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Abstract: Engineered dermal templates have revolutionised the repair and reconstruction of skin 

defects. Their interaction with the wound microenvironment and linked molecular mediators of 

wound repair is still not clear. This study investigated the wound bed and acellular “off the shelf” 

dermal template interaction in a mouse model. Full-thickness wounds in nude mice were grafted 

with allogenic skin, and either collagen-based or fully synthetic dermal templates. Changes in the 

wound bed showed significantly higher vascularisation and fibroblast infiltration in synthetic grafts 

when compared to collagen-based grafts (P ≤ 0.05). Greater tissue growth was associated with 

higher prostaglandin-endoperoxide synthase 2 (Ptgs2) RNA and cyclooxygenase-2 (COX-2) protein 

levels in fully synthetic grafts. Collagen-based grafts had higher levels of collagen III and matrix 

metallopeptidase 2. To compare the capacity to form a double layer skin substitute, both templates 

were seeded with human fibroblasts and keratinocytes (so-called human skin equivalent or HSE). 

Mice were grafted with HSEs to test permanent wound closure with no further treatment required. 

We found the synthetic dermal template to have a significantly greater capacity to support human 

epidermal cells. In conclusion, the synthetic template showed advantages over the collagen-based 

template in a short-term mouse model of wound repair. 

Keywords: dermal templates; wound repair; human skin equivalent; graft; NovoSorb® BTM; 

Integra®, inflammation; COX-2 

 

1. Introduction 

Large surface area wounds such as extensive deep burns can remain unhealed for many weeks 

and require intervention by skin grafting to accelerate repair and avoid chronic ulceration. 

Engineered dermal templates provide a scaffold niche where host cells can infiltrate to modulate the 

immune response and inflammation, thereby influencing wound repair. When dermal templates are 

applied and adhered to an open wound, it is clinically observed that uncontrolled granulation tissue 

does not develop, and the wound appears to be physiologically closed. The dermal templates’ 

physical (porosity, stiffness, roughness, degradation rate) and biochemical (receptor binding sites, 

toxicity, growth factors retention) properties ultimately influence the success of the graft. It is defined 

as early wound closure, timely vascularisation, minimal scar and wound contraction, and durable 

barrier function. Yet the key factors that influence these outcomes remain unclear. 
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In this study, we investigated the interaction between the wound bed and two “off the shelf” 

dermal templates in a full-thickness wound nude mouse model in order to define how the physical 

and biochemical properties of the scaffold can influence matrix-cell interaction and wound repair 

outcome. Both templates are bilayer constructs, with a superficial seal to exclude air from the healing 

wound surface. Once the deeper dermal template is vascularised from the wound bed, the upper seal 

must be removed and covered with epidermis (usually autologous split skin graft) for definitive 

healing. Integra®, and NovoSorb® biodegradable temporising matrix (BTM) are the most common 

clinically used dermal templates for replacing skin defects [1–3]. Integra® is a double layer material 

with an upper silicone film that simulates epidermis and a lower layer of porous (80µm average pore 

size) bovine hide collagen and chondroitin-6-sulfate (a glycosaminoglycan or GAG from shark 

cartilage) cross-linked using glutaraldehyde. Whereas BTM is a fully synthetic polymer engineered 

from a biodegradable polyurethane with a temporary polyurethane seal, eliminating any potential 

risk of cross-species residual antigenicity or disease transmission, with visible pores of 188 ± 84 µm 

in size. Dermal grafts were compared to full-thickness skin allografts with respect to inflammation, 

proliferation and wound repair. Allografts and xenografts are well tolerated in nude mice due to their 

lack of mature T lymphocytes, and therefore, defective adaptive immune response. However, their 

innate immune response is still intact to generate inflammation [4]. 

The transition from inflammation to granulation/proliferation stage is a critical step to secure 

healing progress. This transition is tightly orchestrated with a range of growth factors and 

chemokines which originate from the bone marrow or the wound bed. Often it is the balance between 

these factors, rather than their presence or absence, that alters the wound microenvironment and 

defines the wound outcome. Interleukin 1 beta (IL-1β), interleukin 6 (IL-6) and tumour necrosis 

factor-alpha (TNF-α), and chemokine CC motif ligand 2 / monocyte chemoattractant protein-1 (CCL2 

/ MCP-1) are considered key proinflammatory growth factors, whereas interleukin 10 (IL-10), 

transforming growth factor-beta 1 (TGF-β), chemokine CC motif ligand 1 (CCL1 / TCA-3) are thought 

to act as anti-inflammatory and wound healing signals. A prolonged inflammatory phase can result 

in excessive ECM deposition by myofibroblasts and hence fibrosis, which leads to clinically 

unsatisfactory scarring outcomes [5,6]. 

