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Abstract: Substitution of Ala for Glu residue in position 173 of y-tropomyosin (Tpm3.12) is associated
with muscle weakness. Here we observe that this mutation increases myofilament Ca?*-sensitivity
and inhibits in vitro actin-activated ATPase activity of myosin subfragment-1 at high Ca®*. In order
to determine the critical conformational changes in myosin, actin and tropomyosin caused by the
mutation, we used the technique of polarized fluorimetry. It was found that this mutation changes
the spatial arrangement of actin monomers and myosin heads, and the position of the mutant
tropomyosin on the thin filaments in muscle fibres at various mimicked stages of the ATPase cycle.
Atlow Ca®* the E173A mutant tropomyosin shifts towards the inner domains of actin at all stages of
the cycle, and this is accompanied by an increase in the number of switched-on actin monomers and
myosin heads strongly bound to F-actin even at relaxation. Contrarily, at high Ca?* the amount of the
strongly bound myosin heads slightly decreases. These changes in the balance of the strongly bound
myosin heads in the ATPase cycle may underlie the occurrence of muscle weakness. W7, an inhibitor
of troponin Ca®*-sensitivity, restores the increase in the number of myosin heads strongly bound to
F-actin at high Ca* and stops their strong binding at relaxation, suggesting the possibility of using
Ca2*-desensitizers to reduce the damaging effect of the E173A mutation on muscle fibre contractility.

Keywords: tropomyosin;, mutations in tropomyosin; muscle weakness; congenital myopathy;
Ca?*-sensitivity of myofilament; ATPase activity of myosin; troponin inhibitor W7

1. Introduction

Contraction of skeletal muscle is regulated through the thin filaments, which contain actin,
tropomyosin (Tpm) and troponin (TN) [1]. When the intracellular concentration of calcium changes,
tropomyosin associated with actin and troponin shifts on the surface of the actin filament, opening
or closing the sites for binding of the myosin heads on actin. The electrostatic nature of the
actin-tropomyosin interaction and flexibility of actin and tropomyosin [2,3] can explain the dynamic
displacement of tropomyosin relative to the outer and inner domains of actin (between the blocked,
closed and open positions) during contraction [3-7]. The change in the position of the tropomyosin
strands relative to the inner domains of actin is due to the difference between tropomyosin and F-actin
in their bending flexibility (therefore, variation in the persistence lengths of these proteins [4,7,8]),
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which presumably causes an azimuthal shift of the tropomyosin strands [3-8]. When Ca®* binds to
troponin-C, some actin monomers change their conformation to the switched-on state [6,8], and the
persistence length of the actin filament decreases [6-8]. At the same time, the persistence length
of the tropomyosin increases, and tropomyosin moves towards the inner domains of actin [4,6],
partly exposing the myosin-binding site (“closed position”) [3,5]. At low Ca?t, troponin-I interacts
with actin [9], switching thin filaments off [5], which leads to spatial rearrangement and an increase
in the persistence length of the actin filament [6-8]. At the same time, the persistence length of the
tropomyosin decreases [6-8] and restricts the tropomyosin to a position close to the outer domains of
actin (the “blocked position”) [5]. In this state of the thin filament (the “off” state) [5], the strong binding
of myosin with actin is inhibited [1]. When the myosin heads are strongly bound to the F-actin filament,
the actin monomers are switched-on, the persistence length of the actin filament decreases, and that
of tropomyosin increases [6-8]. In this state (the “on” state), the tropomyosin strands completely
expose the binding sites of F-actin to myosin and, therefore, initiate muscle contraction [5]. Recently;,
amino acid residues involved in tropomyosin-actin interaction were identified [10,11]. It was also
found that tropomyosin can bind to the myosin head, regulating the binding of the latter to actin [12].
Consequently, tropomyosin, which is associated with both actin and troponin, is able to bind the
myosin head and is also a central link in the regulation of actin-myosin interaction.

In skeletal muscle there are three main tropomyosin isoforms—o-, - and y-Tpm—which
are encoded by the tropomyosin 1 (TPM1), TPM2 and TPM3 genes, respectively [13]. All three
isoforms exist either as homodimers or heterodimers. Mutations in the TPM genes give rise to
a wide spectrum of clinically, histologically and genetically variable neuromuscular and cardiac
disorders [14,15]. The numerous point mutations in TPM3 gene were found in patients with such
congenital pathologies as nemaline myopathy, distal arthrogryposis, congenital muscle fibre type
disproportion and cap-myopathy (for reviews, see [14,16]). The E173A mutation in position 173 of
Y-tropomyosin (Tpm3.12), encoded by the TPM3 gene, was detected in a 7-year-old boy with hypotonia,
feeding difficulties, motor delay and scoliosis, requiring non-invasive ventilation while ambulant.
Muscle biopsies showed fibre type disproportion [17]. However, the molecular mechanisms underlying
the muscle fibre dysfunction caused by this mutation are unknown.

Here, we studied the effect of the E173A mutation in recombinant Tpm3.12 on actin-myosin
interaction at different simulated stages of the ATPase cycle (xCa?"). Actin, myosin head (S1) and
tropomyosin modified by fluorescent probes were studied in the ghost muscle fibres using polarized
fluorimetry, a well-established technique for this application [18,19]. The results show that tropomyosin
with E173A replacement affects the proportion of the switched-on and switched-off actin monomers,
the balance of myosin subfragment-1 (S1) strongly and weakly binds with F-actin, and the position
of tropomyosin during the ATPase cycle. It is assumed that the E173A mutation weakens the ability
of troponin-C to switch actin monomers on and activates the strong binding of the myosin heads to
F-actin at low Ca?* by suppressing the troponin-I ability to switch actin monomers off, as well as
induces the appearance of the strongly bound myosin heads (the rigor-like myosin heads) at relaxation,
which may be one of the causes of muscle weakness. The Ca?*-desensitizer W7 is able to attenuate the
effect of this mutation.

