 does not correlate with IARS2 [50–52] 
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miR-15a/16-1 

Chr13 

DLEU2 

lncRNA 

mixed * 

 

DLEU2 promoter [49], expression of miR-15a 

correlates with DLEU2, expression of miR-16-1 does 

not correlate with DLEU2 [50–52] 

miR-15b/16-2 

Chr3 

SMC4 

protein coding 

TRIM59-IFT80  

lncRNA antp. 

intron 

 

intron 

 

SMC4 promoter [21,49], expression of miR-16-2 and 

miR-15b do not correlate with expression of SMC4 

[50–52] 

miR-143/145 

Chr5 

CARMN 

lncRNA 

mixed # 

 

Identification of independent TSS for the whole 

cluster [47], correlation with host gene expression [60], 

knock-down of CARMN decreases expression of miR-

143 and -145 [61], promoter regulation of miR-145 

expression [62] 

miR-302b/302c/302a/ 

302d/367 

Chr4 

MIR302CHG 

lncRNA 

 LARP7  

protein coding 

antp. 

mixed # 

 

intron 

 

At least one independent TSS regulating the whole 

cluster [53,63] 

miR-497/195 

Chr17 

MIR497HG 

lncRNA 

intron 

 

At least one independent TSS regulating the whole 

cluster [49,64] 

Host genes in parallel as well as antiparallel (antp.) DNA strands are shown. Chr, chromosome; 

mixed, located partially in intron, exon and/or intergenic region; *, intron or exon location depending 

on splice variant; #, intron/exon junction; TSS, transcription start site mediating regulation 

independent from host gene; lncRNA, long non-coding RNA; ncRNA, non-coding RNA; HG, host 

gene, CARMN, cardiac mesoderm enhancer-associated non-coding RNA; DLEU2, deleted in 

lymphocytic leukaemia 2; IARS2, isoleucyl-tRNA synthetase 2, mitochondrial; LINCMD1, long 

intergenic non-protein coding RNA, muscle differentiation 1; MIB1, mindbomb E3 ubiquitin protein 

ligase 1; SMC4, structural maintenance of the chromosomes protein 4; SPACA6, sperm acrosome 

associated 6; TRIM59-IFT80, tripartite motif-containing 59 and intraflagellar transport 80. 

The miR-99a-5p [65] and miR-99b-5p [66] target gene coding serine/threonine protein kinase 

with oncogenic potential is called mechanistic target of rapamycin kinase (MTOR) in CRC cell lines.  

miR-100-5p inhibits cell growth, induces apoptosis and decreases cell invasion, possibly via 

targeting RAP1B, a member of RAS oncogene family (RAP1B) [67]. 

miR-125a-5p induces apoptosis through targeting the BCL2 apoptosis regulator (BCL2) and 

BCL2 family members BCL2-like 12 (BCL2L12) and myeloid cell leukaemia 1 gene (MCL1) [68] in 

CRC cell lines. miR-125a-5p also executes its functions via targeting genes coding for peptidyl 

arginine deiminase 2 (PADI2) involved in the promotion of metastasis [35] and pro-angiogenic 

vascular endothelial growth factor A (VEGFA) [69]. miR-125a-5p also inhibits cell proliferation and 

migration by targeting SMAD-specific E3 ubiquitin protein ligase 1 (SMURF1) [70], 

phospholipid:diacylglycerol acyltransferase, called tafazzin (TAZ) [71] and cAMP-responsive 

element-binding protein 5 (CREB5) [36]. Overexpression of miR-125a-3p inhibits cell proliferation 

and migration through targeting fucosyltransferases 5 and 6 (FUT5 and FUT6, respectively) [72]. 

Overexpression of miR-125b-5p leads to promotion of apoptosis and blockage of cell cycle 

progression in the human CRC cell line HCT-8. On the other hand, HCT-8 cells with high expression 

of miR-125b show more invasive and metastatic potential through the promotion of epithelial–

mesenchymal transition (EMT). One of the validated targets of miR-125b-5p is the anti-apoptotic gene 

MCL1 [73] for which high expression is associated with shorter survival times in CRC patients [74]. 