The dermal templates’ mechanical forces can also influence wound healing by activating specific 

signal transduction pathways. It is thought that grafting dermal templates inhibits wound 

contraction, resulting in reduced scarring and fibrosis. Although this mechanism is not fully 

understood, its effect has been linked to inflammation response and fibroblast to myofibroblast 

transformation that occurs in a deep dermal skin injury [7–10]. 

Here, we studied animal-derived collagen-based and fully synthetic dermal grafts for wound 

contraction, inflammation, vascularisation, and host cell infiltration. Using molecular analysis, we 

explored mediators in control of these processes and identified significant differences in the matrix–

cell interaction. Moreover, the dermal templates’ capacity of supporting a living bioengineered 

human skin equivalent was also studied here. This, to our knowledge, is the first study in which the 

interaction between the wound bed and dermal grafts has been explored.  
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2. Results 

2.1. The Synthetic Dermal Template with Larger Pore Size Vascularises Faster than Collagen-Derived 

Dermal Template  

Full-thickness wounds were grafted with synthetic BTM, Collagen-derived Integra, or allogenic 

native mouse skin. The grafts were analysed using H&E staining (Supplementary Data S1). Graft 

vascularisation, measured by endothelial cell marker CD31 expression, was used as an indicator of 

graft take two weeks post grafting (Figure 1a, c–e). The middle of the grafts was analysed separately 

from the edge of the graft as an indication of the endothelial cell infiltration from the wound bed. It 

is important to measure the infiltration of dermal templates from the wound bed in a mouse model, 

as the wound edge contribution in healing large surface area grafts in patients would be relatively 

small. The immunohistological analysis showed significantly more extensive vascularisation in BTM, 

compared to Integra® grafts (**p ≤ 0.01). In all grafts, CD31+ endothelial cells populated the wounds 

upwards and inwards from the wound bed and the wound edge, although BTM grafts were able to 

home CD31+ endothelial cells from the wound bed faster than Integra®. The wound bed contributed 

equally to vascularisation compared to wound edge in BTM grafts. Vessels were also larger in BTM 

compared to Integra (Figure 1d, e). In allogenic native skin grafts, an intermediate level vessel density 

was observed. This can be a mix of pre-existing graft vasculature and neovascularisation [11]. Figure 

1b represents the scanning electron microscopy images of cross-sections of Integra® and BTM 

compared to native skin highlighting their difference in pore size, shown in dark grey. 

 

Figure 1. Detection of endothelial cells in mouse grafts. (a) CD31 positive endothelial cells were 

detected in grafts using IHC staining. Representative images of BTM, Integra®, and allogenic native 

skin grafts are presented (scale bar 50 µm). (b) SEM images of BTM, Integra®, and native mouse skin 
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(scale bar 100 µm). (c) CD31 staining on graft edge and the middle was quantified and normalised for 

image area. CD31 staining was used to score vessel diameter (d), and the frequency of different vessel 

diameters (e). Values represent mean +/- SEM in each group (n = 4 mice per group) and analysed using 

unpaired t-test. * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001, **** = p ≤ 0.0001. 

2.2. Host Dermal Fibroblast Infiltration Correlates with Vascularisation  

Fibroblast growth into dermal templates was detected by immunohistochemistry using 

vimentin specific antibody (Figure 2). Vimentin is a type III intermediate filament, widely used as a 

universal marker for skin fibroblasts [12]. Cells were capable of infiltrating the wounds temporised 

with BTM at a significantly greater rate compared to Integra® both from the wound edge and wound 

bed (*p ≤ 0.05). However, we were unable to distinguish graft fibroblasts from infiltrating fibroblasts 

in allogenic native skin grafts. 

 

Figure 2. Mesenchymal host infiltration in mouse grafts. (a) Fibroblasts were detected by confocal 

microscopy using a vimentin antibody (in red) and DAPI (in blue). Dermal template autofluorescence 

is shown in green (scale bar 50 µm). (b) Vimentin positive cells were quantified on NIS Analysis 

software (Nikon, Japan) in six fields of view (n = 4–6 mice per group). Values represent mean +/− SEM 

in each group and analysed using unpaired t-test. * = p ≤ 0.05, **** = p < 0.0001. 

