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Abstract: Developing realistic data sets for evaluating virtual screening methods is a task that has
been tackled by the cheminformatics community for many years. Numerous artificially constructed
data collections were developed, such as DUD, DUD-E, or DEKOIS. However, they all suffer from
multiple drawbacks, one of which is the absence of experimental results confirming the impotence
of presumably inactive molecules, leading to possible false negatives in the ligand sets. In light of
this problem, the PubChem BioAssay database, an open-access repository providing the bioactivity
information of compounds that were already tested on a biological target, is now a recommended
source for data set construction. Nevertheless, there exist several issues with the use of such data
that need to be properly addressed. In this article, an overview of benchmarking data collections
built upon experimental PubChem BioAssay input is provided, along with a thorough discussion of
noteworthy issues that one must consider during the design of new ligand sets from this database.
The points raised in this review are expected to guide future developments in this regard, in hopes of
offering better evaluation tools for novel in silico screening procedures.

Keywords: PubChem BioAssay; benchmarking; data set; assay selection; false positives; chemical
bias; potency bias; data curation

1. Introduction

The PubChem BioAssay database (http://pubchem.ncbi.nlm.nih.gov/bioassay) was first introduced
in 2004 as a part of the PubChem project initiated by the National Center for Biotechnology Information
(NCBI), aiming to provide the scientific community with an open-access resource where experimental
bioactivity high-throughput screening (HTS) data of chemical substances can be found [1-5]. Starting out
with small-molecule HTS input from the National Institute of Health (NIH), the database now gathers
data from over 700 different sources, including governmental organizations, world-renowned research
centers, and chemical vendors, as well as other biochemical databases, featuring over 260 million
bioactivity data points reported in both small-molecule assays and RNA interference reagents-screening
projects [5-11]. Journal publishers are also acknowledged for significant contributions to the growth
of PubChem BioAssay, as the database has received experimental input from more than 30 million
scientific publications in response to requests from over 400 peer-reviewed journals (as of 30 April
2020) [10-12], denoting a constant and tremendous effort from many sectors of the scientific community
to support the free sharing of HTS data.

Soon after its introduction, PubChem BioAssay has established itself as a reliable and highly
queried public repository where information on each biological assay, from overall descriptions to
detailed screening protocols and from input data to assay results, as well as the chemical features
and bioactivities of all tested molecules, can be easily accessed and downloaded directly from
the webpage. The two search options (limits search and advanced search) allow a systematic and
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thorough investigation of the assays deposited on the database, according to various parameters, e.g.,
assay type, target type, or quantity of featured substances, offering a practical data collection and
analysis tool [13]. Information on related targets and same-project assays enables a more complete
look into the body of screening campaigns on the same or closely related biological targets. Crosslinks
to the NCBI Entrez information retrieval system [14], PubMed Central [15], and the Protein Data
Bank [16] also facilitate research relying on the use of data extracted from the resource. Various updates
have been brought to PubChem BioAssay over the years, enlarging the size of the available archival
data, introducing new features to the web interface, and improving the data-sharing capability [17-20].
Several million users have been procuring data from the website and its different programmatic services
each month [21], highlighting the importance of this public database as a key source of chemical
information for researchers, students, and the general public from around the world.

In this review article, a quick summary of the assays and compounds deposited on PubChem
BioAssay, along with an overview of data sets built by the cheminformatics community upon the data
retrieved from this repository, will be provided. We also give a thorough discussion of noteworthy
issues that have to be addressed prior to utilizing such data in cheminformatics-related projects, with
illustrations observed in our recently introduced LIT-PCBA data collection [22], which was constructed
from PubChem BioAssay data.

2. PubChem BioAssay Statistics: Assays and Compounds

As of 30 April 2020, there were 1,067,896 assays deposited on the database. The vast majority
of them (99.98%) involved small-molecule screening; only 177 assays were conducted with RNA
interference reagents. These assays are classified according to the number of tested substances
(chemical samples provided by data contributors [8]), the number of active substances, the screening
stage, and the target type, as listed in Table S1. It can be deduced that most PubChem assays are
small-scale screening projects, with over 99% of them conducted on fewer than 100 substances and
nearly 94% giving no more than nine actives (Figure 1). The screening stage was, in most cases
(about three-quarters), not specifically annotated. Assays giving confirmatory results regarding
the bioactivities of tested molecules account for a larger proportion than primary screens, though
dose-response curves are not always provided. Interestingly, nearly 75% of available assays do not
have a specific biological target (i.e., a protein, a gene, or a nucleotide) but are rather cell-based
assays identifying molecules that interfere with a certain cell function or an intracellular activity
(e.g., tumor cell growth inhibitors, lipid storage modulators, or HIV-1 replication inhibitors) or are
pharmacokinetics studies. On the other hand, some assays take multiple macromolecules as targets, e.g.
AID (assay identifier) 1319. The utility of data extracted from these assays in cheminformatics-related
research will be later discussed in the manuscript.

A total of 102,694,672 compounds were tested in at least one PubChem bioactivity assay (as of
30 April 2020), over 95% of which were organic molecules (i.e., molecules bearing no atom other
than H, C, N, O, P, S, F, Cl, Br, and I). The term “compounds”, according to PubChem, refers to
unique chemical structures that were extracted and standardized from the community-provided
substances [8]. A question always raised when it comes to drug design is whether a chemical
compound is drug-like or not, or if a molecule has physicochemical properties that are deemed
favorable for oral administration in humans. Several rules of thumb have addressed this issue,
giving criteria largely employed to predict a compound’s drug-likeness, including the Lipinski’s
rule of five [23,24], the Ghose filter [25], and Veber’s rule [26]. PubChem compounds are analyzed
according to each criterion [23-27], and the statistics are given in Table S2. Statistical results show that
most compounds tested in PubChem bioactivity assays satisfy the aforementioned rules, indicating
their potential to become orally active drugs (Figure 2). However, only 1% of them (over 1 million
compounds) were deemed active in at least one screening experiment, highlighting the miniature
portion of active molecules available in the database and implying an average “hit rate” lower than
those observed in artificially constructed data sets such as DUD [28], DUD-E [29], or DEKOIS 2.0 [30].
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The other compounds were either biologically inactive in all assays where they were tested or were left
“inconclusive” in terms of bioactivity. These “inconclusive” compounds, present in various AIDs such
as 1345009, 1345010, or 743075, have to be discarded when data extracted from PubChem BioAssay are
used in cheminformatics-related research. On the other hand, compounds being repeatedly inactive in
HTS assays, dubbed “dark chemical matter” [31], are, in fact, important to keep, notably for identifying
ligands of novel targets (e.g., protein-protein interfaces).