Another target gene of miR-125b-5p is the APC regulator of the WNT signalling pathway (APC) gene. 

Negative correlation between expression of miR-125b-5p and APC has also been confirmed in tumour 

tissue from patients with CRC [75]. 

3.2. Clusters miR-1-2/133a-1, miR-1-1/133a-2 and miR-206/133b 

The miR-1-1/133a-2, miR-1-2/133a-1 and miR-206/133b clusters are encoded on different 

chromosomes (Table 1). miR-206-3p differs from miR-1-3p only by four nt [14]. Members of the 

abovementioned clusters are traditionally considered to be muscle-specific miRNAs, but growing 

evidence supports a broader expression pattern, including CRC tissues [14]. 
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miR-1 and miR-133a expression is silenced by DNA hypermethylation [76]. Expression of miR-

206-3p is induced by C–C motif chemokine ligand 19 (CCL19) [77]. In addition, miR-133a-3p in CRC 

cells is sponged by the complementary lncRNAs ABHD11-AS1 and XIST [78,79], while miR-133b-3p 

has been shown to be sequestered by the lncRNAs LINC00114 [80], ENSG00000231881 [81] and 

LINC00467 [82]. miR-206-3p is a target of the lncRNA LINC00707 [83,84]. 

The expression of miR-1-3p, miR-133a-3p, miR-133b-3p and miR-206-3p is decreased in CRC 

tissue compared to normal tissue, and high levels are associated with better survival in patients with 

CRC (Supplementary Table S2). Because of the inhibitory influence of miR-1-3p, miR-133a-3p, miR-

133b-3p and miR-206-3p on cell growth, migration, proliferation and chemoresistance, they are 

considered to be tumour suppressors (Supplementary Table S2), executing their roles via inhibition 

of a wide range of target genes (Supplementary Table S3).  

miR-1-3p expression shows negative correlation with tumour size, degree of differentiation, 

lymph node metastasis and tumour/nodus/metastasis stage (TNM) [85–87]. In vitro, miR-1-3p 

suppresses cell growth, migration, motility and glycolysis by targeting VEGF [87] and notch receptor 

3 (NOTCH3), which is known to be crucially involved in developmental processes by controlling cell 

fate decisions [88] as well as hypoxia-inducible factor 1 subunit alpha (HIF1A) [89]. The target genes 

of miR-1-3p also encode for NLR family apoptosis inhibitory protein (NAIP), which plays a role in 

the inhibition of apoptosis [86], and the focal adhesion protein LIM and SH3 protein 1 (LASP1) [85]. 

miR-206-3p suppresses CRC cell migration [90], cell proliferation and accelerates apoptosis via 

targeting the oncogene formin-like 2 (FMNL2), MET proto-oncogene, receptor tyrosine kinase (MET) 

[91], NOTCH3 [92], tetraspanin-like protein called transmembrane 4 L six family member 1 (TM4SF1) 

[93] and BCL2 [94]. These oncostatic effects are prevented by the overexpression of lncRNA 

LINC00707 [83,84]. 

miR-133a-3p inhibits both in vitro and in vivo cell growth via the inhibition of ring finger and 

FYVE-like domain-containing E3 ubiquitin protein ligase (RFFL), which induces degradation of p53 

protein [95], LASP1 [96], fascin actin-bundling protein 1 (FSCN1) (involved in the regulation of cell 

motility) [97], oncogenic SUMO-specific peptidase 1 (SENP1) [98] and an RNA helicase called 

eukaryotic translation initiation factor 4A1 (EIF4A1) [99]. 

miR-133b-3p inhibits cell invasion and induces apoptosis; these effects are reversed by 

overexpression of its target gene C-X-C motif chemokine receptor 4 (CXCR4) [100]. miR-133b-3p 

targets epidermal growth factor receptor (EGFR) and shows synergistic oncostatic effects with 

cetuximab [101]. The oncostatic effects of miR-133b are also executed by inhibition of homeobox A9 

(HOXA9) and metastasis inducer zinc finger E-box binding homeobox 1 (ZEB1) [102]. miR-133b-3p 

targets MET (involved in invasive tumour growth) [103], the gene encoding ferritin light chain (FTL), 

lncRNA LINC00467 (promoting CRC cell resistance against 5FU) [82], a component of the nuclear 

pore complex proto-oncogene nucleoporin 214 (NUP214) [45] and some others (Supplementary Table 

S3). 

