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Abstract: Recent advances in the field of meta-omics sciences and related bioinformatics tools have 

allowed a comprehensive investigation of human-associated microbiota and its contribution to 

achieving and maintaining the homeostatic balance. Bioactive compounds from the microbial 

community harboring the human gut are involved in a finely tuned network of interconnections 

with the host, orchestrating a wide variety of physiological processes. These includes the bi-

directional crosstalk between the central nervous system, the enteric nervous system, and the 

gastrointestinal tract (i.e., gut–brain axis). The increasing accumulation of evidence suggest a pivotal 

role of the composition and activity of the gut microbiota in neurodegeneration. In the present 

review we aim to provide an overview of the state-of-the-art of meta-omics sciences including 

metagenomics for the study of microbial genomes and taxa strains, metatranscriptomics for gene 

expression, metaproteomics and metabolomics to identify and/or quantify microbial proteins and 

metabolites, respectively. The potential and limitations of each discipline were highlighted, as well 

as the advantages of an integrated approach (multi-omics) to predict microbial functions and 

molecular mechanisms related to human diseases. Particular emphasis is given to the latest results 

obtained with these approaches in an attempt to elucidate the link between the gut microbiota and 

the most common neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer’s disease 

(AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). 

Keywords: gut–brain axis; gut microbiota; meta-omics sciences; neurodegenerative diseases 

 

1. Introduction 

In the last 15 years, the growing awareness of the sustained association between the intestinal 

microbiota and human health has led to many efforts to better understand its role and contribution 

in the pathogenesis of various diseases.  
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At birth human intestine is essentially sterile; the onset of the gut microbiota starts as a dynamic 

ecosystem where the microbial composition increases both its diversity and richness until 

achievement of the “mature” level in the adult [1]. At this stage, the gut microbiota is a rather 

heterogeneous population including bacteria, fungi, archaea, viruses, and protozoa to an overall 

extent of about 1014 cells, approximately 10 times the number of cells of the human body [2]. Since its 

onset in the early life, the microbiota development and composition are influenced by several host-

related variables (e.g., natural childbirth or caesarean section, genetic background, gender, age) and 

environmental parameters, such as dietary habits [1,3]. 

Bacteria is the most represented kingdom in the gut-associated microbial community and, 

although featured by a high inter-individual variability, a balanced composition of the human gastro-

intestinal tract (GIT) microbiota is mainly represented by Firmicutes and Bacteroidetes phyla, and, to a 

lesser extent, by Actinobacteria, Verrucomicrobia, Proteobacteria, Fusobacteria, and Cyanobacteria phyla 

[4]. Bioactive compounds arising from the microbial commensals are involved in a finely tuned 

network of interconnections between the host and its microbiota and among microbiota members. 

Several lines of evidence have shown the ability of the microbiome to transmit signals molecules and 

metabolites of microbial origin to distant organs such as the brain [5–7], orchestrating a wide variety 

of physiological processes, ranging from normal homeostasis, host metabolism and immune system 

to brain functions. This close interconnection is also known as “gut–brain axis” (GBA). 

In this view, accumulating data suggest that alteration in the optimal microbiome composition 

and activity (a condition named “microbiome dysbiosis”) may contribute to the onset of several 

pathologic conditions, such as neurological and neurodegenerative disorders [8,9].  

The technological progress witnessed in the last two decades has marked a profound change in 

the methods employed for the study of the human microbiota and its pivotal role in both physiologic 

and pathologic processes. To date, studies based on germ-free (GF) animal models, gut microbiota 

manipulation with antibiotics and fecal microbial transplantation, have been performed to 

investigate the modulatory effect of the microbiota on gut–brain axis and its implications in 

neurodegeneration. Omics sciences, such as metagenomics, metatranscriptomics, metaproteomics, 

and metabolomics, represent the last frontier in elucidating host-microbiota cross-talks, providing 

invaluable contributions for unravelling this intriguing issue [10]. The integration of such systems 

biology-based approaches, supported by computational and bioinformatics analyses, help to shed 

light on the role of microbiota in the etiology and/or development of neurodegenerative disorders 

[11].  

