## **Supporting Information**

## Revising NO<sub>2</sub> as Protecting Group of Arginine in Solid-Phase Peptide synthesis

Mahama Alhassan,<sup>1#</sup> Ashish Kumar,<sup>1,2#</sup> John Lopez<sup>3</sup>, Fernando Albericio,<sup>1,4,5\*</sup> Beatriz G. de la Torre<sup>2\*</sup>

<sup>#</sup>Both authors contributed equally

<sup>1</sup>Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa; <sup>2</sup>KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; <sup>3</sup>Novartis Pharma AG, Lichtstrasse 35, CH-4056 Basel, Switzerland; <sup>4</sup>CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, University of Barcelona, 08028 Barcelona, Spain; <sup>5</sup>Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain

| #  | SnCl <sub>2</sub> (M) | Phenol (M) | Acid (M)                 | Solvent | T ℃ | Time (h) | Peptide             | Removal (%) |
|----|-----------------------|------------|--------------------------|---------|-----|----------|---------------------|-------------|
| 1  | 8                     | 0.04       | AcOH (0.016)             | DMF     | 55  | 2        | LRF                 | 43.2        |
| 2  | 8                     | 0.04       | HCl-Dioxane (0.064)      | DMF     | 55  | 2        | LRF                 | 39.6        |
| 3  | 8                     | 0.04       | HCl-Dioxane (0.064)      | DCM/DMF | 55  | 8        | LRF                 | 100.0       |
| 4  | 8                     | 0.04       | HCl-Dioxane (0.2)        | MeOH    | RT  | 2        | LRF                 | 2.9         |
| 5  | 8                     | 0.04       | HCl-Dioxane (0.2)        | EtOH    | 55  | 8        | LRF                 | 98.3        |
| 6  | 8                     | 0.04       | HCl-Dioxane (0.064)      | NBP     | 55  | 2        | LRF                 | 43.1        |
| 7  | 8                     | 0.04       | HCl-Dioxane (0.2)        | NBP     | 55  | 2        | LRF                 | 66.7        |
| 8  | 8                     | 0.04       | HCl-Dioxane (0.064)      | 2-MeTHF | 55  | 2        | LRF                 | 98.1        |
| 9  | 8                     | 0.04       | HCl-Dioxane (0.2)        | 2-MeTHF | 55  | 2        | LRF                 | 98.4        |
| 10 | 2                     | 0.04       | HCl-Dioxane (0.064)      | 2-MeTHF | 55  | 2        | LRF                 | 76.7        |
| 11 | 2                     | 0.04       | HCl-Dioxane (0.064)      | CPME    | 55  | 2        | LRF                 | 37.1        |
| 12 | 2                     | 0.04       | HCl-Dioxane (0.2)        | CPME    | 55  | 2        | LRF                 | 34.6        |
| 13 | 2                     | 0.04       | aq HCl (0.2)             | 2-MeTHF | 55  | 2        | LRF                 | 98.0        |
| 14 | 2                     | -          | aq HCl (0.2)             | 2-MeTHF | 55  | 2        | LRF                 | 91.0        |
| 15 | 2                     | 0.04       | aq HCl (0.2)*            | 2-MeTHF | 55  | 2        | LRF                 | 100.0       |
| 16 | 2                     | 0.04       | aq HCl (0.2)*            | 2-MeTHF | 55  | 1        | RGD                 | 100.0       |
| 17 | 1                     | 0.04       | aq HCl (0.2)*            | 2-MeTHF | 55  | 2.5      | LRF                 | 100.0       |
| 18 | 1                     | 0.04       | aq HCl (0.2)*            | 2-MeTHF | 55  | 1.5      | RGD                 | 100.0       |
| 19 | 1                     | 0.04       | aq HCl (0.2)*            | 2-MeTHF | 40  | 2        | RGD                 | 42.6        |
| 20 | 2                     | 0.04       | aq HCl (0.2)*            | 2-MeTHF | 55  | 1.5      | Bradykinin          | 26.1        |
| 21 | 2                     | 0.04       | aq HCl (0.2)*/ultrasound | 2-MeTHF | 55  | 3        | Bradykinin          | 94.0        |
| 22 | 2                     | 0.04       | aq HCl (0.2)*/microwave  | 2-MeTHF | 55  | 1.5      | Bradykinin          | 92.5        |
| 23 | 2                     | 0.04       | aq HCl (0.2)*/ultrasound | 2-MeTHF | 55  | 3        | (RW) <sub>2</sub> P | 100         |
| 24 | 2                     | 0.04       | aq HCl (0.2)*/ultrasound | 2-MeTHF | 55  | 3        | (RW) <sub>3</sub> P | 100         |

Table S1. Summary of all trial used in the removal of NO2 group from the peptides.

**Figure S1**: Stability of Fmoc-Arg(Boc)<sub>2</sub>-OH at room temperature in DMF. Elution: 30-95% of B into A in 15 min. Mobile phase A: 0.1% TFA in H<sub>2</sub>O; mobile phase B: 0.1% TFA in CH<sub>3</sub>CN;  $\lambda$  = 220 nm; Phenomenex Aeris<sup>TM</sup>C18 (3.6 µm, 4.6 × 150 mm) column



**Figure S2:** Stability of Fmoc-Arg(Boc)<sub>2</sub>-OH at room temperature in NBP. Elution: 30-95% of B into A in 15 min. Mobile phase A: 0.1% TFA in H<sub>2</sub>O; mobile phase B: 0.1% TFA in CH<sub>3</sub>CN;  $\lambda$  = 220 nm; Phenomenex Aeris<sup>TM</sup>C18 (3.6 µm, 4.6 × 150 mm) column.



