

MDPI

Supplementary Materials

Dinuclear copper(II) complexes with Schiff bases derived from 2-hydroxy-5-methylisophthalaldehyde and histamine or 2-(2-aminoethyl)pyridine and their application as magnetic and fluorescent materials in thin film deposition

Magdalena Barwiolek^{1,*} Anna Kaczmarek-Kędziera¹, * Tadeusz M. Muziol¹, Dominika Jankowska¹, Julia Jezierska² and Alina Bieńko²

¹ Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland, e-mail: mbarwiolek@umk.pl (M.B.); eoadk@chem.umk.pl (A.K.K.); tadeuszmuziol@wp.pl (T.M.M); (D.J); 278998@stud.umk.pl

² Faculty of Chemistry, University of Wroclaw, 14 Joliot-Curie, 50-383 Wroclaw, Poland julia.jezierska@chem.uni.wroc.pl (J.J); alina.bienko@uwr.edu.pl (A.B.)

* Correspondence: mbarwiolek@umk.pl; Tel.: +48-56-611-4516 (M.B.); eoadk@chem.umk.pl

Figure S1. ¹H NMR spectrum of ligand HL2 (700 MHZ, CDCl₃).

Figure S3. 1H NMR spectrum of ligand HL1 (400 MHZ, DMSO-d6).

Table S1. Theoretical chemical shift for ¹H and ¹³C NMR for ligand **HL1** and ligand **HL2** [ppm] calculated with B3LYP/def2-TZVP approach in the gas phase and solvents.

Ligand1	Experimental			Theoretical			
¹ H [ppm]	σ			Gas phase	ACN	DMSO	
	2.21	(s, 3H)	CH ₃	2.03,2.55,2.57	2.57,2.14,2.56	2.16,2.56,2.57	
	4 10	(m. 211)	CIL	3.50,4.47	3.60,4.36	3.61,4.35	
	4.10	(111, 211)	$C\Pi_2$	3.53,4.16	3.65,4.09	3.65,4.08	
	2.16 (2.74,3.16	2.51,3.23	2.51,3.24			
	5.10	(111, 211)	$C\Pi_2$	2.86,2.97	2.60,3.15	2.59,3.15	
	8.48	(s, 1H)	-N=CH-	8.74, 8.74	8.82,8.86	8.82,8.86	
	10.32	(s, 1H)	OH	14.01	14.51	14.55	
H12	7.69	(s, 1H)	Ar-H	7.54,7.21	7.50,7.71	7.50,7.72	
H3	7.48	(m, 1H)	Ar-H	7.58,7.33	7.25,7.32	7.26,7.32	
H10	7.29	(m, 1H)	Ar-H	7.04,8.30	7.48,7.48	7.48,7.49	
	5.75	(s, 1H)	NH				
¹³ C[ppm]	σ			Gas phase	ACN	DMSO	
	20.07	C1		22.27	130.52	130.51	
	51.43	C7		70.62,70.76	71.19,75.77	71.20,75.82	
	37.83	C8		36.22,37.84	37.26,38.22	37.24,38.24	
CHN	167.14	C6		163.63,170.43	169.37,173.08	169.46,173.12	
	134.45	C12		133.40,137.29	137.92,138.79	138.00,138.83	
	119.59	C10		114.10,120.02	117.10,117.66	117.19,117.74	
	117.07	C4		125.44,131.49	126.37,130.52	126.38,130.51	
	139.76	C2		131.62	135.13	135.22	
	132.50	C3		139.66,145.78	142.22,147.92	142.27,147.96	
	160.54	C5		170.23	169.75	169.74	
	134.19	С9		150.86,150.66	150.74,151.92	150.76,151.91	
Ligand2		Experiment	al		Theoretical		
¹ H [ppm]	σ			Gas phase	ACN	DMSO	
	2.21	(s, 3H)	CH ₃	1.93,2.40,2.44	2.42,2.04,2.44	2.42,.2.04,2.44	
	3.04	(m, 2H)	CHa	3.51,3.53	3.55,4.60	3.56,4.60	
	3.04	(111, 211)		4.56,4.79	3.81,4.45	3.81,4.44	
	3.88	(m, 2H)	CH ₂	3.25,3.43	3.37,3.41	3.36,3.41	