A [1000;9999] [10,000;99,999] B [50;99] [100;999]
9 0,
0.13% 0.04% 0.33%
[100;999] 2 100,000 [10;49]

99.34% 93.73%

Primary screening
0.14%
Confirmatory,
dose-response curves not provided
25.87%

Confirmatory,
dose-response curves provided

0.37%

Summary
0.07%
Screening stage
not annotated
73.55%

Figure 1. Partition of small-molecule PubChem bioactivity assays according to the number of tested
substances (A), the number of active substances (B), and the screening stage (C). It is observed that
most assays are small-scale screening projects in which fewer than 100 substances were tested and no
more than nine actives were identified. All statistics were updated as of 30 April 2020.

Compounds satisfying no Compounds satisfying Molecular mass > 500 Da
more than 2 criteria 3 out of 4 criteria 2.92%
15.07% 13.78% ClogP > 5

10.41%

> 10 H-bond acceptors
0.25%

> 5 H-bond donors
0.20%

Compounds satisfying all 4 criteria
71.15%

Figure 2. Partition of compounds tested in PubChem bioactivity assays according to four criteria of
the Lipinski’s rule of five. It is observed that most compounds (over 70%) satisfy all criteria. Nearly
85% of deposited compounds violate no more than one criterion. On the other hand, only 0.1% of all
compounds (over 130,000) do not satisfy any criterion. Statistics were updated as of 30 April 2020.
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3. What We Can Do with PubChem BioAssay Data: From the Data Set Construction Point of View

Being a wealth of experimental bioactivity data constantly gathered from many parts of the world,
PubChem BioAssay offers ample opportunities for scientists from various disciplines, e.g., biochemistry,
pharmacy, or cheminformatics, to exploit this abundant resource for both teaching and researching
purposes. Access to the database is facilitated by numerous online services, in both manual (via
PubChem limited and advanced search engines [32,33]) and programmatic ways (via access routes
such as the Power User Gateway (PUG) [34], PUG-SOAP [35], PUG-REST [36], PUG-View [37],
the PubChem RDF REST interface [38], or the Entrez Utilities [14]). Recently, a novel web service
called ScrubChem was introduced [39], gathering PubChem BioAssay data that were already reparsed,
digitally curated, and improved, allowing a systematic analysis of all targets, chemicals, and assays
featured on the database at low computational costs, after which the cleaned data can be downloaded
for use in modeling applications. Upon acquiring experimental input from the resource, scientists
may use it in various ways to achieve their research objectives. Several review articles have been
published in this regard [7,40,41], summarizing a wide range of studies that were conducted on
the basis of PubChem BioAssay data [42-60]. In this section, we only place our focus on the research
featuring benchmarking data collections that were constructed by the cheminformatics community
from PubChem’s experimental results as a means of validating in silico screening protocols.

Throughout the years, various artificially constructed data sets have been developed [28-30,61-71],
including DUD, DUD-E, or DEKOIS 2.0. However, the design of these collections suffers from many
drawbacks, as demonstrated in several studies [72-76]. One of them is the unknown potency of
presumably inactive molecules, also known as “decoys”, which were usually extracted from the BIOVIA
Available Chemicals Directory (ACD) [77] or the ZINC database [78]. This means there is no guarantee
that the “decoys” do not exert the desired bioactivity against the protein target, due to the lack
of relevant experimental evidence, and it is therefore very likely that false negatives exist among
the inactive molecules. Using data from PubChem BioAssay as the input for database construction,
on the other hand, helps alleviate this problem. A number of data collections of different sizes
have been designed from PubChem data and introduced to the scientific community, offering better
references for evaluating novel virtual screening methods. Not counting nonpublicly available data
sets (e.g., the three small- and medium-sized ligand sets that we designed in 2019 to validate our new
pharmacophore-based ligand-aligning procedure [79]), in this section, we only mention open-access
ones, including the Maximum Unbiased Validation (MUYV) data sets [80], the UCI Machine-Learning
Repository [81], the BCL::ChemlInfo framework by Butkiewicz et al. [82], the Lindh et al. data
collection [83], and our recently introduced LIT-PCBA (Table 1) [22].
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Table 1. Overview of the main open-access benchmarking data sets developed from experimental PubChem BioAssay data.

Data Sets Year S;;Tc)le; eoti MNOILTSZ; (;’fer Activei{t:;iI:active Assay Data A?tsi;:?;ts Chzmi:l gias Virtual Screening Suitability
Lieand Set Primary Confirmatory . .. 4 voide Ligand-Based Structure-Based
MUV [80] 2009 17 15,030 2x1078 v v v v v v
UCT [81] 2009 21 69 to 59,795 2x107* t0 0.33 v v v
Butkiewicz etal. [82] 2013 9 61,849 to 344,769 5x1074to7 x 1073 v v
Lindh et al. [83] 2015 7 59,462 to 338,003 7%x105to1x 1073 v v v v v v
LIT-PCBA [22] 2020 15 4247 to 362,088 5% 1075 t0 0.05 v v v v v

2 Ligand-based approaches are preferred. ® Unbiased training and validation sets are provided for machine learning. MUV: maximum unbiased validation.
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3.1. The MUV Data Sets