2.3. Identification of Molecular Mediators that May Influence Graft Take  

In order to shed light on mediators that may influence differences observed in tissue growth, a 

number of inflammation and wound healing markers were analysed at both RNA and protein levels 

in grafts. The semi-quantitative real-time PCR analysis (Figure 3) showed an upregulation of some 

inflammatory markers such as colony-stimulating factor 3/granulocyte colony-stimulating factor 
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(CSF3/G-CSF, p < 0.01), chemokine CXC motif ligand 3/macrophage inflammatory protein 2β 

(CXCL3/MIP-2β, p < 0.01) in allogenic native skin and in BTM grafts. Cathepsin G (Ctsg, p < 0.01), 

actin, alpha, cardiac muscle 1 (actc 1, p < 0.0001) and integrin alpha 4 (Itga4, p < 0.5) were also 

significantly upregulated in allogenic native skin. Conversely, Integra® grafts had higher expression 

levels of proliferation phase/anti-inflammatory markers, collagen 3A1 (p < 0.01). Cathepsin K (Ctsk), 

matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase 9 (MMP9) also showed an 

increased expression trend in Integra® although the differences were not statistically significant.  

 

Figure 3. RNA expression profiling (mouse wound healing RT2 profiler PCR array) of 2-week-long 

grafts. (a) Upregulated ECM structural and modifying enzyme genes identified in grafts by Ct 

comparison with host RNA. (b) Upregulated inflammation markers, including cytokines and 

chemokines. Selected targets produced an average of >2-fold change in at least one of the studied 

groups. Mean and SEM values presented for each group (n = 3 per group). * = p < 0.05, ** = p < 0.01, *** 

= p < 0.001, **** = p < 0.0001). A heatmap of all arrayed genes is available in Supplementary Data S2. 

At protein level, most inflammatory markers were generally present at higher levels in allogenic 

native skin and BTM compared to Integra® grafts. Particularly, chemokine CXC motif ligand 13/B 
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lymphocyte chemoattractant (CXCL13/BLC, p < 0.05), chemokine CC motif ligand 24 (CCL24/Eotaxin-

2, p < 0.01), CSF3 (G-CSF, p < 0.01), colony stimulating factor 2/granulocyte-macrophage colony 

stimulating factor (CSF2/GM-CSF, p < 0.05), IL-1α (p < 0.0001), IL-4 (p < 0.01), IL-12p70 (p < 0.05), IL-

13 (p < 0.01), chemokine CXC motif ligand 1/keratinocyte-derived chemokine (CXCL1/KC, p < 0.01), 

chemokine CXC motif ligand 5–6 (CXCL5-6, p < 0.001), and chemokine CC motif ligand 9/macrophage 

inflammatory protein-1 gamma (CCL9/MIP-1γ, p < 0.0001) were present at significantly higher 

concentrations in allogenic native skin, compared to Integra® grafts (Figure 4a–c). Differences 

between Integra® and BTM grafts in protein levels for individual markers did not reach significance 

at the two-week time point. 

 

Figure 4. Protein expression profiling of 2-week-long grafts. (a and b) Protein signals recorded for 

each target using 10-second exposure and normalised to positive controls. Mean and SEM values 

presented for each target (n = 4 per group) (a) Targets from rows 1 and 2 position F6 to rows 5 and 6 
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position B2 of the array). (b) Targets from rows 5 and 6 position B3 to rows 7 and 8 position I9 of the 

array. The full map of the array is provided in Supplementary Data Table S1. (c) Representative 

chemiluminescent protein array blots for each group. (d) Quantification of immunoperoxidase 

staining for inflammation marker, COX-2 (n = 4–8 mice per group), using unpaired t-test * = p < 0.05, 

** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. (e) Quantification of immunoperoxidase staining for ECM 

remodelling enzyme, MMP-2 (n = 4–8 mice per group). Results analysed using unpaired t-test, 

significant p-values as for panel c. Abbreviations: CCL1 (TCA-3), chemokine CC motif ligand 1; CCL2 

(MCP-1), chemokine CC motif ligand 2; CCL3 (MIP-1α), chemokine CC motif ligand 3; CCL5 

(RANTES), chemokine CC motif ligand 5; CCL9 (MIP1γ), chemokine CC motif ligand 9; CCL11 

(Eotaxin), chemokine CC motif ligand 11; CCL24 (Eotaxin-2), chemokine CC motif ligand 24; CCL25 

(TECK), chemokine CC motif ligand 25; CSF1 (M-CSF), colony-stimulating factor 1; CSF2 (GM-CSF), 

colony stimulating factor 2; CSF3 (G-CSF), colony stimulating factor 3; CXCL1 (KC), chemokine CXC 

motif ligand 1; CXCL5-6 (LIX), chemokine CXC motif ligand 5-6; CXCL12 (SDF-1), chemokine CXC 

motif ligand 12; CXCL13 (BLC), chemokine CXC motif ligand 13; IL1 or 6 or 10, interleukin 1 or 6 or 

10; TIMP, tissue inhibitors of metalloproteinases; TNF, tumour necrosis factor, XCL1, lymphotactin 

α. 