2. Results and Discussion

2.1. The E173A Mutation in Tpm3.12 Increases Myofilament Ca’*-Sensitivity and Decreases the
Actin-Activated ATPase Activity of S1 at High Ca®*

We first evaluated the effect of E173A mutation in Tpm3.12 on Ca’*-sensitivity of the thin
filaments reconstructed with this protein (Figure 1). The filaments were assembled with the wild-type
tropomyosin (WT-Tpm) or E173A-Tpm and used in measurements of actin-activated S1 ATPase activity
at increasing Ca?* concentrations (see Section 3).
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Figure 1. Effect of the E173A mutation in y- tropomyosin (Tpm) on sensitivity of the thin filaments to
activating Ca®" concentrations. Ca?*-dependence was determined for fully regulated reconstituted
thin filaments. The acto-S1 ATPase was measured in the presence of wild-type (WT) Tpm (squares),
and E173A-Tpm (stars) at 25 °C. Error bars indicate +SEM. pCa values were calculated from data
averaged from 3 experiments. Conditions are given in Section 3.

Measurement of actin-activated myosin S1 ATPase has revealed that the mutation increases
Ca2+—sensitivity of the thin filaments (Figure 1). The midpoints of the curves (pCasg) are 6.86 + 0.04 for
filaments containing the E173A-Tpm and 6.58 + 0.03 for those reconstituted with WI-Tpm (p < 0.01).
In addition, the data demonstrate that ATPase rates are elevated at high pCa while reduced at low
pCa and the maximum ATPase activity of 51 is lower in the presence of the mutant Tpm, than with
WT-Tpm (Figure 1). An increase in myofilament Ca?*-sensitivity, the changes in the ATPase rates at
high and low Ca?* and a decrease in the actin-activated ATPase activity of S1 for the E173A-Tpm may
be caused by inhibition of the ability of troponin-I to switch actin monomers off at low Ca?* and by the
movement of the mutant tropomyosin towards the open position at high and low Ca?* (see below).

2.2. The Ca**-Dependent Movement of Tropomyosin on the Thin Filament

Incorporation of 5-iodoacetamidofluorescein (5-IAF)-labelled recombinant wild-type
v-tropomyosin (AF-WT-Tpm) or fluorescein isothiocyanate (FITC)-phalloidin-labelled actin (FITC-actin)
into the ghost muscle fibres (Figure 2) initiated polarized fluorescence. The results of fluorescence
polarization measurements were fitted to the helix plus isotropic model (see Section 3).
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Figure 2. Verification of the incorporation of recombinant Tpm into the ghost muscle fibres.
The SDS-PAGE shows the results of electrophoretic separation of muscle fibre isolated from m. psoas
of rabbit (lanes 1 and 4), fibres after extraction of myosin and regulatory proteins of thin filaments
(ghost fibres, lane 2), ghost fibres reconstituted with the recombinant wild-type (lane 6) and mutant
(lane 8) tropomyosin incorporated in thin filaments, and the recombinant tropomyosin preparations per
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se (lanes 5 and 7) as well as molecular weight markers (Sigma-Aldrich, St. Louis, MO, USA, lane 3).
Designations: MyBP-C—myosin-binding protein C; LC1 and LC3—myosin light chains; Tpm1.1,
Tpm2.2 and Tpm3.12—tropomyosin isoforms; troponin (TN)-T, TN-I and TN-C—troponin subunits.
Scanning densitometry (Image Lab 6.0) revealed that ghost fibres consist of 71% F-actin. The quantitative
assessment of the Tpm binding to actin filaments in ghost fibres showed the content of the mutant
Tpm bound to actin is not less than that of the WT-Tpm. Thus, the mutant Tpm can incorporate within
the thin filaments in vivo. The electrophoretic mobility of the mutant Tpm differs significantly from
WT-Tpm, that was already observed earlier in the case of another mutant—D175N-«-Tpm (Tpm1.1).
Presumably, the less negative charge can result in different local unfolding and altered conformation.
The full-length SDS-PAGE gels are given in Supplementary Materials.

The values of the angle between the fibre axis and the emission dipole of the probe (®g) were 56.9°
and 47.3° for AF-WT-Tpm and FITC-actin-WT-Tpm, respectively. The value of the bending stiffness (¢)
was 12.5 x 10726 N-m? for WT-Tpm (Figure 3b) and 5.32 x 10726 N-m? for F-actin filaments containing
WT-Tpm, showing that Tpm3.12 is more than two times less flexible than F-actin. Similar differences
in the bending stiffness between F-actin and Tpm1.1, F-actin and Tpm2.2 or F-actin and Tpm3.12 were
found earlier [7,8,20].
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Figure 3. The effect of troponin and CaZ* on the values of ®g (a,b) of the polarized fluorescence
for 5-iodoacetamidofluorescein (5-IAF) linked with WT-Tpm and E173A-Tpm was revealed in
glycerol-skinned fibres under conditions simulating the sequential steps of the actomyosin ATPase
cycle. The relative amount of the WT and mutant Tpms, as well as the amount of S1 in all experiments
were monitored by measuring the fluorescence intensity of proteins in the actin-WT-Tpm-S1 and
actin-E173A-Tpm-S1 complexes. When simulating rigor and in the presence of Mg-adenosine
5’-diphosphate (MgADP), the molar ratio of S1 to actin was 1:(2.4 + 0.6) and the molar ratio of
tropomyosin to actin was 1:(7.0 + 0.5). In the presence of Mg-adenosine 5'-triphosphate (MgATP),
a reduction in the molar ratio of S1 to actin was seen, which was similar for the WT and mutant Tpms
(Section 3). It is supposed that the same fraction of actin monomers bound S1 in each case. The values
of & were corrected in order to take into account the changes in conformation of actin monomers.
The first and second entries from the left in each panel present the data obtained in the absence of S1.
The data represent the mean values for 5-7 fibres for each experiment (Section 3). The ®g and ¢ values
in the absence and in the presence of nucleotides are significantly altered by troponin and Ca?* for both
WT-Tpm and E173A-Tpm (p < 0.05). Error bars indicate +SEM. The values of N were close to zero.