The Maximum Unbiased Validation (MUV) data sets, built by Rohrer and Baumann in 2008 and
published in early 2009 [80], are among the first benchmarking sets of compounds whose bioactivities
were experimentally determined and retrieved from PubChem BioAssay, which, as a result, avoids
the issue regarding unknown potency values of presumably inactive molecules (“decoys”) inherent in
other data sets [80]. Based upon 18 pairs of primary HTS and corresponding confirmatory dose-response
experiments, whose biological targets range from kinases, G protein-coupled receptors (GPCRs), nuclear
receptors to protein-protein interactions, 17 medium-sized ligand sets (15,030 compounds), each with
an active-to-inactive ratio at 2 x 1073, were generated, implying smaller hit rates in comparison to
those of other databases [76,80]. Specifically designed to be maximally unbiased, the MUV data sets
were prepared according to a workflow that removed assay artifacts, prevented artificial enrichment,
and reduced “analog bias” in the composition of their ligands. A series of consecutive filters was first
applied to eliminate “false positives” among the active molecules, including promiscuous aggregators,
frequent hitters exerting off-target or cytotoxic effects, as well as chemicals which are likely to spoil
the assay’s optical detection method. A subsequent “chemical space-embedding filter”, encoded by
vectorized descriptors related to the physicochemical properties of each molecule (e.g., molecular
weight and number of hydrogen bond donors/acceptors), was next employed to rule out actives
that were not adequately embedded in inactive compounds, ensuring that the inactive sets did not
significantly differ from the sets of actives, thus avoiding possible artificial enrichment. Finally, a refined
nearest neighbor analysis was applied, based on a “nearest neighbor function” and an “empty space
function”, to reduce both the level of self-similarity among the actives and the separation degree
between the active and inactive molecules, selecting only 30 true actives and 15,000 true inactives that
were optimal as regards the criterion of spatial randomness for each ligand set. Post-design analyses
on the resulting data sets showed that (i) there existed a large number of distinct molecular scaffolds
presented by the ligands (1.2 compounds/scaffold class), denoting the absence of “analog bias” and
a good representation of drug-like chemical space, (ii) the correlation between the degree of data set
clumping and retrospective virtual screening performance was no longer observed after the MUV
design, suggesting that the final ligand sets were indeed not affected by benchmarking data set bias,
and (iii) the MUV data were significantly less biased than the then-standard DUD data set, as evidenced
by a lower molecular self-similarity level and a higher difficulty in distinguishing true actives from true
inactives by ligand-based virtual screening simulations. The introduction of the MUV data collection
therefore marked a milestone in the quest to construct realistic data sets entirely from experimental
results with little design bias and applicability to evaluate both ligand-based and structure-based in
silico methods, serving as an inspiration for future database development.

3.2. The UCI Repository

The UCI Machine-Learning Repository was introduced in 2009 [81]. On the basis of data
retrieved from 12 PubChem bioactivity assays, both primary (n = 7) and confirmatory (n = 5), a total
of 21 medium- and small-sized data sets (69-59,795 compounds) were generated, either by using
separately primary or confirmatory screening data, or by combining results from a primary assay
and its corresponding confirmatory screen. In the latter case, compounds that were deemed as active
in the primary experiments but later denounced as inactive by the confirmatory readouts were all
considered inactive in the combined data sets (instead of being discarded, as in the MUV collection).
The active-to-inactive ratio ranged from 2 x 10~ to 0.33. Each ligand set was then randomly split into
a training-and-validation set (80% of the population) and an independent test set (the other 20%) for
machine-learning algorithm assessments [81]. Despite being one of the earliest remarkable attempts at
using experimental data from PubChem BioAssay for data set construction, the UCI database itself has
several limitations. Firstly, though the author offered 21 data sets in total, only four of them, which
were built by combining primary and confirmatory results, were recommended. Reasons for this lie
in (i) the high portion of false positives recorded in primary experiment-based ligand sets that casts
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doubt on the solitary use of such data for evaluating in silico screening, (ii) the hit rates observed in
the sets built upon confirmatory assays alone are too high (7-33%) to be deemed realistic, notably in
comparison to those of real screening decks, and (iii) the size of some data sets is too tiny (tens of active
molecules among fewer than 100 compounds) for virtual screening methods (especially ligand-based
ones) to give any meaningful results. Secondly, due to the lack of high-quality biological target 3D
structures for several bioassays (e.g., AIDs 456 and 1608) and insufficient information on possible
binding site(s) of the molecules, the design focus of this data collection is implied to be limitedly placed
on a ligand-based (machine-learning) approach evaluation. Thirdly, the issue of physicochemical
bias in the composition of active and inactive molecules that may lead to artificial enrichment and
an overestimation of the virtual screening performance, which had already been raised in the MUV
paper [80], was not addressed throughout the development of these data sets, raising questions on
the real benefits of using such data for validating novel in silico screening procedures.

3.3. The Butkiewicz et al. Data Collection

Another PubChem BioAssay-based data collection was introduced in 2013 by Butkiewicz et al.
as a part of the cheminformatics framework BCL::ChemlInfo [82]. Nine medium- and large-sized
data sets (>60,000 compounds) were constructed upon collating results from relevant confirmatory
screens, thus avoiding the issue of false positives commonly observed when only primary readouts
are accounted. Diverse classes of protein targets are covered in the database, including three GPCRs,
three ion channels, the choline transporter, the serine/threonine kinase 33, and the tyrosyl-DNA
phosphodiesterase. Active-to-inactive ratios range from 5 x 107 to 7 x 1073, implying small hit rates
that are all lower than 0.8% (<0.1%, in most cases). Though the number of true actives is deemed
sufficiently large (>170 actives for each ligand set) and the hit rates are generally low, one drawback
of this database is that the problems regarding assay artifacts, analog bias, and artificial enrichment
due to physicochemical differences between active and inactive molecules (which need to be properly
addressed during the construction phase) were completely overlooked. These issues are even more
critical when data sets intended for evaluating ligand-based virtual screening methods (which is, in
fact, the design focus of this data collection) are developed. There is, hence, no guarantee that only
a little chemical bias exists in the composition of these ligand sets, and it is likely that in silico screening
performances could be overestimated due to such unconsidered issues.