COX-2 is an integral component of inflammation. COX-2 levels, normally present at low levels in the 

dermis, increases during inflammation in wounds [13]. It has been demonstrated that 

proinflammatory IL-1α and IL-1β signalling results in COX-2 overexpression [14,15]. To validate the 

Ptgs2 overexpression observed in BTM grafts, COX-2 protein levels were analysed in grafts using 

immunohistochemistry (Figure 4d, Supplementary Data S3). COX-2 was expressed at least 2-fold 

higher in fully synthetic BTM grafts compared to collagen-based Integra® grafts (p < 0.0001). 

Conversely, MMP-2 (a marker of remodeling phase) was expressed at higher levels (p < 0.0001) in 

collagen-based Integra® grafts, compared to fully synthetic BTM grafts (Figure 4e, Supplementary 

Data S3).  

2.4. Application of Dermal Templates for Bioengineering a Human Skin Equivalent (HSE)  

In addition to the application of dermal templates as dermal grafts, with a need for further skin 

grafting, we tested whether dermal templates can create a microenvironment for attachment and 

expansion of human adult skin cells in vitro to bioengineer a definitive cultured skin graft or HSE. 

We have previously established methodologies to bioengineer HSE with near-native skin architecture 

using single layer Integra® [16]. In this study, Integra® (single layer) and BTM (single layer) were 

seeded with adult fibroblast and keratinocytes for construction of HSE (Figure 5a). Both dermal 

templates were able to support attachment and expansion of adult fibroblasts and keratinocytes in 

vitro. Two-weeks post grafting immunohistochemical analysis confirmed significantly higher 

survival of human-derived epidermis and its attachment to the dermis in BTM HSE compared to 

Integra® HSE grafts (using a human-specific involucrin antibody, *p ≤ 0.05). Vessels were detected in 

close proximity to the epidermis, particularly in BTM HSE grafts using CD31 immunohistochemical 

staining (Figures 5b, d).  
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Figure 5. Neo-epidermis detection in 2-week-long HSE grafts. (a) Representative H&E staining of HSE 

constructed using Integra® (single layer) or BTM (single layer) two weeks post grafting (scale bar 100 

µm). (b) Representative images of human-specific involucrin staining of mouse host and HSE grafts 

and CD31 in vivo (scale bar 100 µm). (c) Human involucrin staining of HSE grafts was quantified and 

Mean and SEM values are presented (n = 5–6 per group, *p value < 0.05). (d) CD31 expression was 

also quantified in HSE grafts. Mean and SEM values are presented (n = 5–6 per group). 

3. Discussion 

Dermal templates can replace damaged dermis by creating a microenvironment suitable for the 

host cells to infiltrate and generate neo-dermis. Here, we measured vascularisation and fibroblast 

invasion as indicative of graft take. We found a significantly more extensive network of vessels and 

fibroblast infiltration in synthetic BTM grafts, compared to other dermal templates. Protein arrays 

confirmed the presence of inflammatory chemokines and growth factors two weeks post-surgery in 

allogenic native skin and BTM grafts. To name some of the most abundant inflammatory markers 

(Figure 4, reaching over 20% intensity of the summed housekeeping controls) were CXCL5-6, 

lymphotactin α (XCL-1), CCL1, 2 and 9, and colony-stimulating factor 1/macrophage colony-

stimulating factor (CSF1/M-CSF). Based on this collective analysis of the grafts, the authors would 

like to present a model representing the changes that occur in allogenic native skin and synthetic 

BTM vs the Collagen-based Integra® grafts microenvironment (Figure 6). In this model, granulocyte 

and leukocyte subsets (neutrophils, macrophages, mast cell, and lymphocytes) that are likely to 

sequentially infiltrate the allogenic native skin and synthetic BTM grafts at higher levels are presented. 