As shown in Figure 3, the binding of troponin to the Actin-AF-WT-Tpm complex at high CaZ*
results in a decrease in the values of ®g by 0.4° and an increase in ¢ by 1.4 x 1072 N-m?; whereas at
low Ca®* the value of ®g increases by 1.7° and the value of ¢ decreases by 2.0 X 1072 N-m? (p < 0.05).
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The character of the changes in the ®y value for 5-IAF-labelled Tpm is correlated with the
azimuthal shifting of Tpm strands observed in electron microscopy works [3,5]. An increase in the
@r, value is correlated with the azimuthal shifting of Tpm strands towards the outer domains of actin
subunits, while a decrease in that value is correlated with the shifting of Tpm to the inner domains [6-8]
(Figure 4C). An increase in the flexibility of Tpm can be explained by a decrease in its persistence
length [4]. Consequently, troponin at high Ca?* induces a persistence lengthening of WT-Tpm strands
(Figure 4D) and their shift to the inner domains of actin (Figure 4C). At low Ca?* WT-Tpm was found
closer to the outer domains (Figures 3a and 4C).
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Figure 4. A schematic view of the changes in tropomyosin localization and spatial rearrangements
of actin caused by the E173A substitution in Tpm, as follows from the data of polarized fluorimetry.
The changes in the value for ®f (the angle of orientation of the emission dipoles of the probe bound to
Tpm or actin monomers) are interpreted as the shift of Tpm relative to the inner and outer domains
of actin and the rotation of actin monomers in actin filament. The changes in the value for bending
stiffness € are shown as the alterations in the persistence length of the Tpm strands and actin filament.
Ghost fibres were composed of actin and Tpm (A,B) or of actin, Tpm and TN (C,D). (A) The position of
the mutant Tpm and actin conformation in the region of the dye binding do not differ from that of the
wild-type (WT)-Tpm in ghost fibres containing only Tpm. (B) However, the mutation decreases the
persistence length of Tpm and increases that of actin. (C) The effect of the mutation emerges in the
presence of troponin—at low Ca?* Tpm shifts towards the inner domains of actin and actin monomers
switch on. (D) The persistence length is lower for the mutant Tpm than for the WT-Tpm. The increase
in the persistence length for WT and mutant Tpms during the rise of Ca>* concentration is followed by
the decrease in this parameter for actin. Designations: The changes in @ at high and low Ca?* are
shown by numbers (C), the direction of the rearrangements is depicted by arrows. The changes in &g
(shown by numbers with symbols “ns”) are non-significant in the absence of troponin (A). Different
conformational states of actin and localization of Tpm and respective persistence length of actin and
Tpm are depicted by different colours.
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A similar Ca?"-dependent difference in azimuthal positions of WT-Tpm strands on the thin
filament was observed earlier [6—8]. A similar correlation was observed in the presence of myosin
heads (S1) at various mimicked states of the ATPase cycle (Figure 3). The movement of Tpm relative
to the inner or outer actin domains correlates, respectively, with an increase and decrease in the
relative number of the switched-on and switched-off actin monomers [6-8] in the thin filaments at the
regulation of the thin filament by Ca?* [2-5]. The data obtained in this work (Figure 5) correspond to
these views.
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Figure 5. The effect of troponin and Ca?* on the values of @ (a) and ¢ (b) of the polarized fluorescence
for FITC-phalloidin-actin, in the presence of WI-Tpm or E173A-Tpm under conditions simulating the
sequential steps of the myosin ATPase cycle. The first and second entries from the left in each panel
present the data obtained in the absence of S1. The relative amount of the WT and mutant Tpms, as well
as the amount of S1 in all experiments was similar in the Actin-WT-Tpm-S1 and Actin-E173A-Tpm-S1
complexes (see Section 3), suggesting that the same fraction of actin monomers bound S1 in each case.
Calculations of ®f and e values, preparation of the fibres, their composition and the conditions of the
experiments are described in Section 3. The data represent the mean values for 8-10 fibres for each
experimental condition. Both in the absence and in the presence of nucleotides the g and ¢ values
for WI-Tpm and E173A-Tpm are significantly altered by troponin and Ca?* (p < 0.05). Statistically
insignificant differences in the values of ®g, ¢ and N between WT and mutant Tpms are indicated by
the symbol “ns”. Error bars indicate +SEM. The values of N were close to 0.1.

2.3. The Ca**-Dependent Switching On and Off of the Thin Filament

The binding of troponin to the FITC-Actin-WT-Tpm complex at high Ca?" increases the value
of @ by 0.3° and decreases ¢ by 0.12 X 10726 N-m? (p < 0.05), whereas at low Ca?* the value of ®g
decreases by 1.2° and the value of ¢ increases by 0.24 x 10726 N-m? (p < 0.05; Figure 5). According to our
earlier published works, alterations in the ®f and ¢ values for FITC-actin may be interpreted as a result
of conformational changes (global and/or local), accompanied by switching of actin monomers on and
off, respectively, which is associated with an enhancement or a reduction in the ability of F-actin [6-8]
to activate myosin ATPase [1]. The value of ¢ for FITC-Actin-WT-Tpm-TN is lower at high Ca?* than
at low Ca?* (Figure 5b). An increase and a decrease in the flexibility of the thin filaments correlate
with F-actin shortening and elongation of the persistence length (Figure 4D), respectively [6-8]. At low
Ca?*, troponin switches actin monomers off and induces an increase in the persistence length of F-actin
(Figure 4D).

At high Ca?* opposite changes occur. Similar increases and decreases in the persistence length
of the thin filaments were observed by Isambert and coworkers [21] at lowering and rising Ca%t
concentration, respectively.
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Thus, at high Ca?" WT-Tpm shifts in the direction of the inner actin domains (to the closed
position, [5]) and the relative number of the switched-on actin monomers increases. On the contrary,
at low Ca2*, it shifts towards the outer domains of actin (towards the blocked position, [5]) and inhibits
the switched-on actin monomers. The same Ca?*-dependence was observed also in the presence of
myosin heads (51) at mimicking various states of the ATPase cycle.