3.4. The Lindh et al. Data Collection

In 2015, Lindh et al. introduced a novel data collection designed for evaluating both ligand-based
and structure-based virtual screening methods [83]. A rigorous procedure of analyzing the whole
PubChem BioAssay database was first carried out—after which, only assays (excluding cell-based
and multiplex ones) that were performed with more than 1000 compounds (at least 20 of which were
identified as active) against a single protein target that had been co-crystallized with a drug-like
molecule were kept. The sole protein structure chosen to represent each target had to be of the same
species as that used in the corresponding high-throughput screen, must not be bound to any DNA
fragment or cofactor other than ATP (to avoid the possibility of multiple binding sites), and had
the highest resolution (<3 A), as well as the fewest missing atoms, among the available structures on
the Protein Data Bank [16]. Only 19 bioassays, both primary (n = 7) and confirmatory (n = 12), related
to seven protein targets were retained. Molecules having been identified as active in primary assays
but not validated by confirmatory screens were all discarded from the active ligand sets. The remaining
active compounds were then subject to the Hill Slope filter (which takes inspiration from the MUV
database) and the pan-assay interference compounds (PAINS) filter [84-89] to eliminate potential false
positives. In the end, seven medium- and large-sized data sets (>59,000 compounds) were constructed,
with active-to-inactive ratios ranging from 7 x 107 to 1 X 1073, indicating hit rates significantly
lower than those commonly seen in other databases. It was observed that a large number of unique
Bemis-Murcko scaffolds were present among the active molecules (1.4 compounds/scaffold), implying
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that there was little analog bias and substantial structural diversity in the active set composition.
Though no direct measure was taken to reduce the artificial enrichment due to differences between
the true actives and true inactives, retrospective virtual screening on the seven final data sets using
the physicochemical property similarity search (1D approach) and molecular docking was carried
out, suggesting that the docking performance was not based on artificial enrichment, as the 1D
method gave much lower enrichment in true actives than the structure-based approach, in most cases.
The Lindh et al. data collection is therefore considered the next remarkable step towards employing
experimental input from PubChem BioAssay to build realistic data sets suitable for both ligand-based
and structure-based in silico screening evaluations while addressing (and avoiding, to a considerable
extent) most issues inherent in many other databases, including false positives, analog bias, and
artificial enrichment. However, due to the unreasonably rigorous data quality filters that were applied
during the construction of this data collection, the quantity of target sets offered by the authors is
relatively small (only seven), and several important protein families that have been largely investigated
by biochemists, e.g., GPCRs and nuclear receptors, are neglected (only two kinases were included in
the database).

3.5. The LIT-PCBA Data Sets

Five years later, we (Tran-Nguyen et al.) developed and introduced a novel data collection
entitled LIT-PCBA [22]. A rigorous systematic search was first performed on the ensemble of PubChem
bioactivity assays, keeping only confirmatory screens conducted with over 10,000 substances, giving
no fewer than 50 active molecules, against a single protein target having at least one crystal Protein
Data Bank (PDB) structure bound to a drug-like ligand of the same phenotype as that of the confirmed
actives. A total of 21 assays corresponding to 21 targets covering 11 diverse protein families, including
three GPCRs, three kinases, and five nuclear hormone receptors, were retained. Contrarily to the data
sets of Lindh et al., in LIT-PCBA, all relevant protein-ligand structures available on the Protein Data
Bank were kept, providing 162 “templates” in total. Taking inspiration from the MUV paper, we also
addressed the issues of false positives, artificial enrichment, and analog bias during the construction of
the LIT-PCBA data sets. The active and inactive substances retrieved from PubChem BioAssay were
subjected to a series of consecutive filters, which ruled out inorganic chemicals (bearing at least one
atom other than H, C, N, O, P, S, F, Cl, Br, and I); frequent hitters; nonspecific binders; promiscuous
aggregators; spoilers of optical detection methods; compounds with extreme molecular properties; and
ligand preparation failures. Physicochemical differences between active and inactive substances were
mitigated, as all molecular properties of the remaining ligands were kept within the same range, thus
avoiding the presence of molecules that were too different from others in terms of physicochemical
features. Retrospective virtual screening by ligand-based methods (2D fingerprint similarity search
and 3D shape overlapping) on the resulting data collection confirmed that there was indeed little
chemical bias in the composition of the ligand sets, as both approaches generally gave comparable
performances to random selection. The results from molecular docking were also considered along
with those of the two ligand-based approaches, leading to the selection of 15 small- to large-sized target
sets (4247-362,088 molecules) that finally constituted the LIT-PCBA collection. The active-to-inactive
ratios span over a relatively wide range, from 5 X 107 to 0.05, but are below 3 x 1072 in most cases,
implying smaller hit rates than those of many other databases. Moreover, active substances included in
LIT-PCBA are generally less potent than those found in DUD-E and ChEMBL, which imposes a more
difficult challenge for in silico screening. Each ligand set was then further unbiased by the asymmetric
validation embedding method (AVE) [73], yielding validation and training subsets with minimized
overall bias that are ready for benchmarking novel virtual screening procedures. To the best knowledge
of the authors, LIT-PCBA is now the latest attempt at constructing realistic data sets from confirmatory
PubChem BioAssay data, possessing numerous advantages. Firstly, a large variety of protein targets
(including heavily researched ones) are featured in the collection, and all available PDB structures are
accounted. This practice takes into consideration at the same time the entire chemical diversity of
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known target-bound ligands and the complete conformational space accessible to the investigated
target. Secondly, assay artifacts and chemical bias, as well as potency bias, in the composition of
ligand sets were avoided or reduced, preventing the possible overestimation of in silico screening
performances. Thirdly, the eventual data-unbiasing step based on chemical space analyses offers
a rational split of every existing set of molecules (instead of the random division that was previously
observed in the UCI repository design). This further ensures the absence of both obvious and hidden
bias in the final data sets. Lastly, thanks to the presence of at least one high-quality 3D structure with
well-defined binding site(s) that represents each protein target, and the aforementioned chemically
unbiased ligand set composition, the application of LIT-PCBA is thus not intended only for evaluating
ligand-based or structure-based virtual screening alone but, rather, for both and, especially, for the field
of machine-learning algorithm development. There exist, however, some limitations in the design of
this data collection, such as the relatively high hit rates of some ligand sets (2-5%) or the number of
remaining true actives for several targets that is quite small (tens of molecules) for in silico methods to
give any meaningful results. The current situation, as a consequence, still leaves plenty of room for
further improvements, and more data sets based on experimental bioactivity assays are encouraged to
be constructed, with inspirations taken from the existing collections mentioned above, to offer more
realistic sets of molecules that mimic those employed in actual high-throughput screening campaigns
and to provide a better evaluation of novel virtual screening approaches.

4. Noteworthy Issues with Using Data from PubChem BioAssay for Constructing Benchmarking
Data Sets

As demonstrated in the literature and the previous section, data retrieved from PubChem BioAssay
may be used for various purposes in cheminformatics-related research, including benchmarking data
set construction. Due to the availability of a wide range of assays with diverse ligand sets that
the database offers, it is important to be conscious of all the issues that may arise regarding the usage
of such large data [22,80,83], in terms of assay selection and data curation, to properly employ these
abundant resources.