Leukocytes not only serve as immunological effector cells but are also a source of inflammatory and 

growth-promoting cytokines [17]. Inflammatory interleukins, such as IL-1α, present in these grafts, 

have been shown to upregulate COX-2, a key mediator of inflammatory response. It has been shown 

that COX-2 inhibitor reduces CD31 vascularisation of wounds, and COX-2 knockout mice are known 

to have impaired healing [18–20]. Therefore, we postulate that high levels of COX-2 drive 

vascularisation and fibroblast expansion in allogenic native skin and synthetic BTM grafts. 
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Figure 6. A schematic diagram representing the key differences between Integra, BTM and allogenic 

native skin grafts in terms of inflammatory and wound healing mediators’ expression levels. Growth 

factors showing differential expression at protein levels in grafts and cell types known to secrete these 

growth factors are presented. (a) Allogenic native skin graft (and to a lesser degree BTM graft) triggers 

significantly higher inflammation response in the host, compared to (b) Integra®, resulting in greater 

fibroblast growth and vascularisation. Integra® grafts, however, are more progressed towards ECM 

remodelling phase within this time point, possibly triggered by an excessive amount of collagen in 

the graft. The arrows suggest pathways, based on the literature below, which link the growth factors 

to the grafting outcomes. Only the feed-forward pathways (and no inhibitory pathways) are 

presented. Abbreviations: polymorphonuclear cells (PMN), macrophages (Mac), mast cells (MC), 

basal keratinocytes (KC), endothelial cells (EC), and dendritic cells (DC) [17,19,21–31]. 

Proinflammatory macrophages (M1) are known to produce inflammatory cytokines such as IL-

1, IL-6, TNF-α and interferon-gamma (INF-γ), whereas, regenerative macrophages (M2) are 

stimulated with IL-4 and IL-13 and produce a high level of IL-10 and TGF-β [32]. Therefore, it has 

been postulated that higher IL-10 to IL-6 ratio pushes wounds towards healing. Similarly, a greater 

ratio of IL-4 or IL-13/ NF-γ would result in enhanced M1 to M2 transition in the macrophage 

population with known pro-wound healing phenotype [5,33]. As shown in Figure 4, IL-6 expression 
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in collagen-based Integra® grafts is nil, whereas IL-10 is present at low levels in all three types of 

grafts at the two-week time point. Although low in levels, the higher IL-10/IL-6 ratio in Integra® 

grafts may explain the decline of COX-2 expression observed in Integra® grafts.  

Collagen dermal templates are resorbed by collagenolytic enzymes. Here, we observed 

overexpression of a collagenolytic enzyme MMP-2, and up-regulation trend of MMP-9 and Cathepsin 

K in Integra® grafts. Some of MMP-2 and 9 substrates were collagens, fibronectin, gelatin and 

laminins [34]. It is the balance between matrix synthesis and proteolytic degradation that drives 

normal wound healing [34,35]. MMPs ability to degrade ECM proteins, also regulate cell–cell and 

cell–matrix interaction indirectly through modulating the biological activity and/or releasing of 

growth factors and cytokines [34]. MMP-2 expression in human is restricted to fibroblasts in scar 

tissue [36]. It has been shown in full-thickness wound model in mice that MMP-2 and MMP-9 

expression increases 10 days post-injury and persists for a number of days [37] which agrees with our 

findings of MMP-2 overexpression 14 days post-injury. 

We hypothesise that a BTM graft induces a greater inflammatory response compared to an 

Integra® graft. The greater (and prolonged) inflammation response in BTM drives extended 

proliferation (and tissue growth) phase in both magnitude and length of time, whereas the Integra® 

grafts have already moved to the remodelling/removal of the inflammatory matrix components 

phase ahead of BTM grafts. This can be due to the abundance of collagen in Integra® dermal grafts 

that can modulate fibroblast behaviour. Excessive collagen can trigger fibroblasts to attenuate their 

growth, and instead, direct them to express ECM proteins and ECM remodelling proteases. This 

phenomenon may result in dampening the proliferation phase prematurely in Integra® grafts, 

leading to slower tissue growth when compared to BTM grafts. 

It is well accepted in the field that dermal templates must be biocompatible, biodegradable, non-

toxic, non-inflammatory, and non-immunogenic. Therefore, when designing dermal templates, there 

has been a focus to recapitulate the native structure of dermal ECM [38,39]. This study challenges the 

idea of the need for non-immunogenic and non-inflammatory as requirements for dermal templates 

and suggests that one should rethink these criteria when developing novel dermal templates. Cell-

matrix interaction should be considered when designing novel dermal substitutes. BTM has no 

known binding site for host cells, and yet it supports more cellular growth than the two collagen 

matrices tested here. Unlike collagen, which anchors cells via integrins, it is not clear how the host 

cells attach to BTM, and how this matrix-cell interaction regulates cells behaviour. However, one 

cannot rule out the slow tissue growth into collagen-based Integra® tested here to be due to presence 

of glutaraldehyde (commonly used in collagen-based dermal substitutes for cross-linking) that is 

known to be cell toxic.  