At high Ca?*, an increase and decrease in ®g values for FITC-actin (Figure 5) and AF-Tpm
(Figure 3), respectively, were observed at the mimicked strong-binding of the myosin heads (AM
and AM"™ADP states, where A is actin, M, M" are myosin heads in various conformational states in
the absence of nucleotide or in the presence of MgADD, respectively). In the presence of MgATP
(mimics AM**-ADP-Pi state, where A is actin, M** is myosin head in weak-binding conformational
state), the values of ®f decreased for FITC-actin (Figure 5a) and increased for AF-Tpm (Figure 3a).
This indicates that at high Ca?* the myosin heads in the strongly-bound states cause a noticeable
displacement of WI-Tpm in the direction of the inner domains of actin (a shift to the open position [5])
(Figure 6a) and significantly increase the amount of the switched-on actin monomers (Figure 5a). On the
contrary, at low Ca®", WT-Tpm shifts to the outer domains of actin (Figure 3a), and the amount of the
switched-on actin monomers decreases (the values of ®g for FITC-actin are lower, and for AF-Tpm are
higher, than at high Ca®*, Figures 3 and 5). The E173A mutation alters this pattern (Figures 3, 5 and 6).

ActintTpm+TN+S1
no nucleotide,+Ca?" = +ATP,+Ca?*
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Figure 6. A schematic view of the changes in tropomyosin localization and spatial rearrangements

of actin and S1, as follows from the data of polarized fluorimetry. The changes in the value for
®g (the angle of orientation of the emission dipoles of the probe bound to Tpm, actin monomers
or the myosin heads) at simulation of different conformational states of Actin-Tpm-TN-S1 complex are
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interpreted as the shift of Tpm relative to the inner and outer domains of actin, the rotation of actin
monomers in actin filament and the azimuthal tilt of the myosin motor domain (a,c,d,g). The left and
right panels show the transition of actin-myosin from the state in the absence of nucleotide to the state
in the presence of ATP at high and low Ca?" concentrations, respectively. The changes in the value
of bending stiffness € are shown as the alterations in the persistence length of Tpm strands and actin
filament (b,f). The effect of the E173A mutation in Tpm is discussed in the text. Briefly, the mutant Tpms
shift towards the inner domains of actin, which cause the abnormal switching on of actin monomers
and the appearance of the myosin heads strongly bound with actin under relaxing conditions (a,c,d,g).
The persistence length of Tpm is decreased while that of actin filament is increased by the mutation
at high Ca®* (b). The mobility of the myosin heads in the presence of the mutant Tpm is decreased
(e,h). Designations: The changes in ®f between the states are shown by numbers; the direction of
the rearrangements is depicted by arrows. Different conformational states of actin and myosin head,
changes in localization of Tpm and respective persistence lengths of actin and Tpm are depicted by
different colours.

2.4. The E173A Mutation in the Tpm3.12. Inhibits the Ability of Troponin to Switch the Thin Filaments Off in
Muscle Fibres at Low Ca*

According to Figures 3, 4A and 5, replacing Ala for Glu residue in position 173 in tropomyosin
does not have a noticeable effect on the position of AF-E173A-Tpm on the thin filament and on the
amount of the switched-on actin monomers. The Ca?*-dependent movement of the mutant Tpm and a
change in the amount of the switched-on actin monomers are observed in the presence of troponin.
At high Ca®*, the exchange of WT-Tpm for E173A-Tpm in the Actin-Tpm-TN complex in the absence
and in the presence of S1 does not change the values of ®g for AF- E173A-Tpm or decreases this
value by 1.1° and by 0.5° in the presence of MgADP and MgATP, respectively, showing the shift of
the E173A-Tpm towards the open position (Figure 6a,c). [5-8]. In addition, the mutation decreases
the ¢ values at mimicked different stages of the ATPase cycle (by 4.06 x 1072® N-m? in the absence
of S1 and by 4.36 x 1072 N-m?, 1.73 x 10726 N-m? and 2.25 x 1072 N-m? for AM, AM™ADP and
AM**ADP-Pi states, respectively) (Figure 3a,b). A similar Tpm movement is observed at low Ca**
(the values for ®f decrease at mimicking all states of the ATPase states (Figure 3a,b), but the values for
¢ increase. Consequently, practically at all states of the ATPase cycle the E173A substitution can change
actin-myosin interaction and ATPase rates (Figure 1) in a way that is consistent with movement of the
mutant Tpm strands towards the inner domains of actin both at high and low Ca?*, as compared with
WT-Tpm (Figure 6a,e).

Such changes in the Tpm position at low Ca?* can have a significant impact on the ability of
troponin to regulate the actin-myosin interaction, because instead of E173A-Tpm’s shift towards the
blocked position and a reduction in the amount of the switched-on actin monomers one can observe the
movement of Tpm to the open position (Figures 3 and 6) and an essential increase in the amount of the
switched-on actin monomers at all stages of the ATPase cycle (Figure 5). Consequently, the exchange of
WT-Tpm for E173A-Tpm can impair the regulatory function of thin filaments—the ability of troponin
to shift tropomyosin towards the blocked position, to switch actin monomers off. Therefore, in the
presence of E173A-Tpm the inhibition of the strong binding of the myosin heads to actin cannot be
reached at low Ca®* (see below).

2.5. The Ca**-Dependent Formation of the Strong and Weak Binding of the Myosin Heads to F-Actin

According to Figure 7, for the Actin-WT-Tpm-AEDANS-S1 complex, the values for the angle
between the fibre axis and the emission dipole of the probe (®g), the value of N and the bending
stiffness () were found to be equal to 44.3°, 0.168 rel. units and 5.55 x 1072® N-m?, respectively.
This indicated that the probes are highly oriented, and the myosin heads are bound strongly to
F-actin [6-8]. Since AEDANS was rigidly bound to 51, it was assumed that the value of ¢ contains
information about the bending stiffness of the F-actin filaments in the region of localization of the
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myosin heads, whereas the parameter N estimates the flexibility of attachment of the myosin heads
to F-actin [22]. The bending stiffness of F-actin filaments which was determined using the polarized
fluorescence of FITC-phalloidin (Figure 5b) did not differ much from that for F-actin in the areas
of localization of myosin heads under all experimental conditions (Figure 7b). This observation
demonstrates the possibility of a transition of the changes in actin monomer conformation along the
thin filament. Transition of the signal along the thin filament was previously shown by Barua [11].