				3.42,3.20	2.82,3.50	2.82,3.50
	8.54	(s, 1H)	–N=CH-	8.19,8.75	8.31,8.85	8.31,8.86
	8.45	(s, 1H)	–OH	13.64	14.20	14.24
	6.61	(s, 1H)	Ar-H	7.13,7.24	7.40,7.43	7.41,7.44
	7.15	(m, 1H)	Ar-H	7.03,7.92	7.64,7.85	7.65,7.86
	7.19	(m, 1H)	Ar-H	7.33,8.01	7.98,8.14	7.98,8.14
	7.61	(m, 1H)	Ar-H	6.98,7.31	7.36,7.60	7.36,7.60
ArHpyalfa	8.49	(broad signal)	ОН	6.98,8.98	8.77,9.01	8.77,9.01
¹³ C[ppm]	σ			Gas phase	ACN	DMSO
	21.42	C1		22.12	22.28	22.28
	49.36	C7		62.89,71.67	69.46,73.54	69.45,73.53
	51.70	C8		45.04,45.80	46.72,47,68	46.75,47.68
	161.03	C6		165.69,171.42	169.65,173.59	169.74,173.62
	122.30	C12		124.59,125.09	127.12,127.54	127.16,127.57
	124.31	C10		125.18,130.02	129.05,129.44	129.12,129.51
	125.27	C4		124.70,131.25	126.16,129.98	126.17,129.96
	128.45	C2		131.95	135.11	135.19
	129.59	C3		139.60,146.30	142.22,147.84	142.37,147.88
	137.39	C11		139.86,141.59	143.41,143.85	143.47,143.90
	150.27	C13		155.70,156.12	156.62,156.92	156.62,156.90
	155.15	C5		170.02	169.70	169.69
	161.03	C9		168.72,170.79	172.29	172.30

Figure S5. IR spectrum of ligand HL1.

Figure S7. IR spectrum of complex ${[Cu_2(L1)_2Cl_2]_2[CuCl_4]}-2MeCN 1.$

Figure S8. IR spectrum of complex [Cu2(L2)Cl3]0.5MeCN 2.

Thermal analysis

For all the complexes, thermal decomposition studies were performed in the presence of air. The final decomposition product was mixture of copper and copper oxide.

The thermogram of {[Cu₂(L1)₂Cl₂]₂[CuCl₄]}·2MeCN·2H₂O **1** (Figure S9) presents four DTG peaks with maxima at 206, 325, 428, and 577 °C, which reveal two stages on a TG curve, with 2.3, 19.10, and 66.60% sample mass loss. The partial mass loss in the first step corresponds to water molecules detachment; the second one is connected with CuCl₄ and acetonitrile detachment (cal. 17.42%). Further mass reduction in the sample results from the remaining molecules decomposition (found 70.82%; cal. 71.4%) and copper oxide formation at 820 °C.

The [Cu₂(L2)Cl₃]0.5MeCN·2 thermogram reveals two decomposition peaks on the DTG curve. The first peak can be assigned to 1.5 Cl₂, and acetonitrile molecules detachment (exp. 24.69%, cal. 24.4%), (Figure S10). The second DTG peak corresponds to 58.54% mass loss, which can be related to the remaining molecules decomposition followed by CuO formation at 880 °C. The first exothermic peak appeared at 197 °C, the next two - at 444°C, 534°C, and the final one - at 640 °C.

Figure S9. TG-DTA traces of {[Cu₂(L1)₂Cl₂]₂[CuCl₄]}·2MeCN·2H₂O 1.

Figure 10. TG-DTA traces of [Cu₂(L2)Cl₃]0.5MeCN·2.

Figure S11. [CuCl₄]²⁻ unit, acetonitrile and O34 water (hydrogen atoms are missing) molecules of **1** with ellipsoids plotted at 30% probability level.

Figure S12. Perspective view of packing of **1** along *a* axis with chains composed of dimers connected by chloride bridges running along this axis and with $[CuCl_4]^2$ units and acetonitrile molecules located between adjacent *ab* layers.

Figure 13. Packing of **1** along *a* axis with chains composed of dimers connected by chloride bridges running along this axis and with [CuCl₄]²⁻ units and acetonitrile molecules located between adjacent *ab* layers.