Although skin grafting does not follow classic wound healing stages, this study supports earlier 

reports that levels of proinflammatory cytokines, such as IL-6 and TNFα, are drastically reduced in 

mouse wounds that are healed [40]. Prolonged inflammation has been associated with hypertrophic 

scarring and fibrosis in patients [7], but whether the higher (magnitude and length) inflammation in 

BTM grafts compared to Integra® grafts would have a negative effect on scarring in these grafts 

requires further investigation. Wound contraction also plays a role in fibrosis, and although some 

contraction was observed in Integra® (Supplementary Data S4), this, may not be a true indication of 

long term wound contraction in patients. At the two-week time point, BTM and Integra® grafts still 

retained their relatively inflexible seals which resist contraction. Longer time points (post seal 

removal) studies are needed to compare templates for clinically relevant wound contraction.  

Spatiotemporal cues in the wound bed are constantly evolving, and additional time points are 

required to elucidate a better understanding of cell-matrix interaction and their long-term 

consequences in skin grafting. Nevertheless, this study has identified some key differences between 

a collagen-derived and a fully synthetic polyurethane dermal graft, which should be considered 

when selecting for clinical application. 
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4. Materials and Methods 

4.1. Mouse Skin Grafting 

The protocol and procedures were ethically reviewed and approved by the Alfred Research 

Alliance Animal Ethics Committee (approval E/1665/2016/M, 04/08/2016) and followed the 

Declaration of Helsinki Principles. Skin grafting was performed as described previously [41]. Briefly, 

male athymic nude mice aged 10–12 weeks were anaesthetised with isoflurane (2 L/min) and a full-

thickness surgical wound created by excising a circular section of skin 1.2 cm in diameter on their 

dorsal side approximately 1 cm below the occipital protuberance and several millimetres to the left 

of the midline. Mice were grafted with bilayered polyurethane-sealed NovoSorb® BTM (PolyNovo, 

Australia); bilayered silicone-sealed Integra® (Life Sciences Corp., Plainsboro, NJ, USA); full-

thickness skin harvested from C57BL/6 mice, or HSE. The wound was dressed and sealed with 

SurfaSoft® (Taurenon, The Netherlands), Tegaderm (3M, St. Paul, MN, USA) and Coban™(3M, 

Australia) for the duration of the experiment. Mice were killed, and grafts were analysed after two 

weeks. 

4.2. Wound Healing Markers and ECM Expression Levels by Real Time PCR 

Tissues (n = 3 mice per group) were homogenised with an IKA Ultra-Turrax T-25 disperser 

(Janke and Kunkel, Germany) and processed for RNA extraction using an RNeasy mini kit (Qiagen, 

Germany) according to manufacturer instructions. Eluted RNA received 10 U RNasin Plus RNase 

inhibitor (Promega, Madison, WI, USA) and was quantified on Quantus Fluorometer using 

QuantiFluor RNA system kit (Promega, Madison, WI, USA).  

Mouse Wound Healing RT2 PCR Profiler arrays (Qiagen, Germany) were performed according 

to the manufacturer instructions. Briefly, 400 ng of RNA template was added to genomic DNA 

elimination mix (RT2 First Strand kit, Qiagen, Germany) in a total volume of 10 µL and incubated 5 

min at 42 °C, followed by 1-minute incubation on ice. Reverse transcription mixture was added to a 

total volume of 20 µL and the mix was incubated for 15 min at 42 °C and 5 min at 95 °C, diluted by 

adding 91 µL RNase-free water and frozen at −30 °C. cDNA product was mixed with SYBR Green 

Mastermix, RNase-free water and amplified using LightCycler 480 (Roche, Indianapolis, IN, USA). 

Graft gene targets with >2-fold change, as compared to host, were converted to log2 base and a 

heatmap plotted (Heatmapper online platform).  