**Figure S3:** Stability of Fmoc-Arg(NO<sub>2</sub>)-OH at room temperature in DMF. Elution: 30-95% of B into A in 15 min. Mobile phase A: 0.1% TFA in H<sub>2</sub>O; mobile phase B: 0.1% TFA in CH<sub>3</sub>CN;  $\lambda$  = 220 nm; Phenomenex Aeris<sup>TM</sup>C18 (3.6 µm, 4.6 × 150 mm) column.

**3** | P a g e



**Figure S4:** Stability of Fmoc-Arg(NO<sub>2</sub>)-OH at room temperature in NBP. Elution: 30-95% of B into A in 15 min. Mobile phase A: 0.1% TFA in H<sub>2</sub>O; mobile phase B: 0.1% TFA in CH<sub>3</sub>CN;  $\lambda$  = 220 nm; Phenomenex Aeris<sup>TM</sup>C18 (3.6 µm, 4.6 × 150 mm) column.



**Figure S5:** Stability of Fmoc-Arg(Pbf)-OH at room temperature in DMF. Elution: 30-95% of B into A in 15 min. Mobile phase A: 0.1% TFA in H<sub>2</sub>O; mobile phase B: 0.1% TFA in CH<sub>3</sub>CN;  $\lambda$  = 220 nm; Phenomenex Aeris<sup>TM</sup>C18 (3.6 µm, 4.6 × 150 mm) column.



**Figure S6:** Stability of Fmoc-Arg(Pbf)-OH at room temperature in NBP. Elution: 30-95% of B into A in 15 min. Mobile phase A: 0.1% TFA in H<sub>2</sub>O; mobile phase B: 0.1% TFA in CH<sub>3</sub>CN;  $\lambda$  = 220 nm; Phenomenex Aeris<sup>TM</sup>C18 (3.6 µm, 4.6 × 150 mm) column.



**Figure S7:** Stability of Fmoc-Arg(NO<sub>2</sub>)-OH with OxymaPure at 45°C in DMF Elution: 30-95% of B into A in 15 min. Mobile phase A: 0.1% TFA in H<sub>2</sub>O; mobile phase B: 0.1% TFA in CH<sub>3</sub>CN;  $\lambda$  = 220 nm; Phenomenex Aeris<sup>TM</sup>C18 (3.6 µm, 4.6 × 150 mm) column.



**Figure S8:** Stability of Fmoc-Arg(NO<sub>2</sub>)-OH with OxymaPure at 45°C in NBP Elution: 30-95% of B into A in 15 min. Mobile phase A: 0.1% TFA in H<sub>2</sub>O; mobile phase B: 0.1% TFA in CH<sub>3</sub>CN;  $\lambda$  = 220 nm; Phenomenex Aeris<sup>TM</sup>C18 (3.6 µm, 4.6 × 150 mm) column.



**Figure S9:** Stability of Fmoc-Arg(Pbf)-OH with OxymaPure at 45°C in DMF. Elution: 30-95% of B into A in 15 min. Mobile phase A: 0.1% TFA in H<sub>2</sub>O; mobile phase B: 0.1% TFA in CH<sub>3</sub>CN;  $\lambda$  = 220 nm; Phenomenex Aeris<sup>TM</sup>C18 (3.6 µm, 4.6 × 150 mm) column..



**Figure S10:** Stability of Fmoc-Arg(Pbf)-OH with OxymaPure at 45°C in NBP. Elution: 30-95% of B into A in 15 min. Mobile phase A: 0.1% TFA in H<sub>2</sub>O; mobile phase B: 0.1% TFA in CH<sub>3</sub>CN;  $\lambda$  = 220 nm; Phenomenex Aeris<sup>TM</sup>C18 (3.6 µm, 4.6 × 150 mm) column.



**Figure S11:** The removal of the NO<sub>2</sub> group from H-Asp(OtBu)-Phe-Gly-Arg(NO<sub>2</sub>)-Gly-NH-Rink amide-resin using 1M SnCl<sub>2</sub>, 0.04MPhenol in 2-MeTHF-0.2N HCl at 55°C. Elution: 10-25% of B into A in 15 min. Mobile phase A: 0.1% TFA in H<sub>2</sub>O; mobile phase B: 0.1% TFA in CH<sub>3</sub>CN;  $\lambda$  = 220 nm; Phenomenex Aeris<sup>TM</sup>C18 (3.6 µm, 4.6 × 150 mm) column.



**Figure S12:** The removal of the NO<sub>2</sub> groups from protected bradykinin-NH-Rink amide-resin using 2MSnCl<sub>2</sub> 0.04MPhenol in 2-MeTHF acidify with 0.2N HClaq at 55°C in ultrasonic bath. Elution: 5-95% of B into A in 15 min. Mobile phase A: 0.1% TFA in H<sub>2</sub>O; mobile phase B: 0.1% TFA in CH<sub>3</sub>CN;  $\lambda = 220$  nm; Phenomenex Aeris<sup>TM</sup>C18 (3.6 µm, 4.6 × 150 mm) column.