Figure S14. Crystal structure of complex **1**. Geometry formed by base-to-edge sharing polyhedra of a square pyramidal doubly chloro bridged dimer and polyhedral representation of complex $\{[Cu_2(L1)Cl_2]_2[CuCl_4]\}$ ·2MeCN·2H₂O **1** with SP-1 to show the resemblance.

Complex	Си–О–Си Ф [º]	Cu…Cu [Å]	Cu–O/ [Å]	δ ^a [º]/	J [cm ⁻¹]	Ref.
[Cu4L1(µ2-OH)2](ClO4)4	197.90 95.70	2.939	1.961 1.975	159	-27	[1]
[Cu2(Me6tacn)2(µ2-OH)2](ClO4)2	100.1	2.971	1.939	180	-45	[2]
[Cu2L2(µ2-OH)2](ClO4)2	102.48	2.983	1.911 1.914	177.6	-186	[3]
$[Cu_2(C_6H_{11}NH_2)_4(\mu_2-OH)_2](ClO_4)_4$	96.6	2.934	1.960	148	-128	[4]

Table S2. The Cu(II) chloro- and oxide- bridge systems.

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW

	99.7		1.923			
[Cu2(CH3NH2)4(µ2-OH)2](SO4) H2O	91.7 88.6	2.782	1.99 1.94	133	-4	[5]
[Cu2L3(µ2-OH)2](BPh4)2	99.60	2.9464	1.931	173	-80	[6]
Complex	Cu−Cl−Cu Φ[°]	Cu…Cu [Å]	Cu-Cl [Å]	φ/R [° Å ⁻¹]	J [cm ⁻¹]	Ref.
[Cu2(dpt)2Cl2] (Cl)2 [Cu(HL)Cl]2·H2O [CuCl2(PyTn)]2 [Cu(bpdio)Cl2]2 [Cu(Hfsaaep)Cl]2 C22H32Cl4Cu2N4O2 [Cu(4-Metz)(DMF)Cl2]2 [Cu(guaH)Cl3]2	91.42 84.66 88.60 96.68 95.27 92.65 95.30 95.34	3.551 3.337 3.612 3.842 3.445 3.708 3.386 3.570	2.545 2.668 2.906 2.844 2.846 2.827 2.724 2.447	35.91 31.73 30.49 33.99 33.6 32.77 34.99 37.49	+85.9 +43.2 +27.7 +4.87 +0.30 -0.47 -3.60 -38.80	[7] [8] [10] [11] [12] [13] [14]
Complex	Cu–O–Cu Cu–Cl–Cu Φ [º]	Cu…Cu [Å]	Cu-O Cu-Cl [Å]	δ[°]/ φ/R [° Å-1]	J [cm ⁻¹]	Ref.
{[Cu2(L1)Cl2]2[CuCl4]}·2MeCN·2H2O	107.69 92.99	3.161 3.787	1.956 2.344 2.786	δ 58.20 39.67 33.38	-0.31 -0.38	This work
[Cu2Cl3(L)]·0.5MeCN 2	106.26 Cu-O-Cu 81.31 Cu-Cl-Cu	3.163	2.057 1.894 2.332 2.517	δ 150.98 34.87 32.30	-137	This work

L₁=(1,4,7-triazacyclonon-1-ylmethyl)benzene, L₂=N,N,N',N'',N''-pentamethyldiethylenetriamine, L₃ = 1,3-bis(1,4,7-triazacyclonon-1-ylmethyl)benzene; dpt, dipropylenetriamine; HL, 2-((E)-(2-hydroxyethylimino)methyl)-4-bromophenol; pytn, 2-(pyrazol-1-yl)-2-thiazolin; bpdio, 2,2-bis-(2pyridyl)-l,3-dioxolane]; Hfsaaep, 3-[N-2-(pyridylethyl)formimidoyl]-salicylic acid; 4-Metz, 4-methylthiazole; DMF, N,N-dimethylformamide; guaH, guanine.

Figure S15. The X-band powder EPR spectra of complexes 1 and 2 at 77 K.