4.3. Antibody Array  

Mouse inflammation antibody arrays (Abcam, UK) were performed according to the 

manufacturer’s instructions (n = 4 per group). Briefly, 100 ug of mouse graft protein was added to 

blocked array membrane for overnight incubation at 4 °C on a rocking platform. Membranes received 

40 min wash in 20 mL of Buffer I, followed by three 5 min washes in Buffer I, and two 5 min washes 

in Buffer II. Membranes were incubated 1.5 hours while rocking at R/T with biotinylated anti-

cytokine antibodies. This was followed by washes in Buffer I and II and incubation with streptavidin 

horseradish peroxidase conjugate for 2 hours. Signal was developed using chemiluminescent 

substrate and signals collected from each target on the membrane using ChemiDoc imaging system 

(Bio-Rad, Hercules, CA, USA). Signal density was assessed with Image J software protein array 

analyser plugin (NIH), collected as an integrated area for each target, present in duplicate on each 

membrane. Averaged signal per target was modified with negative control and blank signals, 

followed by normalisation to positive controls from the same blot.  

4.4. Immunohistochemistry and Analysis 

Graft vascularisation (n = 4 mice per group) was assessed with CD31 staining, as described 

previously [41]. Briefly, cryopreserved sections were fixed in 2% formalin (20 min) and permeabilised 

in 80% methanol at −20 °C (15 mins) followed by 3 × 5 min PBS washes. Endogenous peroxidase 

activity was quenched by incubating the sections with 3% hydrogen peroxide (H2O2) for 15 mins at 
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room temperature, followed by 3 × 5 min PBS washes. Sections were blocked in 10% normal goat 

serum (Applied Biological Products Management, Australia) in 10% bovine serum albumin (MP 

Biomedicals, Australia) in PBS for 2 h at room temperature, followed by incubation in rat anti-CD31 

antibody (1:100; BD Biosciences, San Jose, CA, USA) overnight at 4 °C. Slides were incubated in a 

biotinylated goat anti-rat antibody (1:500, BD Biosciences, San Jose, CA, USA) for 45 mins at room 

temperature, followed by 3 × 5 min PBS washes. After incubation with avidin-biotin complex for 30 

min (Vector Laboratories, Burlingame, CA, USA), the colour was developed with 

diaminobenzidine/H2O2 (Vector Laboratories) followed by counterstaining with haematoxylin. Four 

fields of view scanning the whole depth of the graft from each section stained with CD31 antibody 

were imaged at ×40. Image analysis was performed using Image J software ( ) using the colour 

threshold method. The threshold value was kept constant across all sections. Blood vessel area, 

marked by CD31+ endothelial cells, was normalised for image area. Average vessel diameter was 

measured by taking three measurements per each stretch of the vessel in the field of view in each 

image [42]. Human involucrin was detected in HSE grafts following involucrin immuno-kit 

instructions (Biomedical Technologies, Stoughton, MA, USA). Briefly, formalin-fixed, paraffin-

embedded sections were deparaffinised and endogenous peroxidase activity quenched with 0.3% 

H2O2 in tris-saline pH 7.6 for 30 minutes. After washes in tris-saline, sections were blocked in normal 

goat serum overnight at 4 °C. The blocking solution was replaced with rabbit anti-human involucrin 

solution for 1 hour at room temperature (t°C). Sections were washed in tris-saline again and 

incubated with goat anti-rabbit Ig for 30 mins. Final washes were followed with diaminobenzidine 

(DAB)/H2O2 (Vector Laboratories, Burlingame, CA, USA) colour development and haematoxylin 

counterstaining. For MMP-2 and COX-2 detection, sections were antigen retrieved in citrate buffer 

pH 6.0. Sections were incubated with rabbit anti-MMP-2 antibody (Abcam, UK) at 1:200 or rabbit 

anti-COX-2 antibody (Abcam, UK) at 1:2000, followed by goat anti-rabbit Ig-HRP conjugate (Cell 

Signalling, Danvers, MA, USA) incubation. Similar to involucrin detection, DAB developed sections 

were counterstained. All IHC stained images were analysed on FIJI software for positive cellular area 

expressed as a % of the full image area. The threshold value was kept constant across all sections. 

4.5. Confocal Microscopy 

Confocal microscopy was performed as described previously with minor modifications [43]. 

Briefly, cryopreserved graft sections (n = 4–6 mice per group) were permeabilised with methanol (10 

min), washed, blocked (30 min), and incubated with rabbit anti-vimentin antibody (1:600, Cell 

Signalling, Danvers, MA, USA) overnight. Sections were washed and probed with donkey anti-rabbit 

Ig–AF647 antibody (Invitrogen, Carlsbad, CA, USA) for 60 min and washed excessively prior to 

mounting using Prolong Gold (Invitrogen, Carlsbad, CA, USA). For analysis, high-resolution images 

were acquired on Nikon A1R point scanning confocal microscope with Plan Fluo 20 x MIm/0.75 NA 

objective × 2 optical zoom. Six fields of view were randomly selected in specified areas of the graft. 