AEDANS-S1
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Figure 7. The effect of troponin and Ca?* on the values of ®f (a), ¢ (b) and N (c) of the polarized
fluorescence of N-(iodoacetaminoethyl)-1-naphthyl-amine-5-sulfonic acid (1,5-IAEDANS) bound to
S1 (AEDANS-S1), in the presence of WT-Tpm or E173A-Tpm was revealed in glycerol-skinned fibres
under conditions simulating the sequential steps of the actomyosin ATPase cycle. The data represent
the mean values for 5-7 fibres for each experimental condition. The ®g, € and N values in the absence
of troponin and in the presence of Ca?* and nucleotides are significantly altered by the E173A mutation
in Tpm (p < 0.05). Statistically insignificant differences in the values of ®g, € and N between the WT
and mutant Tpms are indicated by the symbol “ns”. Error bars indicate +SEM.

The binding of troponin to Actin-WT-Tpm-AEDANS-51 complex induces a change in the values
of ®g, ¢ and N: at high Ca®* they decrease by 0.4°, 0.2 X 10726 N-m? and 0.02 rel. units (p < 0.05),
respectively (Figure 7). Previously a correlation was found between the parameters ®g and N of
polarized fluorescence for S1 and the affinity of the myosin head attachment to actin. It turned out
that a decrease in the values of &y and N correlates with an increase in the affinity of myosin for actin;
on the contrary, an increase in these parameters is observed in parallel with a decrease in myosin’s
affinity for actin [23]. Based on this correlation, we assume that a decrease in the angle ®y indicates the
formation of a stronger form of actin-myosin binding, and an increase in this parameter, on the contrary,
indicates the formation of a weaker form. Therefore, the changes in the values of these parameters can
be interpreted as showing an increase in the number of myosin heads strongly bound to F-actin in the
ghost muscle fibres [7,8,22]. On the contrary, at low Ca?* these parameters essentially increase by 1.7°,
1.55 x 10726 N-m? and 0.098 rel. units (p < 0.05), respectively (Figure 7). Thus, WT-Tpm-TN complex at
high Ca?* is able to facilitate, and at low Ca2* to inhibit, the strong binding of the myosin heads to the
thin filaments [6].

A similar pattern of changes at high Ca?* is also observed at the mimicked AM™ADP and
AM*-ADP-Pi states of the ATPase cycle (Figures 6a and 7). In the presence of MgADP the nucleotide
activates strong binding of the myosin heads to F-actin; the values of ®f are smaller and ¢ and N are
higher than in the absence of the nucleotide. In the presence of MgATP a decrease in the number of
myosin heads strongly bound to actin is observed (the values of ®f, ¢ and N are higher than in the
presence of MgADDP, Figure 7). At low Ca®*, the number of myosin heads strongly bound to F-actin
is dramatically decreased (the values of ®, ¢ and N increase by 3.4°, 0.46 x 10726 N-m?2 and 0.11 rel.
units, respectively, in the presence of MgADP, and the values of ®p and N increase by 2.65° and
0.284 rel. units, respectively, in the presence of MgATP, Figure 7). Consequently, upon mimicking
the strong-binding states of the ATPase cycle, WT-Tpm locates close to the open position (Figures 3a
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and 6a); the amount of the switched-on actin monomers (Figure 5) and strongly bound myosin heads
(Figure 7) is higher than upon mimicking the weak-binding state. At low Ca?* WT-Tpm moves towards
the blocked position (Figure 3a); the amount of the switched-on actin monomers (Figure 5) and the
myosin heads strongly bound to actin decreases (Figures 5 and 7). The E173A mutation alters this
picture (see below).

2.6. E173A Mutation Inhibits the Strong Binding of the Myosin Heads to F-Actin at High Ca®* and Activates
It at Low Ca®*

As opposed to the Actin-WT-Tpm-TN-AEDANS-S1 complex, the complex where WT-Tpm was
replaced by the E173A-Tpm shows at low Ca?* an increase in the number of the myosin heads, strongly
bound to F-actin (in the absence of nucleotide the &g and N values are lower for E173A-Tpm than for
WT-Tpm by 1.8° and 0.114 rel. units, respectively (p < 0.05; Figure 7)).

A similar increase in the number of myosin heads strongly bound to actin at low Ca?* was
observed also in the presence of MgADP and MgATP (the mimicked AM™ADP and AM**-ADP-Pi
states). In these cases, the parameters ®g, ¢ and N are reduced in the presence of MgADP by 3.4°,
0.46 x 10726 N-m? and 0.123 rel. units, respectively. In the presence of MgATP, the E173A mutation
decreases the value of & by 2.8° and had a large effect on the bending stiffness of F-actin at the site of
localization of the myosin head and on the flexibility of myosin head attachment to F-actin. Indeed,
in the presence of MgATP at low Ca?* (mimicking relaxation) the values of ¢ and N decreased by 43%
and 91%, which demonstrated an increased number of myosin heads strongly bound to F-actin, instead
of the anticipated increase in the rigidity of F-actin and flexibility of myosin attachment to actin typical
for relaxation. It is noteworthy that the bending stiffness is 5.15 x 1072 N-m? typical for AM state
in the presence of WT-Tpm at low Ca?* and the flexibility of the attachment of the myosin heads to
actin is much lower than with WT-Tpm (the value of N is 0.042 rel. units; Figure 6e,h and Figure 7),
showing “fixation” of the myosin heads on the thin filament. Such changes in these parameters can be
interpreted as formation of so-called rigor-like myosin heads in the muscle fibres [7]. The appearance
of the rigor-like cross-bridges can not only have a profound effect on relaxation, but also bring about
disorganization of the thin and thick filaments. The appearance of these cross-bridges could contribute
to the hypotonia and motor delay observed in a patient with the mutant E173-Tpm [17].