4.1. Assay Selection for Evaluating Virtual Screening Methods

4.1.1. Assay Selection as Regards the Data Size and Hit Rates

One of the first questions that we have to face when using data from the PubChem BioAssay
repository to build benchmarking data sets concerns the assay(s) that should be chosen. As mentioned
earlier in the manuscript, as of 30 April 2020, there were over a million assays deposited on the database.
However, only a few of them can be deemed suitable for method evaluation purposes. There are many
factors that one should consider before deciding which assay(s) to use. We herewith propose, as primary
conditions to filter out unsuitable assays, the selection of only small-molecule HTS assays yielding
biologically active molecules. RNAi assays, on the other hand, were conducted on microRNA-like
molecules comprising twenties of base pairs that violate most drug-likeness rules of thumb and are,
therefore, not of great interest in small-molecule drug discovery. For the sake of having an acceptable
amount of ligands in the data that may give a meaningful retrospective evaluation of in silico screening
methods, we recommend that only assays with no fewer than 10 actives selected among at least 300
tested substances should be kept. Data sets including only nine or fewer actives are considered too
small and would be over-challenging for virtual screening, especially for machine-learning algorithms
to learn anything meaningful. On the other hand, assays conducted with fewer than 300 substances
while yielding more than 10 actives give hit rates that are deemed too high in comparison to those
typically observed in experimental screening decks [22], even higher than those of existing data sets
such as DUD [28], DUD-E [29], or DEKOIS 2.0 [30]. There may exist, of course, assays with high hit rates
that remain after this initial check (e.g., AIDs 1, 3, 720690 and 720697); however, the aforementioned
conditions are proposed to demonstrate that there is only a very small portion of available PubChem
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assays (0.20%) whose data may be considered for evaluating virtual screening protocols (Figure 3).
The ligand sets of the remaining assays need to be further examined and may be filtered to ensure
that their hit rates are as close as possible to those of experimental HTS campaigns and that they are
suitable for the nature of the screening method (ligand-based or structure-based).

1,067,896 PubChem BioAssays

AID
. 7
2020
[\

a -
Small-molecule high-
throughput screening assays
\ J

[ Assays with compounds
reported as biologically
\ active )

5630 assays s \
Assays conducted with at

least 300 tested substances
P

.

2239 assays

¢
c
2117 remaining assays (0.20%)

Figure 3. Primary selection of PubChem assays whose ligand sets should be further considered
for evaluating virtual screening methods. We herewith recommend the use of only small-molecule
high-throughput screening (HTS) assays giving at least 10 biologically active molecules among no
fewer than 300 tested substances. Overall, there are only 2117 assays (0.20% of 1,067,896 assays in
total, as of 30 April 2020) that remain, indicating a very small portion of PubChem assays that may be
considered after this initial check.

4.1.2. Assay Selection as Regards the Nature of Virtual Screening

As demonstrated in various papers, a ligand set may be appropriate for the evaluation of
only ligand-based in silico approaches [81,82], or only structure-based methods [76], or sometimes
both [22,80,83]. This depends on the quantity and the chemical composition of all molecules that
constitute the data set and the availability and the quality of 3-dimensional structures of relevant
protein targets, as well as the definition of binding site(s) in which active substances exert their
bioactivity. Data sets retrieved from the PubChem BioAssay database, being no exception, have to be
thoroughly examined according to the criteria mentioned above before being used to assess a certain
virtual screening method. Ideally speaking, an assay whose ligands are considered for evaluating
structure-based approaches needs to be conducted on a protein target whose structure has been solved
at a high resolution, with no ambiguity in terms of electron density, with at least a molecule of the same
phenotype (agonist, antagonist, inhibitor, etc.) as that of the active compounds. However, targets for
which no crystallographic or electron-microscopic structure is deposited on the Protein Data Bank may
also be considered if high-quality homology models are available. An example of this can be seen in
the assay AID 588606, featuring inhibitors of the yeast efflux pump Cdrl. Though the protein target,
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the ABC (ATP-binding cassette) drug-resistance protein 1 of Candida albicans (CaCdr1p), has not yet
been available in the Protein Data Bank with a known inhibitor, a homology model of this transporter
was generated using the human ABCG5/G8 crystal structure as the template, and possible binding sites
located in the transmembrane domain were identified and validated by means of atomic modeling and
systematic mutagenesis, confirming their essential role in Cdrlp-induced multidrug resistance [90].
However, caution should be taken when one uses such artificially constructed models as the input
for structure-based screening approaches. On the other hand, the presence of many nonoverlapping
binding sites (orthosteric versus allosteric) in the 3D structures of protein targets (as observed in those
of AIDs 1469, 624170, or 624417), either crystallographic or not, may ultimately become a reason for
failures in screening PubChem molecules on such proteins, especially when there is no information on
the exact binding site of the tested substances that can be deduced from the assay description [22].
As virtual screening performances may vary quite significantly depending on the protein structure
employed as the input [22], one should therefore be cautious when using data of these assays for
evaluating structure-based screening procedures, lest they give poorer performances than expected
due to external reasons that are not related to the methods themselves. Another point that should not
be overlooked concerns assays that were conducted on substances derived from only a few chemical
series, as they may give rise to bias that overestimates the screening performance, notably that of
ligand-based approaches. If another similar assay on the same target but with a more diverse ligand
set (in terms of chemical features) is available, one is recommended to make use of this assay instead.
Otherwise, the “biased” data need further tuning to be deemed suitable for evaluation purposes, e.g.,
by filtering out “redundant” compounds (this point will be thoroughly discussed in the next section
of this manuscript). However, this ligand-filtering process should not lower the number of active
substances to a value so small that ligand-based methods or machine-learning algorithms cannot come
up with meaningful results.