Integra® spectral profile in the 405–550 nm range interfered with fibroblast detection and counting. 

We, therefore, performed spectral unmixing of the stained Integra® graft images using NIS Analysis 

(Nikon, Japan), assigning all Integra® spectral property to the green channel (500–550nm). Evaluation 

of fibroblast infiltration was performed by thresholding vimentin-positive cells, counted with NIS 

Analysis software (Nikon, Japan). 

4.6. Scanning Electron Microscopy  

FEI Nova NanoSEM 450 FEGSEM scanning electron microscope was used to collect high-

resolution secondary electron images from the cross-section of dermal templates. The microscope 

was operated at field-free mode, 3kV accelerating voltage, spot size 3.0 and aperture size 30 µm. Prior 

to cross-sectioning Integra® was fixed using 10% normal buffered formalin and air-dried). Native 

mouse skin was fixed in 2.5% glutaraldehyde and 2% paraformaldehyde in 0.1M sodium cacodylate 

buffer overnight at 4 °C. Then it was washed three times in fresh sodium cacodylate buffer, before 

being postfixed in 1% osmium tetroxide and 1.5% potassium ferricyanide in cacodylate buffer for 2 
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hours at RT. Post-fixation washed sample five times with Milli-Q water for 30 mins each step. The 

tissues were dehydrated in increasing concentrations of ethanol, consisting of 30, 50, 70, 90 and 2 × 

100% ethanol for 60 minutes each step. Dehydrated tissues were dried with a Bal-Tec CPD 030 critical 

point dried and mounted onto 12 mm diameter aluminium SEM stubs using sticky carbon tabs. All 

samples were cross-sectioned, mounted on aluminium stubs using carbon tape and sputter-coated 

with iridium using a Cressington 208 HR sputter coater. 

4.7. Human Skin Equivalent (HSE) 

HSE was constructed according to our previous study with some modification [16]. Briefly, adult 

fibroblasts and keratinocytes were isolated from discarded skin (under patients’ consent and 

approved by the Monash Ethics Committee). Fibroblasts were expanded in single layer dermal 

templates, Integra® and BTM (with no sealing film), in DMEM with bovine calf serum (10%, Sigma, 

St. Louis, MI, USA) and gentamicin (50 µg/mL, Life Technologies, Carlsbad, CA, USA) 4–7 days. 

Dermal templates were soaked in human plasma (20–25 mg/mL) and CaCl2 (1%) for 30 min at 37 °C 

prior to seeding keratinocytes. The HSEs were allowed to expand and stratify in Green’s media: 

DMEM: F12 media (3:1) (Life Technologies, Carlsbad, CA, USA) supplemented with L-glutamine (4 

mM, Life Technologies, Carlsbad, CA, USA), adenine (0.18 mM, Calbiochem, San Diego, CA, USA), 

hydrocortisone (0.4 ug/mL, Calbiochem, San Diego, CA, USA), triiodothyronine (T3)( 2 × 10−9 M, 

Sigma), insulin (5 ug/mL, Sigma, St. Louis, MI, USA), transferrin (TRF) (5 ug/mL, Sigma, St. Louis, 

MI, USA), Epidermal Growth Factor (EGF) (10 ng/mL, R&D Systems, Minneapolis, MI, USA), foetal 

calf serum (10%, Thermo Fisher Scientific, Waltham, MA, USA), and gentamicin (50 µg/mL, Life 

Technologies, Carlsbad, CA, USA) 10 to 14 days prior to grafting (n = 5–6 mice per group).  

Supplementary Materials: Supplementary materials are available online and can be found at 

www.mdpi.com/1422-0067/21/12/4508/s1. Figure S1. Representative H&E staining of BTM, Integra and allogenic 

native skin grafts in nude mice. Figure S2. A heatmap of all arrayed genes using log2 adjusted averages per 

group. Figure S3. (a) COX-2 staining in grafts. (b) MMP-2 staining in grafts. Figure S4. Macroscopic analysis of 

wound contraction. (a) Full thickness wounds grafted with BTM, Integra and allogenic native skin. (b) Wound 

and graft areas analysed for contraction. Table S1. Map of 40 protein targets and controls of inflammation 

antibody array. 
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