Supplementary Materials

Bispicolyamine-based supramolecular polymeric gels induced by distinct different driving forces with and without Zn²⁺

Jaehyeon Park^{1, †}, Ka Young Kim^{1,†}, Seok Gyu Kang¹, Shim Sung Lee¹, Ji Ha Lee^{2,*} and Jong Hwa Jung^{1,*}

- ¹ Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju; 52828, Korea; parkjae@gnu.ac.kr (J.P), rk5321@gnu.ac.kr (G.Y.K) dsa61milk@naver.com (S.G.K) sslee@gnu.ac.kr (S.S.L), jonghwa@gnu.ac.kr (J.H.J)
- ² Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan; leejiha@hiroshima-u.ac.jp (J.H.L)
- ⁺ These authors contributed equally in this work
- * Correspondence: leejiha@hiroshima-u.ac.jp (J.H.L); jonghwa@gnu.ac.kr; Tel.: +82-55-772-1488 (J.H.J)

Solvent	State				
Sorvent	Without Zn ²⁺	With Zn ²⁺			
Toluene	S	S			
DCM	S	S			
Chloroform	S	S			
THF	S	S			
Acetone	S	S			
MCH	S	S			
Ethyl acetate	S	S			
Ethyl ether	S	S			
DMSO	PG	S			
EtOH	PG	S			
ACN	G	S			
MeOH	G	S			
n-hexane	G	S			
H_2O	Ι	Ι			

Table S1. Gelation Test of 1 without and with Zn²⁺ (0.5equiv.).

S: Solution, PG: Partial gel, G: Gel, I: Insoluble.

Tuble 62. Let the results of This several equivalents of Zhr.									
	m/z	Equivalent of Zn ²⁺							
		0.3	0.5	0.6	0.7	0.8	0.9	1.1	
$[1+Zn+ACN]^{2+}$	515.84	100%	51%	40%	10%	4%	-	-	
$[1+ZnOTf]^+$	1139.60	0%	49%	60%	90%	96%	100%	100%	

Table S2. ESI-MS results of **1** in several equivalents of Zn²⁺.

Figure S1. (A) ¹H NMR spectra of **1** (2.1 μ M) with different concentration of Zn²⁺ (0 – 1.1 equivalent) in ACN-*d*₃ at 50 °C. (B) Plot of chemical shift changes of **1** against various concentrations of Zn²⁺.

Figure S2. Temperature-dependent NMR spectra of **1** (2.1 µM) in ACN-*d*3.

Figure S3. (A) Temperature-dependent UV-vis spectra of **1** (0.05 mM) in ACN. (B) Plot of absorbance change of **1** as a function of temperature changes at 261 nm. (C) Temperature-dependent UV-vis spectra of **1** (0.05 mM) with Zn²⁺ (0.025 mM) in ACN. (D) Plot of absorbance change of **1** with Zn²⁺ as a function of temperature changes at 261 nm.

Figure S4. IR spectra of 1 with (A) 0 equiv. (B) 0.5 equiv. and (C) 1.0 equiv. of Zn²⁺.

Figure S5. Small-angle X-ray scattering patterns of **1** (A) without and (B) with Zn^{2+} . (C) Powder XRD patterns of **1** with various equivalent of Zn^{2+} .

Figure S6. Strain sweep at 0.1 % - 1000 % (frequency = 0.6283 rads⁻¹) of **1** with (A) 0 equiv. (B) 0.3 equiv. and (C) 0.5 equiv. of Zn²⁺. Frequency sweep of **1** with (D) 0 equiv. (E) 0.3 equiv. and (F) 0.5 equiv. of Zn²⁺ at a strain of 0.1 %. (G) Bar graph for G' and G" values at γ = 0.1% in (A)-(C). (H) Graph of γ values at G"/G'=1 in (A)-(C).

Figure S7. Photographs of **1** (A) without and (B) with Zn²⁺ (0.5 equiv.) after heating in the water bath.

Scheme S1. Schematic of synthetic methods for 1.