3.3. Clusters miR-192/194-2 and miR-215/194-1 

Clusters miR-192/194-2 and miR-215/194-1 are located on different chromosomes (Table 1) and 

consist of miR-194 and miR-192 or miR-215, which differ by only two nt [56]. 

Expression of clusters miR-192/194-2 and miR-215/194-1 is induced by p53 in the human colon 

cancer cell line HCT116 [57,104], and miR-194-5p expression is stimulated by a hepatocyte nuclear 

factor called HNF1 homeobox A (HNF1A) via binding to the miR-194 promoter [56]. An inhibitor of 

miR-194-5p expression is the non-histone chromosomal protein called high mobility group AT-hook 

2 (HMGA2), which exerts its function via upstream promoters of both miR-194 loci [105]. Expression 

of miR-215-5p in CRC cells is regulated by caudal-type homeobox 1 (CDX1) independently of other 

members of the miR-194 cluster [59]. miR-194-5p is also regulated by sponging with lncRNA H19 

[106], and the opposite strand, miR-194-3p, is sequestered with lncRNA TP73-AS1 in CRC cell lines 

[107]. miR-215-5p is sponged by lncRNAs UICLM [108] and FTX [109]. Expression of miR-215-5p 

increases under hypoxic conditions [110] and after melatonin treatment [111] in CRC cell lines. 
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Expression of miR-192-5p, -194-5p and -215-5p has been shown to be down-regulated in colon 

cancer tissue compared to normal tissue (Supplementary Table S2). While expression of miR-192 and 

-194 is associated with better survival in patients with CRC, the association of miR-215 expression 

with better survival is not conclusive yet (Supplementary Table S2). 

Most of the reports about the functions of miR-192/194-2 and miR-215/194-1 clusters indicate 

their tumour-suppressive roles (Supplementary Table S2), as cell cycle arrest and inhibition of cell 

adhesion are observed after their overexpression. These functions are usually executed via the 

silencing of their target genes (Supplementary Table S3). 

miR-194-5p targets several genes involved in regulation of cell growth. Inhibition of mitogen-

activated protein kinase kinase kinase 4 (MAP4K4) by a miR-194-5p mimic causes a decrease in cell 

proliferation under in vivo and in vitro conditions [112]. Overexpression of another target gene of 

miR-194-5p transcriptional activator called forkhead box M1 (FOXM1) reversed the effects of the 

miR-194-5p mimic under in vitro conditions [106]. miR-194-5p is also involved in regulation of the 

Wnt/β-catenin pathway through targeting AKT serine/threonine kinase 2 (AKT2), which contributes 

to the activation of Wnt/β-catenin signalling [113]. Another target gene of miR-194-5p is an 

endoplasmic reticulum contact protein called VAMP associated protein A (VAPA), which contributes 

to the regulation of vesicular transport with a positive effect on cell survival [105]. The diversity of 

miR-194-5p functions has been pointed out after it was found that miR-194-5p also targets a negative 

regulator of angiogenesis thrombospondin 1 (THBS1) and promotes angiogenesis [104]. Another 

target gene of miR-194-3p is transforming growth factor alpha (TGFA), which has an oncogenic role 

in CRC [107]. 

miR-192-5p decreased the liver metastasis of colon cancer in an orthotopic mouse model of colon 

cancer through targeting the expression of several oncogenic genes, including anti-apoptotic BCL2, 

Wnt/β-catenin activator called zinc finger E-box binding homeobox 2 (ZEB2) and pro-angiogenic 

VEGFA [114]. 