Table S3. Relevant photophysical data of studied compounds, (λ_{em} , λ_{ex} nm, λ [nm] (ϵ [dm³ mol⁻¹ cm⁻¹])).

Compound	Solvent	λ _{ex} [nm]	λ _{em} [nm]	λ[nm] (ε [dm ³ mol ⁻¹ cm ⁻¹])
		206	407	250 (10180)
	acetonitrile	290	497	325 (2460)
		422	490	450 (6970)
		206	506	245 (4720)
HL1	chloroform	290	503	352 (1569)
		422	505	455 (1290)
		206	407	254 (7116)
	methanol	290	500	334 (2056)
		422	500	454 (4522)
		206	491	254 (27400)
	acetonitrile	290	401	290 (20110)
		422	490	315 (21830)
		206	402	255 (5400)
HL2	chloroform	290	492	290 (3570)
		422	4/1	335 (2310)
		207	470	262 (11134)
	methanol	290	4/0	290 (9448)
		422	490	342 (4426)
			509	270 (12300)
	4 : 4 : 1 -	450		365 (26050)
	acetonitrite			455 (8990)
				650(1410)
1				320 (1060)
1	chloroform	450	497	395 (730)
				575(240)
			504	272 (12300)
	methanol	450		372 (5800)
			_	666(165)
				245 (25610)
		450	402	310 (14560)
	acetonitrile	450	493	395 (5880)
				500 (910)
				250 (19070)
				315 (12080)
•	chloroform	450	489	400 (5150)
2			_	575(240)
			_	665(120)
				248 (9836)
			500	312 (9007)
	methanol	450		402 (8511)
		- -		546(342)
				626(271)

Table S4. Theoretical absorption wavelengths and corresponding oscillator strengths for ligands **HL1** and **HL2** calculated with def2-TZVP basis set in linear response approach.

Medium			B3LYP	CAM-H	B3LYP	PI	BE0
Ligand1	λ	f	Orbital contributions	λ	f	λ	f
	339	0.07	HOMO→LUMO 82%	306	0.19	326	0.14
	328	0.07	HOMO-1→LUMO 79%			247	0.32
Gas phase	254	0.31	HOMO-4→LUMO 83%	232	0.48	236	0.23
	236	0.37	HOMO-4→LUMO+178%	221	0.39	229	0.24
	202	0.16	HOMO→LUMO+686%	195	0.17	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.21
	331	0.17	HOMO→LUMO 92%	303	0.22	322	0.19
	254	0.26	HOMO-4→LUMO 38%	234	0.54	246	0.41
Aastamituila	252	0.14	HOMO-5→LUMO 35%	220	0.52	226	0.53
Acetomume	233	0.14	HOMO-4→LUMO 34%	228	0.55	230	0.55
	242	0.55	HOMO-4→LUMO+169%				
	200	0.23	HOMO-2→LUMO+251%	194	0.13	199	0.12
	331	0.18	HOMO→LUMO 92%	303	0.23	322	0.20
Dimethylsulfoxide	254	0.35	HOMO-4→LUMO 52%	234	0.56	246	0.42
	242	0.56	HOMO-4→LUMO+169%			236	0.54

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW

	200	0.24	HOMO-2→LUMO+257%	196	0.09	199	0.12
	199	0.30	HOMO→LUMO+445%	195	0.18	198	0.06
Ligand2							
	334	0.14	HOMO→LUMO 94%	307	0.19	325	0.15
	257	0.21	HOMO-4→LUMO 34%	232	0.57	252	0.17
Coordinate	255	0.11	HOMO→LUMO+328%	226	0.08	248	0.09
Gas phase	240	0.23	HOMO-2→LUMO+149%	221	0.36	246	0.13
						234	0.32
	200	0.40	HOMO→LUMO+6 55%	187	0.17	194	0.35
	330	0.17	HOMO→LUMO 94%	303	0.22	321	0.19
	260	0.22	HOMO-1→LUMO 49%	233	0.48	253	0.30
						251	0.10
	249	0.18	HOMO-4→LUMO 37%	226	0.10	244	0.24
Acetonitrile			HOMO-6→LUMO 28%				
	244	0.18	HOMO-4→LUMO 25%	225	0.44	239	0.15
			HOMO-1→LUMO+125%				
	231	0.12	HOMO-1→LUMO+222%	200	0.14	227	0.14
	203	0.11	HOMO-3→LUMO+4 36%	185	0.11	193	0.54
Dimethylsulfoxide	330	0.18	HOMO→LUMO 94%	304	0.23	322	0.19
	260	0.22	HOMO-1→LUMO 46%	234	0.50	254	0.34
	249	0.18	HOMO-4→LUMO 38%	228	0.29	251	0.10
	244	0.16	HOMO-6→LUMO 31%	227	0.10	244	0.26
				225	0.44	243	0.14
	232	0.11	HOMO-1→LUMO+219%	200	0.14	227	0.14
	203	0.11	HOMO-10 \rightarrow LUMO 27%	185	0.16	103	0.55
	203	0.11	HOMO- $3 \rightarrow$ LUMO+4 32%	105	0.10	195	0.33