Thus, the E173A mutation in Tpm is able to facilitate the strong binding of the myosin heads
to F-actin at low Ca®* at different states of the ATPase cycle. This may be the reason for the high
Ca2+—sensitivity of in vitro actin-activated S1 ATPase (Figure 1).

At high Ca?* the E173A-Tpm mutation causes a small decrease in the number of strongly-bound
myosin heads (the &g is higher by 0.4° at AM state and by 0.5° at mimicking the AM™ADDP state,
p < 0.05; Figure 7). In the AM*-ADP-Pi state, the parameters ® and N practically do not change
(Figure 7). Therefore, the amplitude of change in the values of @, at transition of the myosin heads from
the weak to the strong binding with F-actin during the ATPase cycle (between the weak binding in the
presence of MgATP and the strong binding in the absence of the nucleotides) was 5.52° for E173A-Tpm
(Figure 6g), which was smaller than the amplitude observed for WI-Tpm (6.02°) (Figure 6a). It can
be assumed that the E173A-Tpm mutation inhibits the efficiency of the cross-bridge work [6,22,24].
This conclusion is consistent with data showing a decrease in the actin-activated ATPase activity of S1
at high Ca* (Figure 1).

We suggested that replacing the negatively charged glutamate 173 for neutral hydrophobic alanine
may cause the salt bridge [25,26] between tropomyosin residues E173 and K169 to break, and as
a result, partially destabilize the tropomyosin molecule. It was suggested that the residue 174 of
tropomyosin is cross-linked with troponin-T and this residue can participate in tropomyosin interaction
with troponin [27]. Therefore, the E173A mutation can both change the stability of the tropomyosin
molecule and alter the binding of tropomyosin to troponin-T. In this study no effect was found of E173A
mutation on the tropomyosin position in the absence of troponin (Figure 3), whereas in the presence
of troponin, the mutant Tpm shifts toward the open position, mimicking all states of the ATPase
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cycle at high and low Ca?*. We suggested that alteration in the binding of the Tpm to troponin-T
can be a reason for the violated ability of troponin to switch the thin filaments on and off. This can
lead to a decrease in the amount of the strongly-bound myosin heads at high Ca?*, an increase in the
Ca?*-sensitivity, and may induce appearance of the rigor-like myosin heads which strongly bind to
F-actin at mimicking relaxation in muscle fibres (Figures 6h and 7). It should be noted that as far as
we know in literature there are no data on the ability of the myosin head to form the strong binding
with actin in the presence of MgATP. However, in this work and earlier, data were obtained that could
be explained by an increased stiffness of S1 binding to actin. Having screened many mutant forms
of various tropomyosins, we were able to find only a few mutant forms that showed such an effect
(AE139 [7] and R91G in Tpm?2.2 [28], R168G in Tpm1.1 [20], and A155T in Tpm3.12 [29]). Moreover,
such tightly bound S1 molecules appeared only in the presence of the mutant Tpm and disappeared
after addition of W7.2.7. Ca%*-sensitivity inhibitor of troponin, W7, may weaken the damage induced
by the E173A mutation

It has been known that W7 (n-(6-aminohexyl) 5-chloro-1-napthalenesulfonamide, Sigma-Aldrich)
binds specifically with high affinity to troponin-C, but does not interact with actin, myosin,
or tropomyosin [30], therefore it can be used as a specific inhibitor of calcium activation in skinned
fibres from cardiac and skeletal muscles [31,32]. In addition, it was shown earlier that the desensitizer
W7 can correct hyper-calcium-sensitivity of sarcomeres induced by a point mutation [33]. Here we
tried to use W7 to reduce the disruption of the actin-myosin interaction during the ATPase cycle in the
ghost muscle fibres caused by the E173A mutation in Tpm.

The binding of 50 uM of W7 to Actin-E173A-Tpm-TN-AEDANS-S1 complex induces a change in
the values of ®g, € and N at high and low Ca®* (Figure 8).
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Figure 8. The effect of troponin and Ca?* on the values of ® (a), € (b) and N (c) of the polarized
fluorescence of 1,5-TAEDANS bound to S1 (AEDANS-S1), in the presence of the E173A-Tpm or
E173A-Tpm with 50 uM of W7 revealed in glycerol-skinned fibres under conditions simulating the
sequential steps of the actomyosin ATPase cycle. The data represent the mean values for 5-7 fibres
for each experimental condition. The ®g, ¢ and N values in the presence of troponin are significantly
altered by W7 (p < 0.05). Statistically insignificant differences in the values of ®g, ¢ and N between the
WT and mutant Tpms are indicated by the symbol “ns”. Error bars indicate +SEM.

At high Ca?*, the number of myosin heads strongly bound to F-actin increases (the ®f values
decreases), the bending stiffness (¢) and flexibility of myosin head attachment to F-actin (N) practically
do not change, except for a decrease in the presence of MgADP (Figure 8). This means that W7
restores the ability of the myosin heads to bind strongly to F-actin during the ATPase cycle. However,
this does not increase the efficiency of the cross-bridge work. Indeed, the amplitude of the changes in
myosin conformation during the transition from the weak to the strong binding of myosin heads to
F-actin is lower than for WI-Tpm. The amplitude of change in the values of ®g (from MgATP to no
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nucleotides) for E173A-Tpm is 5.12° which is smaller than the amplitude observed for WT-Tpm (6.02°)
(Figures 7a and 8a).

Atlow Ca®" W7 does not affect the number of myosin heads strongly bound to F-actin (the values of
&g, practically do not change; Figure 8a), but increases the bending stiffness of F-actin when mimicking
the AM and AM™ADP states (the values of ¢ increases by 1.1 X 10726 N-m? and 1.45 x 1072 N-m? in
the absence of the nucleotide and in the presence of Mg ADDP, respectively; Figure 8b). W7 extremely
increases the flexibility of myosin head attachment to actin when modelling muscle fibre relaxation
(the value of N increases by 84%; Figure 8c). The latter is very important, since the appearance of
the cross-bridges strongly bound with F-actin at relaxation (so called rigor-like myosin heads) can
cause contracture and contribute to the development of destructive changes in muscle tissue [34].
Thus, W7 can at least partially restore the balance between the strongly- and weakly-bound myosin
heads during the ATPase cycle that is necessary for normal contractility and relaxation in muscle fibres.