Overexpression of miR-215-5p in CRC cells leads to decreased migration and proliferation 

through targeting the transcription factor YY1 [115]. Cell proliferation is suppressed by miR-215-5p 

through targeting the G2/M checkpoint regulator called denticleless E3 ubiquitin protein ligase 

homolog (DTL) [116,117]. Clonogenicity inhibition mediated by miR-215-5p is exerted by targeting 

the epidermal growth factor family member epiregulin (EREG) and transcriptional inducer 

homeobox B9 (HOXB9) [118]. miR-215-5p in CRC cells induces differentiation through targeting 

BMI1 proto-oncogene, polycomb ring finger (BMI1) [59]. miR-215-5p in CRC also targets Wnt/β-

catenin activator ZEB2, which is involved in the regulation of EMT [108,109]. As there is a high degree 

of homology between miR-215-5p and miR-192-5p, they both target the mediator of angiogenesis 

called sushi repeat-containing protein X-linked 2 (SRPX2) [119]. Chemoresistance to 5FU is 

influenced by miR-215-5p via targeting thymidylate synthetase (TYMS), which catalyses the dTMP 

biosynthesis necessary for DNA synthesis [111]. Resistance to chemotherapy is also regulated by the 

passenger strand miR-215-3p, which increases sensitivity to 5FU by targeting C-X-C motif chemokine 

receptor 1 (CXCR1) [120]. 

3.4. Clusters miR-15a/16-1 and miR-15b/16-2 

miR-15/16 is present in the human genome in the form of two paralogues, miR-15a/16-1 and 

miR-15b/16-2 (Table 1). Expression of miR-15 and miR-16 is regulated by their host gene promoter 

(Table 1). Moreover, miR-15a-5p is sponged by lncRNA LINC00473 in CRC cell lines [121]. Expression 

of miR-15b-5p is inhibited by sirtuin 1 (SIRT1), which prevents transcriptional activator AP-1 from 

binding to the miR-15b-5p promoter [122]. miR-16-5p is sponged by lncRNA SNHG12 in several CRC 

cell lines [123]. 

Although a decrease in miR-15-5p/16-5p in CRC tissue compared to normal tissue has been 

reported more frequently than the opposite, there are also studies implicating the up-regulation of 

miR-15/16 expression (Supplementary Table S2). Similarly, better survival is more frequently linked 

to high expression of miR-15/16 members; however, a worse survival association with high miR-15/16 

expression has also been documented (Supplementary Table S2). 
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Generally, tumour-suppressive functions have been attributed to miR-15/16 clusters. Increased 

expression of miR-15a-5p and miR-16-1-5p reduced tumour growth in the colons of nude mice [124], 

and higher expression of miR-15a-5p led to suppressed proliferation of colon cancer cells in vitro 

[125]. These effects are mostly mediated by miR-15/16 target genes (Supplementary Table S2). 

Common targets of miR-15a-5p and miR-16-5p in CRC cell lines are cyclin B1 (CCNB1) [124] and 

transcription factor AP-4 (TFAP4), which is involved in the regulation of EMT [126]. miR-15a-5p 

inhibits cell growth by targeting pro-survival protein BCL2 [125,127], a regulator of stemness called 

SRY-box transcription factor 2 (SOX2) [125], the oncogene Yes1 associated transcriptional regulator 

(YAP1), DCLK1 and BMI1, which facilitates cell invasion and migration [127]. 

Overexpression of miR-16-5p in CRC cell lines decreases cell migration and proliferation 

through targeting KRAS proto-oncogene, GTPase (KRAS) both in vivo and in vitro [128]. miR-16-5p 

levels negatively correlate with expression of a VEGF receptor called kinase insert domain receptor 

(KDR) and the MYB proto-oncogene, transcription factor (MYB) [129]. miR-16-5p is involved in the 

induction of apoptosis and cell growth inhibition by targeting integrin subunit alpha 2 (ITGA2) [130] 

and survivin (BIRC) [131]. The target genes of miR-16-5p in CRC cells are also CDX2 (active mainly 

during development) [132] and prostaglandin-endoperoxide synthase 2 (PTGS2), which catalyses the 

first step in the synthesis of prostanoids [133]. 