4.1.3. Assay Selection as Regards the Screening Stage

Additionally, the use of data from “primary assays” should be subject to caution, as the activity
outcome was only determined at a single concentration and has not yet been validated on the basis
of a dose-response relationship with multiple tested concentrations [3,91]; hence, the potency values
of active molecules are not confirmed. As a matter of fact, some substances originally deemed as
active in a primary assay may be denounced as inactive by a subsequent confirmatory screen, as seen
in AIDs 449 and 466 or AIDs 524 and 548. We therefore recommend that primary screening data
should only be used if there exists a confirmatory assay that validates the potency of the selected active
molecules. This practice was already observed in the construction of the MUV data sets by Rohrer and
Baumann [80], in which pairs of primary and corresponding confirmatory screens were employed,
whose data were then combined to form the final ligand sets. In this manner, the large pool of inactive
substances from the primary assay is not neglected, and the bioactivities of the confirmed hits are
indeed guaranteed, affording a vast data set (usually implying a low hit rate) with fully validated
active components. Otherwise, the output data of the primary screens alone should be used with
great caution, due to the risk of assuming “false positives” that may later falsify the virtual screening
outcomes. An exhaustive search on the whole PubChem BioAssay database is therefore of paramount
importance to select relevant data sets for the retrospective assessment of in silico screening protocols
in order to ensure the quality of such evaluations.

4.2. Detecting False Positives among Active Substances

Concerns have long been raised over the presence of chemical-induced artifacts in screening
experiments, leading to false positive findings among the molecules deemed as active [22,80,83-89,92].
Misinterpretation of the assay results and subsequent inaccurate conclusions may stem from various
reasons largely discussed in the literature. Among them are off-target effects of compounds exerting
unspecific bioactivities, possible biological target precipitation by organic chemical aggregations,
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inherent fluorescent properties of substances that interfere with fluorescence emission detection
methods, or luciferase inhibitory activities of molecules that spoil light emission measurements in
reporter gene assays [80]. Active substances whose modes of action are subject to the aforementioned
issues must therefore be removed from the PubChem BioAssay ligand sets before the data can be used
for retrospective virtual screening purposes. Rohrer and Baumann (2009) addressed this problem
during the construction of their MUV data sets from the database, designing a so-called “assay artifacts
filter” aiming to eliminate all active ligands that likely become false positives, thus prevent them
from affecting subsequent screening performances. The filter is composed of three filtering “layers”,
including (i) the “Hill slope filter” after which the actives whose Hill slopes for the dose-response
curves are lower than 0.5 or higher than 2 are eliminated, (ii) the “frequency of hits filter” that keeps
only the molecules deemed as active in no more than 26% of the bioactivity assays in which they
were tested, and (iii) the “auto-fluorescence and luciferase inhibition filter” that rules out compounds
exhibiting auto-fluorescent properties along with inhibitors of luciferase [80]. All frequent hitters,
unspecific binders (molecules with multiple binding sites), experimentally determined aggregators,
and spoilers of optical detection methods are, as a result, removed from the PubChem data sets after
these filtering steps. Such filters indeed have a profound impact on the population of active substances,
as over a half of them were deleted by these “false positives filters” during the development of our
recently introduced LIT-PCBA data set (Figure 4) [22]. This drastic decrease in the number of confirmed
actives also helps lower the “hit rates” observed in our ligand sets (as only the actives were subjected to
these filters), thus bringing them closer to those typically reported in high-throughput screening decks
in reality and lower than those of artificially constructed data sets such as DUD [28], DUD-E [29], or
DEKOIS 2.0 [30]. This not only denotes the particular challenge brought about by our data set but, also,
highlights the importance of detecting and removing false positives in assembling active substances.

50,000
40,000

30,000

20,000
- I I
0

Beginning Step 1 Step 2a Step 2b Step 2¢ Step 3 Step 4

Number of active substances

Filtering steps

Figure 4. Total number of active substances that remained after each filtering step was applied to
PubChem BioAssay ligands during the construction of the LIT-PCBA data set [22]: Step 1—inorganic
molecules; Step 2a—actives with Hill slopes <0.5 or >2; Step 2b—actives with a frequency of hits >0.26;
Step 2c—actives found among 10,892 confirmed aggregators, luciferase inhibitors, or auto-fluorescent
molecules; Step 3—substances with extreme molecular properties; and Step 4—3D conversion and
ionization failures. It can be observed that the sole step 2a removed the most active molecules (over
50% of them), thus significantly reducing the population of true actives in comparison to that of
true inactives.

4.3. Possible Chemical Bias in Assembling Active and Inactive Substances

As previously mentioned, a noteworthy issue of raw data published on PubChem BioAssay lies
in the chemically biased composition of active and inactive substances for a particular target. More
specifically, there may exist “analog bias” [93] present among the molecules constituting a ligand
set, which likely leads to overly good performances of virtual screening methods. This bias is
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generally observed in data collections whose actives (or inactives) share similar chemical features,
meaning a large number of these molecules are issued from the same (or similar) scaffolds [76].
As ligand-based and structure-based screening methods tend to recognize compounds of the same
chemical series, such bias may result in an overestimation of in silico screening performances [76].
Besides, significant differences between active and inactive molecules, in terms of physicochemical
properties, such as molecular mass, octanol-water partition coefficient, or atomic formal charge, may
as well be the source of artificial enrichment [80]. Raw experimental data from PubChem BioAssay
therefore need to be finely tuned before further use, by filtering out most compounds representing
the same scaffold while ensuring that the physicochemical parameters of all included molecules are
kept within the same range, so that the chemical bias, if there were any, in the ligand set would be
reduced [76]. An example of the importance of filtering the input data can be seen in the MTORC1
ligand set (Figure 5) included in our recently introduced LIT-PCBA data collection [22], comprising
the molecules tested for an inhibitory activity towards the mTORC1 signaling pathway, targeting
the human serine/threonine-protein kinase mTOR.