Summing up, a major advantage of our in situ structural approach over previous studies in
regulation of actin-myosin interaction in protein solution using isolated filaments is that tropomyosin
orientation has been determined at physiological conditions and in an intact muscle sarcomere,
preserving the native relationship between the myosin and actin filaments. The application of
reconstituted muscle fibres has enabled us to reveal unknown details of regulation of actin-myosin
interaction by tropomyosin-troponin complex during the ATPase cycle in the muscle fibres, containing
the wild-type and mutant E173A tropomyosins. Our data have shown that Ca?* regulation of
actin-myosin interaction is mediated by conformational changes in tropomyosin-troponin complex
and actin that result in spatial rearrangement and alterations in persistence length of tropomyosin
and F-actin (Figures 3b, 5b and 6b,f) that presumably cause azimuthal shifting of the tropomyosin
strands [6-8]. The conformational changes in troponin-tropomyosin complex and F-actin initiated
by Ca?* are interdependent [6], therefore a point mutation in any of these proteins should disrupt
this interdependency and induce deregulations of actin-myosin interaction. Our work demonstrates
that the substitution E173A induces such uncoupling. Indeed, troponin loses the ability to move
tropomyosin strands towards the outer domains of actin and switch actin monomers off at low Ca®*
(Figures 3-5). That may contribute to the Ca?*-dependent changes in the rate of the ATPase and high
Ca®" sensitivity that we observed in vitro (Figure 1). In addition, the E173A mutation also may alter
the ability of tropomyosin to control the formation of the strong binding of myosin heads to F-actin
throughout the ATPase cycle.

We suggest that replacing negatively charged glutamate 173 with neutral hydrophobic alanine
may cause the salt bridge between tropomyosin residues 173 and 169 [25,26] to break, and as a result,
partially destabilize the tropomyosin molecule in the region of the site for tropomyosin binding to
troponin-T. The alteration in the tropomyosin to troponin-T interaction can result in disruption of the
ability of troponin to switch the thin filaments on and off. This can lead to inhibition of the ATPase
activity at high Ca?* (a decrease in force production) and increase in the Ca**-sensitivity and the
appearance of the rigor-like myosin heads which strongly bind to F-actin at relaxation (Figure 7c).
Similar myosin heads were observed in our earlier studies of other mutant tropomyosins, which are
associated with distal arthrogryposis and cap-myopathy. The so-called rigor-like cross-bridges can
be one of the reasons for contracture and disorganization of muscle fibres [7,8]. Therefore, it seems
important to reduce the effect of the E173A mutant, for which we used the Ca?*-desensitizer W7. It has
been shown that W7 restores the ability of troponin to activate the strong binding of the myosin heads
to F-actin at high Ca?* and reduces the number of rigor-like myosin heads at relaxation. However,
W?7 does not restore the ability of troponin to switch the thin filaments off at low Ca®* (Figure 5).
Therefore, W7 can be used more likely to reduce the damaging effect of the E173A mutation on
muscle contractility.
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3. Materials and Methods

3.1. Use of Experimental Animals

All experiments were performed on skinned muscle fibres and proteins from skeletal muscles
of rabbit (Oryctolagus cuniculus). The animals were killed in accordance with the official regulations
of the community council on the use of laboratory animals by the methods described earlier [6,8].
The study was approved by the Animal Ethics Committee of the Institute of Cytology of the Russian
Academy of Science (Assurance Identification number F18-00380, period of validity 12 October
2017-31 October 2022).

3.2. Preparation of Proteins and Their Labelling by Fluorescent Probes

Fast skeletal muscle myosin and troponin were isolated and purified by using standard
protocols [35,36]. Treatment of myosin with a-chymotrypsin for 20 min at 25 °C yielded S1 free
from the regulatory light chains [37]. S1 was modified at Cys707 with 1,5-IAEDANS as described
earlier [38]. The recombinant yy-WT-Tpm (control protein containing no mutations) and the E173A
mutant Tpm were obtained using overexpression in E. coli BL21(DE3)pLysS and subsequent purification
by ion-exchange chromatography, as described earlier [39,40]. The obtained Tpms were stored at
—45 °C for several months. The Tpms had an AlaSer N-terminal extension to compensate for the
reduced affinity of recombinant non-acetylated skeletal Tpm to F-actin [41]. Tpms were modified at
Cys190 with 5-IAF as described previously [6]. The quality of the protein preparations was determined
by SDS-PAGE (Figure 2).

3.3. Determination of Actin-Activated ATPase of Myosin

The rate of the ATPase reaction was determined for fully regulated reconstituted thin filaments
in a solution containing 1 um S1, 7 pm F-actin, 3 pm troponin, 3 um WT-Tpm or E173A-Tpm in
the following buffer: 12 mm Tris-HCl (pH 7.9), 2.5 mm MgCl,, 15 mm KCI, 20 mm NaCl, 0.2 mm
dithiothreitol and 2 mm ATP at 25 °C. The reaction was carried out at Ca?* concentrations increasing
from 1 x 10~ M to 1 x 107* M. The concentration of free Ca* in the presence of 2 mm ethylene
glycol-bis(2-aminoethylether)-N,N,N’,N’-tetraacetic acid (EGTA) was calculated using the Maxchelator
program (http://maxchelator.stanford.edu/CaEGTA-TS.htm). The reaction was stopped after 10 min by
adding trichloroacetic acid to a final concentration of 5%. The amount of inorganic phosphate formed
was determined by the method of Fiske and Subbarrow [42]. Three experiments were conducted for
each experimental condition. Statistical processing of data, calculation of the pCas( value and plotting
was carried out using GraphPad Prism 5.0 software.