miR-15b-5p decreases cell proliferation through targeting growth via the Pim-1 proto-oncogene, 

serine/threonine kinase (PIM) in CRC cell lines [134]. miR-15b-5p increases sensitivity to chemo- and 

radiotherapy by targeting DCLK1 [135], NFKB1 and a kinase called component of inhibitor of nuclear 

factor kappa B kinase complex (CHUK) [136]. NFKB1 and CHUK are both associated with the NF-κB 

pathway [136]. miR-15b-5p also decreases cell migration through targeting of the first enzyme in the 

fatty acid oxidation pathway acyl-coenzyme A oxidase 1 (ACOX1) [122]. On the other hand, 

overexpression of miR-15b-5p in CRC cell lines increases colony formation by targeting the tumour 

suppressor klotho (KL) and  MTSS I-BAR domain-containing 1 (MTSS1) [137]. 

3.5. Cluster miR-143/145 

Bicistronic miR-143/145 is negatively regulated by Ras-responsive element-binding protein 1 

(RREB1) [138], and the expression of both miRNAs is suppressed via EGFR [139]. The core promoter 

region of miR-145 is regulated by histone methylation in CRC cell lines [62] and snail family 

transcriptional repressor 1 (SNAI1) [140]. miR-145-5p is sponged by circRNA CIRC_001569 [141], 

snoRNA SNHG1 [142], lncRNA SOX21-AS1 [143], lncRNA CASC15 [144], circRNA PVT1 [145] and 

lincRNA-ROR [146]. miR-143-3p is sequestered by lincRNA UCC [147] and ceRNA PART-1 in SW620 

cells [148]. 

Expression of miR-143-3p and miR-145-5p is significantly decreased in CRC tissue compared to 

normal tissue, and in both cases, decreased expression was associated with shorter survival time and 

increased disease recurrence (Supplementary Table S2). 

Expression of miR-143-3p/145-5p is negatively associated with CRC clinicopathological features 

and exerted oncostatic effects, mainly via influencing their target genes (Supplementary Table S3). 

The miR-143/145 cluster is involved in the regulation of several key components of the KRAS 

signalling pathway [138,139]. miR-145-5p is involved in the inhibition of cell proliferation and 

migration via targeting genes encoding NAIP [86], fascin actin-bundling protein 1 (FSCN1) involved 

in regulation of cell motility [149], the focal adhesion protein paxillin (PXN) that facilitates cellular 

contact with the underlying extracellular matrix [150] and ZEB2 [151]. ETS transcription factor ERG 

(ERG), which is up-regulated in CRC tumours (however, its role in this tissue is not completely 

elucidated) [152], and E2F transcription factor 5 (E2F5), which is involved in cell cycle control [141], 

are also targeted by miR-145-5p. miR-145-5p influences cancer invasiveness via the inhibition of BAG 

cochaperone 4 (BAG4) and formin-like 2 protein (FMNL2) [141]. The cell cycle is influenced by miR-

145-5p by targeting G1 regulators cyclin-dependent kinase 6 (CDK6), cyclin D2 (CCND2), E2F 

transcription factor 3 (E2F3) and MYC [139]. miR-145-5p inhibits the metastatic CRC cell invasion 

induced by LASP1 [62] and targets myosin VI (MYO6), which promotes cell growth in the SW1116 

cell line [143]. 
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Among the target genes of miR-143-3p are hexokinase 2 (HK2), which causes a decrease in lactate 

production after inhibition mediated by miR-143-3p [153], toll-like receptor 2 (TLR2) [154] and catenin 

delta 1 (CTNND1) [155], which are involved in regulation of cell invasion and migration. miR-143-3p 

also targets PTGS2, KRAS and a member of the MAPK family mitogen-activated protein kinase 7 

(MAPK7) [139], integrin subunit alpha 6 (ITGA6) and ArfGAP with SH3 domain, ankyrin repeat and 

PH domain 3 (ASAP3), with roles in the development of metastasis [156]. In addition to cell migration, 

tumour growth and angiogenesis in CRC inhibition in vivo and in vitro, miR-143-5p contributes to 

an increase in chemosensitivity of CRC cells to oxaliplatin via targeting IGF1R [157]. 