Ligand absorption spectrum:

Figure S16. Theoretical prediction of the absorption spectrum of ligand **HL1** absorption spectrum in gas phase (upper panel) and acetonitrile (lower panel) calculated with B3LYP (blue line), CAM-B3LYP (green line) and PBE0 (violet line) functionals (numerical values of absorption wavelengths for most intensive transitions given for PBE0 functional).

Figure S17. Frontier orbitals of ligand **HL1**, involved in most intensive transitions (PBE0/def2-TZVP/acetonitrile) with corresponding wavelengths.

Figure S18. Theoretical prediction of the absorption spectrum of ligand **HL2** in gas phase (upper panel) and acetonitrile (lower panel) calculated with B3LYP (blue line), CAM-B3LYP (green line) and PBE0 (violet line) functionals (numerical values of absorption wavelengths for most intensive transitions given for PBE0 functional).

Figure 19. Frontier orbitals of ligand **HL2**, involved in most intensive transitions (PBE0/def2-TZVP/acetonitrile) with corresponding wavelengths.

Figure S20. {[Cu₂(L1)Cl₂]₂[CuCl₄]}·2MeCN·2H₂O (1)/Si, scan size 5 μ m, multistage spin coating. Phase images map of layer property including mechanical, chemical, and viscoelastic. Amplitude-the image of height, in which the dimension of *z* axis was reduced.

(b)

(a)

(c)

Figure S21. $[Cu_2(L_2)Cl_3]$ 0.5 MeCN·2 /PMMA/Si a) height, b) phase, c) amplitude, scan size 5 μ m, R_a = 5.15-19.9 nm, R_q = 3.66-25.9 nm, height 15 nm, 3000 rpm PMMA x1, complex 2 3000 rpm x2, complex + PMMA 3000 rpm x1, complex 3000 rpm x1, 5s.