3.4. Preparation and Labelling of Ghost Fibres

Models of striated muscle fibres, where due to extraction of myosin and the regulatory proteins
actin comprised up to 70-80% of the total muscle protein, were used in this work. These models
(so-called ghost fibres) were obtained from m. psoas of rabbit. The bundles of about 100 fibres were
placed into a cooled solution containing 100 mm KCI, 1 mm MgCl,, 67 mm K, Na phosphate buffer,
pH 7.0, and 50% glycerol. Single fibres were gently isolated from the glycerinated muscle bundle
and incubated during 70-90 min in the solution containing 800 mm KCI, 1 mM MgCl,, 10 mm ATP,
6.7 mm K, Na phosphate buffer, pH 7.0 [6]. Thin filaments were reconstructed with Tpm (WT-Tpm or
E173A-Tpm) and troponin and decorated with S1 by incubating the fibre in a solution containing the
corresponding proteins. The proteins that did not bind with F-actin were removed by the washing
of the fibre in the same solution without proteins. FITC-phalloidin was dissolved in methanol and
conjugated with F-actin of the fibres as described before [6,8].

The final composition of the fibres was examined using 12% SDS-PAGE gels, stained with
Coomassie brilliant blue R (Sigma-Aldrich) and scanned in Bio-Rad ChemiDocTM MP Imaging system
(Hercules, CA, USA) (Figure 2). Then, 8-10 fibres were applied to each lane. Excess of the proteins
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was removed by 60 min flushing of the fibres in the washing solution which contained 67 mm K,
Na-phosphate buffer, 100 mm KCl and 1 mm MgCl,. The ratio of WT-Tpm to the mutant Tpm that
bound to actin was determined in 15% gel by Image Lab 6.0. In addition, the ratio of the E173A and
WT Tpms was determined using fluorescence microscopy while focusing on the internal areas of the
muscle fibre. The intensity measurements did not detect any noticeable differences between the E173A
and WT Tpms in their ratio to actin in the thin filaments (data sets are not presented).

3.5. Polarized Fluorescence Measurements

Steady-state polarized fluorescence was measured in ghost fibres using a flow-through chamber
and a polarized fluorimeter as described before [16]. Fluorescence from the 1,5-IAEDANS-labeled S1
(AEDANS-51) was excited at 407 + 5 nm, and from 5-IAF-labelled Tpm (AF-TM) and FITC-labelled actin
(FITC-actin) at 489 + 5 nm; the intensity of the fluorescence (I) was recorded in the range of 500-600 nm.
The probes in ghost fibres were excited by a 250 W mercury lamp DRSH-250 [43]. The exciting light was
passed through a quartz lens and a double monochromator and split into two polarized beams by a
polarizing prism. The ordinary polarized beam was reflected at the dichroic mirror and was condensed
by a quartz objective (UV 58/0.80) on a fibre in the cell on the microscope stage. The emitted light from
the fibre was collected by the objective and led to a concave mirror with a small hole. After passing
through the lens and a barrier filter, the beam was separated by a Wollaston prism into polarized
beams perpendicular and parallel to the fibre axis. The intensities of the four components of polarized
fluorescence I, I, I, and ;I were detected by two photomultiplier tubes [43]. Fluorescence
polarization ratios were defined as: Py = (\I; — L)/ + yIo) and Py = (1o — (ID/ALIe + LIp).
The subscripts || and L designate the direction of polarization parallel and perpendicular to the fibre
axis, the former denoting the direction of polarization of the incident light and the latter that of the
emitted light.

The experimental data were assessed by a helix-plus isotropic model [43-45]. The model is
based on the assumption that there are two populations of fluorophores in muscle fibre: the ordered
fluorophores in the amount of (1-N), with their absorption and emission oscillators oriented at the
angles ®, and ®f, respectively, relative to the thin filament axis, and the disordered fluorophores in
the amount of N (oriented at the magic angle of 54.7°). The number of disordered probes N relates
to the mobility of the labelled protein. Motions of the probes relative to the protein are included in
the model as the angle y (the angle between the absorption and emission dipoles). The value of vy is
constant for the probes and is assumed to be 17° for 5-IAF bound to tropomyosin, 14° for FITC bound
to F-actin and 20° for 1,5-IAEDANS bound to S1 [43]. In this model the thin filament is assumed to
be flexible (i.e., the angle 6 between the fibre axis and thin filament is not zero). According to the
theory of a semiflexible filament, for a filament length L with one end fixed and the other end free,
sin?@ = 0.87(kT/¢) L. Thus, the bending stiffness (¢) of actin filaments can be estimated from sin?@ [45].

Measurements were carried out in the washing buffer in the absence of nucleotides (simulating
the AM state of the actomyosin complex) or in the presence of 3 mM ADP or 5 mM ATP, mimicking,
respectively, the AM™-ADP and AM**-ADP-Pi states of actomyosin in the ATPase cycle [6,46]. In the
experiments with troponin, the solutions additionally contained either 0.1 mM CaCl, or 2 mM EGTA.

Changes in the polarized fluorescence parameters (®g, € and N) were considered as reporting
on conformational changes in the protein modified with the probe [6-8]. The data were obtained
from 5-10 fibres (25-50 measurements) for each experimental condition. Statistical significance of the
changes was evaluated using Student’s t-test, p < 0.05.

Supplementary Materials: Supplementary Materials (The full-length SDS-PAGE gels) can be found at http:
/[www.mdpi.com/1422-0067/21/12/4421/s1.
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Abbreviations

Tpm tropomyosin

WT-Tpm wild-type tropomyosin

E173A-Tpm  tropomyosin with the Glul73Ala substitution

TN troponin

S1 myosin subfragment-1

1,5-IAEDANS  N-(iodoacetaminoethyl)-1-naphthyl-amine-5-sulfonic acid

5-IAF 5-iodoacetamidofluorescein

FITC fluorescein isothiocyanate

W7 (N-(6-minohexyl) 5-chloro-1-napthalenesulfonamide)

ADP adenosine 5'-diphosphate

ATP adenosine 5’-triphosphate

EGTA ethylene glycol-bis(2-aminoethylether)-N,N,N’,N’-tetraacetic acid
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