3.6. Cluster miR-302b/302c/302a/302d/367 

This polycistron codes for miRNAs with high homology sequences, showing differences only in 

the last six nt on the 3´end [63,158]. Expression of miR-302c-3p has been shown to be regulated by 

methylation [24] and is sponged by lncRNA SNHG16 [159]. 

Expression of miR-302a-3p and -302c-3p is decreased in CRC tissue compared to normal tissue, 

and high expression of miR-302a and -302c is associated with better survival (Supplementary Table 

S2). 

miR-302a-3p up-regulation suppresses the growth and invasion of SW480 and HCT116 cells, 

accompanied by a reduction in the expression of matrix metallopeptidase 9 and 2 (MMP9 and MMP2, 

respectively). The inhibitory effects of miR-302a-3p are mediated via the MAPK and PI3K/Akt 

signalling pathways [160]. The tumour suppressor role of miR-302a-3p is also executed by targeting 

nuclear factor IB (NFIB) and the induction of cetuximab chemosensitivity, which is caused by 

suppressing cell-surface expression of the glycoprotein CD44 [161]. miR-302a-3p also induces 5FU 

sensitivity and viability inhibition via the inhibition of IGF1R [162]. Expression of mir-302a-3p is 

decreased in human CRC cell lines after the induction of autophagy by treatment with 5FU or 

starvation [163].  

miR-302c-3p levels negatively correlate with lymph node metastases, tumour invasion and 

advanced TNM stage [24]. Overexpression of miR-302c-3p in CRC cells causes a decrease in cell 

growth and stimulates apoptosis [24,164]. Overexpression of miR-302c-3p promotes sensitivity in 

CRC cell lines to 5FU and oxaliplatin via targeting PLAG1 zinc finger (PLAG1), with oncogenic 

potential [24], and the ABC transporter called ATP-binding cassette subfamily B member 1(ABCB1) 

[165], respectively. Another target gene of miR-302c-3p is transcription factor AP-4 (TFAP4), which 

is involved in the promotion of EMT and cell migration [164] (Supplementary Table S3). 

3.7. Cluster miR-497/195 

Cluster miR-497/195 does not have a known paralogue (Table 1). The functions of miR-497-5p 

are influenced by sponging with lncRNAs SNHG1 [166], TTN-AS1 [167] and AC009022.1 [168] and 

via methylation of its promoter [64]. miR-195-5p levels are regulated by sequestering with lncRNA 

SNHG1 [166] and methylation-induced silencing [64]. 

Expression of miR-497-5p and mir-195-5p is down-regulated in the tumour tissue of patients 

with CRC compared to adjacent tissue or normal tissue, and high levels of these miRNAs have been 

associated with better survival (Supplementary Table S2). 

Increased expression of miR-497-5p and/or miR-195-5p is associated with decreased cell 

proliferation, migration and EMT in the Lovo and SW480 cell lines in vitro and in vivo after their 

implantation into mice. This effect was prevented by sponging with lncRNA SNHG1 [166].  

High expression of miR-497-5p inhibits proliferation and invasion in CRC cell lines through 

targeting IGF1R [169], insulin receptor substrate 1 (IRS1), which influences IGF1R signalling [170], 

protein tyrosine phosphatase non-receptor type 3 (PTPN3), which is involved in the regulation of cell 

growth and differentiation [171], and kinase suppressor of ras 1 (KSR1), which induces the 

Raf/MED/ERK pathway and via its influence oncogenic transformation as well [172]. The target genes 

of miR-497-5p are also members of the Fos gene family, i.e., FOS-like 1, AP-1 transcription factor 

subunit (FOSL1), which is involved in the promotion of metastasis in CRC [173] (Supplementary 

Table S3). 
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Several studies indicate that miR-195-5p can increase the sensitivity of 5FU-resistant SW620 and 