Literature

- Graham, B.; Hearn, M.T.W.; Junk, P.C.; Kepert, C.M.; Mabbs, F.E.; Moubaraki, B.; Murray, K.S.; Spiccia, L. Syntheses, Crystal Structures, Magnetic Properties, and EPR Spectra of Tetranuclear Copper(II) Complexes Featuring Pairs of "Roof-Shaped" Cu2X2 Dimers with Hydroxide, Methoxide, and Azide Bridges. *Inorg. Chem.* 2001, 40, 1536-1543.
- Chaudhuri, P.; Ventur, D.; Wieghardt, K.; Peters, E.M.; Simon, K.A. Preparation, Magnetism, and Crystal Structures of the Tautomers [LCu(μ2-OH)2CuL](ClO4)2 (Blue) and [LCu(μ2-OH2)(μ2-O)CuL](ClOμ4)μ2 (Green): μ-Aqua-μ-oxo vs. Di-μ-hydroxo Linkage. *Angew. Chem., Int. Ed. Engl.* **1985**, 24(1), 57-59.
- Buchtelova, H.; Skubalova, Z.; Strmiska, V.; Michalek, P.; Kociova, S.; Smerkova, K.; Kruszyński, R.; Bieńko, A.; Kaj, M.; Lewińska, A.; Bieńko, D.; Malik-Gajewska, M.; Milosavljevic, V.; Kopel, P.; Heger, Z.; Adam, V. Synthesis and structural characterization of antimicrobial binuclear copper(II) coordination compounds bridged by hydroxy- and/or thiodipropionic acid. *J. of Inorg. Biochem.* 2019, *191*, 8-20.
- 4. Charlot, M.F.; Jeannin, S.; Jeannin, Y.; Kahn, O.; Lucrece-Aubal, J.; Martin-Frere, J.S. Crystal structure and magnetic properties of tetrakis(cyclohexylamine)di-.mu.-hydroxo-dicopper(II) perchlorate. The first example of a roof-shaped hydroxo-bridged copper(II) dimer. *Inorg. Chem.* **1979**, *18*(*6*), 1675-1681.
- 5. Charlot, M.F.; Kahn, O.; Jeannin, S.; Jeannin, Y. Exchange interaction in roof-shaped hydroxo-bridged copper(II) dimers. *Inorg. Chem.* **1980**, *19*, 1410-1411.
- 6. Farrugia, L.J.; Lovatt, P.A.; Peacock, R.P. Synthesis of a series of novel binucleating ligands based on 1,4,7-triazacyclononane and o-, m- and p-xylene: crystal structure of the μ-hydroxy-bridged dicopper(II) complex [Cu₂L^m(OH)₂][BPh₄]₂ [L^m = α,α'-bis (N-1,4,7-triazacyclononane)-m-xylene]. *J. Chem. Soc. Dalton Trans.* **1997**, 911-912.
- 7. Henry-Mowatt, J.; Dive, C.; Martinou, J.C.; James, D. Role of mitochondrial membrane permeabilization in apoptosis and cancer. *Oncogene* **2004**, *23*, 2850-2860.
- Thakurta, S.; Roy, P.; Rosair, G.; Gómez-García, C.J.; Garribba, E.; Mitra, S. Ferromagnetic exchange coupling in a new bis(μ-chloro)-bridged copper(II) Schiff base complex: Synthesis, structure, magnetic properties and catalytic oxidation of cycloalkanes. *Polyhedron* 2009, *28*, 695-702.
- 9. Bernalte-Garcia, A.; Lozano-Vila, A.M.; Luna-Giles, F.; Pedrero-Marin, R. Structural characterization of a thiazoline-pyrazole ligand and its complexes with cobalt(II) and copper(II). *Polyhedron* **2006**, *25*, 1399;
- 10.
 Connor,
 C.J.O.
 Ferromagnetic
 interactions
 in
 dimeric

 dichloro-[2,2-bis-(2-pyridyl)-1,3-dioxolane]copper(II). Inorg. Chim. Acta 1987, 127, L29-L30.
 Interaction
 <
- 11. Tuna, F.; Patron, L.; Journaux, Y.; Andruh, M.; Plass, W.; Trombe, J.C. Synthesis and magnetic properties of a series of bi- and tri-nuclear complexes of copper(II) with the unsymmetrical tetradentate Schiff-base ligand 3-[N-2-(pyridylethyl)formimidoyl]salicylic acid, H2fsaaep, and crystal structures of [{Cu(Hfsaaep)Cl}2] and [{Cu(fsaaep)(H2O)}2]. *J. Chem. Soc., Dalton Trans.* **1999**, 539-544.
- 12. Sikdar, Y.; Modak, R.; Bose, D.; Banerjee, S.; Bieńko, D.; Zierkiewicz, W.; Bieńko, A.; Das Saha, K.; Goswami, S. Doubly chloro bridged dimeric copper(II) complex: magneto-structural correlation and anticancer activity. *Dalton Trans.* **2015**, *44*, 8876-8888.
- Drake, R.F.; Crawford, V.H.; Laney, N.W.; Hatfield, W.E. Magnetic properties of di-.mu.-chlorobis[dichloro(guaninium)copper(II)] dihydrate. Second determination. Inorg. *Chem.* 1974, 13(5), 1246-1249.
- 14. Carrabirie, J.A.; Sundaralingarn, M. Stereochemistry of Nucleic Acids and Their Constituents. VIII. Metal Binding Studies. Crystal Structure of a Guanine-Copper Chloride Complex, a Trigonal-Bipyramidally Coordinated Copper. J. Am. Chem. Soc. **1970**, *92*(2), 369-371.