A . I Full PubChem BioAssay MTORC1 data
@ 40 B LIT-PCBA MTORC1 data
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Figure 5. Number of substances falling into each scaffold cluster that includes more than 10 true
active molecules (A) or 600 true inactive molecules (B). Bemis-Murcko frameworks derived from
the input molecules were first created by trimming each active and each inactive separately with
Pipeline Pilot 19.1.0.1964 [94,95]. A hierarchical scaffold tree consisting of canonical SMILES (simplified
molecular-input line-entry system) strings that represent the rings, linkers, and double bonds in
each molecule was next generated according to an iterative ring-trimming procedure described by
Schuffenhauer et al. (2007) [96]. All ligands were then clustered based on the smallest scaffold at
the root of the scaffold tree for each ligand. The number that follows each hash symbol indicated in this
figure refers to the ordinal number of a scaffold cluster as issued by Pipeline Pilot. Details of all clusters
can be found in the Supplementary Materials (Tables S3 and S4).
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As to be expected, the full PubChem BioAssay data feature a larger number of scaffold clusters,
with 59 clusters for the active set and 1151 clusters for the inactive set (against 41 and 1106 clusters
in the LIT-PCBA active and inactive ligand sets, respectively). However, only 18 (out of 342; 5.26%)
true actives possess unique scaffolds, meaning nearly 95% of all active substances in the full PubChem
ligand set share chemical similarities with at least another active. Notably, nine clusters are reported
to have more than 10 representatives (Figure 5A and Table S3). The pruned LIT-PCBA active ligand
set, on the other hand, includes no cluster with over 10 members and 21 clusters (51.22%) with only
one substance for each. This means nearly a quarter of the LIT-PCBA active molecules (over four
times the value observed in the full PubChem set) possess unique scaffolds. Moreover, the number of
ligands falling into each cluster in the filtered LIT-PCBA active set is greatly reduced in comparison
to that of the unfiltered data (Figure 5A and Table S3). On the other hand, around 25% of PubChem
molecules were deemed to have extreme physicochemical properties and were therefore discarded
as the MTORC1 ligand set was constructed [22]. These observations suggest that (i) there is indeed
significant chemical bias in the full PubChem active ligand composition, and (ii) the filtering steps that
were applied to build the LIT-PCBA data collection helped reduce this bias by lowering the number of
active substances sharing the same chemical features (thus avoiding the presence of too many molecules
issued from the same chemotype) and by ruling out compounds that were too different from others
(hence, preventing artificial enrichment). A similar conclusion can be drawn from the full PubChem
inactive ligand set and the corresponding LIT-PCBA data (Figure 5B and Table S4). The benefit of
filtering the PubChem ligands in reducing the chemical bias is again highlighted as the data sets
undergo a subsequent unbiasing procedure using the previously described asymmetric validation
embedding (AVE) method [73], which measures pairwise distances in the chemical space between
molecules belonging to four sets of compounds (training actives, training inactives, validation actives,
and validation inactives; training-to-validation ratio = 3) based on the ECFP4 fingerprints. A nearly
zero overall bias value (0.001) was obtained from the LIT-PCBA MTORC1 ligand set after only seven
iteration steps of the AVE genetic algorithm (GA) [22], while 16 GA iterations were necessary to bring
the overall bias of the full PubChem data set down to 0.006. This denotes that the pruned LIT-PCBA
ligands are much less biased, in terms of chemical features, than the complete PubChem molecules and
confirms the necessity of detecting chemical bias in the composition of data deposited on PubChem
BioAssay and removing them, if there were any, so that the data set is better adapted for further use.

The impact of filtering the PubChem BioAssay molecules on the subsequent retrospective screening
performances can also be observed with the use of two in silico methods: a 2D similarity search using
extended-connectivity ECFP4 fingerprints with Pipeline Pilot [95,97] (ligand-based) and molecular
docking with Surflex-Dock (structure-based) [98]. Both data sets (the full PubChem data and the pruned
LIT-PCBA MTORCT ligands) underwent the same screening protocols using the two aforementioned
programs, as described in our previous paper [22]. The screening performance was evaluated according
to the EF1% (enrichment in true actives at a constant 1% false positive rate over random picking)
values obtained by the “max-pooling approach”, taking into account all available PDB templates
of the protein target (n = 11), while generating only one hit list that facilitated the post-screening
assessments [22]. It was observed that both methods performed better on the full PubChem data
than on the filtered LIT-PCBA ligand set (Table 2). Interestingly, the true actives that were retrieved
along with the top 1% false positives belonged to the same scaffold clusters or to clusters that were
similar to each other. Such observations reconfirm that (i) ligand-based and structure-based screening
approaches tend to recognize compounds that share chemical features, and (ii) the chemical bias present
in the complete PubChem data indeed leads to overoptimistic screening performances. This, again,
highlights the importance of filtering the ensemble of molecules deposited on PubChem BioAssay
prior to evaluating the virtual screening procedures—first, to reduce chemical bias in the composition
of the data and, then, to avoid overestimating the real discriminatory accuracy of in silico methods.
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Table 2. Retrospective screening performance of a 2D ECFP4 fingerprint similarity search with Pipeline
Pilot and molecular docking with Surflex-Dock on the full PubChem BioAssay data and the pruned
LIT-PCBA MTORC1 ligand set, demonstrated by the enrichment in true actives at a constant 1% false
positive rate over random picking (EF1%) values and the numbers of true actives retrieved along with
the top 1% false positives by the “max-pooling” approach.

2D ECFP4 Fingerprint Similarity

Data Sets Search Molecular Docking
o Number of o Number of
EF1% Retrieved Actives EF1% Retrieved Actives
Full PubChem data 0.6 2 3.2 11
LIT-PCBA MTORC1 data 0.0 0 1.0 1

4.4. Potency Bias in the Composition of Active Ligand Sets

As of 30 April 2020, there were 1,067,719 small-molecule assays deposited on the PubChem
BioAssay database, but only 240,999 of them (22.6%) yielded active substances with confirmed potency
values. These values are provided in different terms (ECsg, ICs59, K4, and K;), and the threshold to
distinguish true actives from true inactives varies from assay to assay, depending on the researchers
who conducted the experiments. Some assays accept active substances with potency values above
100 uM (e.g., AIDs 1030, 1490, and 504847), even at the millimolar level (e.g., AIDs 1045 and 1047),
while, in some others, several substances with even submicromolar potency are not deemed actives
(e.g., AIDs 1221, 1224, and 1345010). It is therefore comprehensible that the potency range of true
actives, as well as its distribution, is quite diverse across all assays of PubChem. As active molecules
with high potency towards a biological target are easier to be picked by both ligand-based and
structure-based virtual screening methods [22], ligand sets with too many actives whose potency values
are in the submicromolar range are prone to overestimating the real accuracy of in silico screening.
PubChem BioAssay data sets, especially those composed of highly potent true actives (potency below
1 pM), need to be filtered so that the so-called “potency bias” in the composition of their active ligand
sets is reduced before further use.