HT-29 cell lines to chemotherapy by targeting transcriptional regulators, notch receptor 2 (NOTCH2) 

and recombination signal binding protein for immunoglobulin kappa J region (RBPJ) involved in the 

Notch signalling pathway, both of which are necessary for the maintenance of stemness and 

chemoresistance in CRC cells [174]. A newly-identified effector of chemoresistance, 

glycerophosphodiester phosphodiesterase domain-containing 5 (GDPD5) (traditionally linked to 

glycerol metabolism), has been shown to be suppressed by miR-195-5p [175]. miR-195-5p also inhibits 

the proliferation of CRC cell lines through targeting fibroblast growth factor 2 (FGF2) and subsequent 

decreases in CCNB1, cyclin D2 (CCND2) and cyclin-dependent kinase 2 (CDK2) levels [176], as well 

as reduced cell viability by targeting BCL2 [177]. Expression of miR-195-5p inhibits cell proliferation 

and invasion by targeting the genes encoding NOTCH2 [178] and the NF-κB activator scaffold protein 

caspase recruitment domain family member 10 (CARMA3) [179].  

On the other hand, it has been demonstrated that WEE1 G2 checkpoint kinase (WEE1) and 

checkpoint kinase 1 (CHEK1) are targeted by miR-195-5p, which promotes the acquisition of drug 

resistance to 5FU in HCT-116 cells [180]. 

4. Regulation of Expression of Identified Clusters 

A comprehensive analysis of miRNA clusters down-regulated in CRC revealed that they are 

predominantly located in a host gene sequence, in gene introns in most cases. None of the analysed 

clusters is situated on a sex chromosome. In spite of the generally accepted assumption that intron-

derived miRNAs are transcribed from their host gene [11,18,20], it has recently been determined that 

more than 30% of intronic miRNAs possess upstream regulatory elements [21,22]. This finding is in 

complete agreement with our study because, with the exception of miR-15/16, TSSs independent of 

the host gene were found for all clusters (Table 1), which implicates cluster-specific transcriptional 

regulation. Moreover, we described regulation mediated by lncRNAs for at least one member of each 

cluster, which constitutes an additional level of miRNA regulation. 

In spite of the complexity of miRNA control, it is of interest that all selected clusters show 

decreased expression, although, in some cases, there is still the need for experimental evidence to 

achieve a complete conclusion. Moreover, oncostatic functions are linked to the reviewed miRNAs, 

and high expression is usually associated with better patient survival, which is of interest since the 

abovementioned miRNAs are regulated differently. One uniform explanation for decrease in their 

expression in CRC tumours can be based on their active transport from cancer cells, as has been 

described previously [167]. However, this assumption needs to be experimentally validated. miRNA 

clusters that demonstrate tumour-suppressive functions have the potential to become a multi-target 

therapeutic tool to manipulate the amplification of several tumour-suppressive miRNAs by one 

promoter. 

A major limitation of this study is an insufficient amount of information about the transcriptional 

regulation of the host gene, cluster and cluster members. In several cases, miRNA members of a 

particular cluster have been reported to be co-expressed; however, there is not always sufficient data 

to correlate the expression of clusters with their host genes in CRC tissue. Therefore, there is a lack of 

evidence supporting the notion that miRNA expression is regulated by host gene promoters. 

Moreover, post-transcriptional regulation and turnover, which can differ for particular miRNAs, 

probably influence the effective levels of miRNAs [11].  

5. Target Genes and Functions of Identified Clusters 

All miRNAs identified by literature search in this study execute their function via the broadly-

conserved seed sequence and, with the exception of miR-194, belong to families containing more than 

one miRNA (Supplementary Table S1). There is experimental evidence supporting interference of 

miRNAs with decreased expression with more than 100 genes stimulating tumour progression in 

CRC (Supplementary Table S3). The most targeted genes were anti-apoptotic BCL2 silenced by 

miRNAs from five clusters and four families and pro-angiogenic VEGFA regulated by four clusters 

from four families. The family containing clusters miR-497/195 and miR-15/16 targets 29 oncogenes, 
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which is the highest amount for the families involved in this study. Considering the number of 

targeted genes, the most influential cluster is miR-143/145, targeting 26 genes, followed by miR-

206/133b silencing 16 genes and miR-15/16 and miR-215/194-1 targeting 15 genes  

Experimental evidence validating in silico predictions of miRNA interactions with their target 

genes are most probably not complete, since miRNAs belonging to the same family rarely share the 

same target genes (Tables S1 and S3). In spite of incomplete experimental evidence, it is possible to 

implicate major directions in which clusters with decreased expression in CRC execute their 

oncostatic functions (Figure 1; Supplementary Table S4, GO analysis). GO analysis performed with 

use of the PANTHER Classification System showed that most of the target genes are classified as 

gene-specific transcriptional regulators, protein-modifying enzymes and cytoskeletal proteins. 

Classification according pathways showed that the most influenced pathways were angiogenesis, 

inflammation mediated by chemokine and cytokine and apoptosis signalling pathways 

(Supplementary Table S4, GO analysis). 

 

Figure 1. Gene ontology enrichment analysis of target genes of down-regulated miRNA clusters. (A) 

Classification according to the molecular function of genes, (B) classification according to biological 

processes in which target genes are involved, (C) classification according to protein class and (D) 

classification according pathways used in target gene signalling (first 20 most abundant pathways are 

plotted). 

The involvement of cluster miR-15/16 in CRC regulation was expected, in spite of the fact that 

the tumour-suppressive role of this cluster was originally discovered in chronic lymphocytic 

leukaemia [124]. As this cluster targets many genes, its effects are diverse, involving cell cycle control, 

apoptosis, cell migration and chemo- and radiosensitivity induction (Supplementary Table S3). 

However, it is surprising that cluster miR-143/145, known for its enrichment in vascular tissue and 

role in early heart morphology and vascular smooth muscle cell differentiation [61], shows such 

strong pleiotropic effects in CRC [138,139]. Cluster miR-206/133b, known mainly for its muscle-

specific expression and capacity to regulate muscle development, function and regeneration, has 

been shown to be involved in regulation of CRC, mainly via its developmentally-active target genes 

(e.g., NOTCH3 and HOXA9). Similarly, cluster miR-302b/302c/302a/302d/367 is involved in the 
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control of pluripotency, self-renewal and reprogramming in human embryonic stem cells [162], 

which although rarely studied with respect to CRC, has been found to be especially useful in the 

induction of sensitivity to chemotherapy [24,163]. It seems that, although down-regulated clusters 

show tumour-suppressive functions via a wide range of target genes, it is possible to observe specific 

effects in some of them. As transcription of several miRNAs can be induced by one TSS, eventually, 

two TSSs could be used to activate two tumour-suppressive clusters with complementary functions 

to achieve better outcomes. 

6. Conclusions 

Taken together, down-regulated clusters are in most cases localised within genes (usually within 

introns) and fulfil tumour-suppressive roles. In spite of growing evidence about the regulation of 

miRNA transcription, a unifying mechanism of their decreased expression is not available. Even if a 

miRNA is localised inside a host gene and is transcribed along with it, there can still be several TSSs 

that can regulate miRNA transcription under specific conditions. Information about the 

transcriptional regulation of miRNA clusters has excellent potential to be used in translational 

research. This assumption is supported by the presence of several clusters that share important 

properties—their expression is decreased in CRC and they show oncostatic capacity. Better 

knowledge about the transcriptional regulation of tumour-suppressive clusters in CRC may, in the 

future, open the possibility of multi-target therapeutic manipulation executed via the activation of 

one promoter. 

Supplementary Materials: The following are available online at www.mdpi.com/1422-0067/21/13/4633/s1, Table 

S1: Affiliation of miRNAs to corresponding family based on seed sequence; Table S2: Experimental evidence 
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genes supported by experimental evidence in colorectal cancer tissue or cells; Table S4: GO analysis data 

belonging to Figure 1; Table S5: List of abbreviations, Certificate of editing (only for the purposes of the review 

process). 
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