An illustration of this point can be taken from the LIT-PCBA PPARG ligand set (27 true actives
and 5211 true inactives) and the corresponding full PubChem BioAssay data (AID 743094; 78 true
actives and 8532 true inactives) comprising small molecules that were tested for an agonistic activity on
the peroxisome proliferator-activated receptor gamma (PPARg) signaling pathway [22]. The number
of true actives with high potency (EC5p < 1 uM) in the complete PubChem data is 19, nearly three times
higher than that of the pruned LIT-PCBA ligand set (n = 7). Upon carrying out a 2D similarity search
with Pipeline Pilot using ECFP4 fingerprints and ten structurally diverse crystallographic PPARg
agonists randomly chosen from 138 available structures on the Protein Data Bank as templates, it
was observed that, as expected, the screening protocol managed to retrieve more highly potent true
actives from the full data set than from the filtered ligand set in 70% of the cases (Figure 6). Moreover,
the “max-pooling” approach, when applied to the complete PubChem data, selected seven highly
potent actives among the top 1% ranked molecules, seven times higher than the amount obtained from
LIT-PCBA. Among them, four even had potency values below 0.1 uM. The same screening method, on
the other hand, failed to retrieve any true actives with ECsg < 0.1 uM from the pruned PPARG data.
The screening performance observed on the full ligand set was, as a result, better than that obtained
after ligand-filtering, as the EF1% value was nearly twice higher than that received with LIT-PCBA
ligands. This reconfirms that in silico screening procedures tend to recognize molecules with high
potency towards a protein target, and the presence of too many highly potent ligands in the data
likely leads to a better screening performance. It is therefore recommended that one should filter
the ensemble of PubChem BioAssay ligands to ensure that there are not too many true actives with
high potency that remain, in order to avoid possible “potency bias” in the data set and the subsequent
overestimation of in silico methods’ discriminatory power.
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Figure 6. The number of highly potent true actives (ECsy < 1 uM) retrieved among the top 1% ranked
molecules by a 2D ECFP4 fingerprint similarity search from the full PubChem BioAssay data and
the corresponding LIT-PCBA PPARG ligand set after ligand-filtering. Ten known crystallographic
PPARg agonists were randomly chosen as templates from 138 available structures on the Protein
Data Bank.

4.5. Processing Input Structures Prior to Virtual Screening

PubChem BioAssay ligands, as deposited on the database, can be downloaded either as SMILES
strings [99] or in 2D SDF (spatial data file) format [100] and are therefore, in general, not yet ready to be
directly employed as the input for most in silico screening protocols (except for 1D or 2D ligand-based
approaches). A rigorous ligand-processing procedure is thus necessary to afford ready-to-use structures
for virtual screening. This process concerns a wide range of aspects inherent in the three-dimensional
structural formula of a molecule, including atomic coordinates in the 3D space, a formal charge
assigned on each atom, the presence of different protonation states and tautomeric shifts that slightly
alter the structure, and the representation of undefined stereocenters or flexible rings, as well as
the existence of multiple conformations and/or configurations [101]. Various studies have concluded
that database-processing has indeed an impact on the screening performance; some processing stages
are even indispensable to certain programs [101-104]. Kellenberger et al. (2004) [103], Perola and
Charifson (2004) [104], and Cummings et al. (2007) [101] pointed out that the initial conformation
and orientation in the 3D space of a molecule, which are determined based on details featured
in the original SMILES string, may significantly affect the final enrichment output by a docking
program. The performances of structure-based screening methods whose scoring functions rely on
ligand-receptor interactions [105,106] may be sensitive to a change in the explicit hydrogen assignment or
protonation states, as the positions of hydrogen-bonding groups and proton-carrying atoms are crucial
to properly detecting intermolecular hydrogen bonds and ionic interactions, respectively [101,107].
While a generation of correct multiple conformers for a molecule is not imperative when it comes
to carrying out docking with GOLD [108] or Surflex-Dock [98], this step has, in fact, a pivotal role
in the 3D shape similarity search using ROCS (OpenEye) [109]. The examples mentioned above
denote that good in silico screening outcomes do require the careful treatment of input ligand sets,
and a thorough investigation of different data-processing procedures with commonly used programs
(e.g., Protoss [110], Corina [111], MOE [112], Sybyl [113], and Daylight [114]) is thus recommended.
If it is possible (if the data size is not too large), one should check each output structure by hand to
ensure that the assigned atom types, bond types, stereochemical properties, and protonation states are
correct before further use. This also applies to the protein structure preparation prior to screening,
as structural features of the protein target, especially those of the binding site, are of indisputable
importance to the structure-based virtual screening performance.
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5. Conclusions

Retrieving experimental PubChem BioAssay data to construct novel data sets for virtual screening
evaluations helps avoid assuming false negatives among inactive ligands, which is a problem inherent
in artificially developed data collections. However, there remain several issues regarding assay
selection, false active molecules, chemical bias, and potency bias, as well as data curation, which
are worth noticing prior to employing PubChem input for database-designing purposes. To the best
of our knowledge, there have been several publicly available data sets that were constructed from
the data deposited on this repository, but the quantity is not yet considerable, and there still exist some
limitations in the design of these data collections. More efforts in this regard are recommended, with
the points raised in this manuscript taken into account, in order to offer more realistic data sets suitable
for validating both ligand-based and structure-based in silico screening procedures in the future. Of
course, the herein proposed good practices should also be applied to proprietary bioactivity data.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/21/12/4380/
sl. Table S1. Number of PubChem bioactivity assays according to the number of tested substances, the number of
active substances, the screening stage, and the target type. Statistics were updated as of 30 April 2020. Table S2.
Number of compounds featured in PubChem bioactivity assays that satisfy each criterion of the Lipinski’s rule of
five, the Ghose filter, and Veber’s rule. Statistics were updated as of 30 April 2020. Table S3. Scaffold clusters
of PubChem BioAssay active ligands (AID 493208) and the number of their representatives before and after
LIT-PCBA filters. Table S4. Scaffold clusters of PubChem BioAssay inactive ligands (AID 493208) and the number
of their representatives before and after LIT-PCBA filters.
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Abbreviations

HTS High-throughput screening

AID Assay identifier

MUV Maximum unbiased validation

AVE Asymmetric validation embedding

PAINS Pan-assay interference compounds

EF1% Enrichment in true actives at a constant 1% false positive rate over random picking
ABC ATP-binding cassette

PDB Protein Data Bank

SMILES Simplified molecular-input line-entry system
SDF Spatial data file

GPCRs G protein-coupled receptors
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