In this review, mainly taking into account peer-reviewed studies of the last five years, we aim to 

provide a general description of the state-of-the-art of the investigation methods used in the study of 

microbiota, with particular emphasis on meta-omics sciences such as metagenomics, 

metatranscriptomics, metaproteomics, and metabolomics, along with their complementary 

integration made feasible by the advances in bioinformatics tools. In addition, we focused on the 

latest achievements of these approaches in elucidating the influence of gut microbiota in the onset 

and/or progression of the most commonly studied forms of neurodegeneration, such as multiple 

sclerosis (MS), Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis 

(ALS).  

2. Methodology 

To achieve the stated aim, a detailed and in-depth search procedure was carried out. The 

literature analyzed in this review includes original studies available in qualified databases, such as 

Medline/Pubmed, Scopus, Web of Sciences, and Google Scholar. The literature searching and 

evaluation covers the last 20 years. However, it should be noted that the oldest references are related 

to the early advances in the omics sciences or definitions of diseases. The literature of the last 10 years 

was mainly considered throughout the manuscript. Instead, for the list of the latest achievements 

obtained from the application of meta-omics sciences (Table 1), only the last 5 years were taken into 

consideration. 
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Table 1. Summary of relevant meta-omics studies correlating the gut microbiota to multiple sclerosis 

(MS), Parkinson’s disease (PD), Alzheimer’s disease (AD), and amyotrophic lateral sclerosis (ALS). 

The most recent studies are sorted depending on the method employed for the microbiota 

investigation. 

Technique Description Pathology Reference 

Shotgun 

metagenomics 

High-throughput 

method that provides 

information on the 

functional potential of 

the microbiota 

MS 

Perlejewski et al., 2016 [12] 

Colpitts et al., 2017 [13] 

Jovel et al., 2017 [14] 

PD Bedarf et al., 2017 [15] 

AD 

Sanguinetti et al., 2018 [16] 

Haran et al., 2019 [17] 

Park et al., 2017 [18] 

Cattaneo et al., 2017 [19] 

ALS Blacher et al., 2019 [20] 

Marker gene 

approach 

PCR-based 

amplification of 16S/18S 

rRNA gene 

hypervariable regions 

MS 

Tremlett et al., 2016 [21] 

Tremlett et al., 2016 [22] 

Al-Ghezi et al., 2019 [23] 

PD 

Keshavarzian et al., 2015 [24] 

Scheperjans et al., 2015 [25] 

Sampson et al., 2016 [26] 

Unger et al., 2016 [27] 

Hill- Burns et al., 2017 [28] 

Hopfner et al., 2017 [29] 

Heintz-Buschart et al., 2018 [30] 

AD 

Minter et al., 2017 [31] 

Bonfili et al., 2017 [32] 

Harach et al., 2017 [33] 

Peng et al., 2018 [34] 

Xin et al., 2018 [35] 

ALS 

Zhang et al.,2017 [36] 

Fang et al., 2016 [37] 

Rowin et al., 2017 [38] 

Brenner et al., 2018 [39] 

Mazzinì et al., 2018[40] 

Metatranscriptomics 

High-throughput 

method that provides 

information on 

expression patterns of a 

given microbial 

community 

ALS Blacher et al., 2019 [20] 

Metaproteomics 

High-throughput 

method that provides 

information on the 

functional features of 

the microbial 

community proteins 

PD Flores Saiffe Farìas et al., 2018 [41] 

Metabolomics 

High-throughput 

method for the 

comprehensive study of 

the metabolite array 

resulting from the 

MS 
Al-Ghezi et al., 2019 [23] 

Nourbakhsh B et al., 2018 [42] 

PD Unger et al., 2016 [27] 

AD 
Sanguinetti et al., 2018 [16] 

Xin et al., 2018 [35] 
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microbiota–host 

interactions 
ALS Blacher et al., 2019 [20] 

A combination of key words and terms was used: microbiota/omics sciences; microbiota/ 

neurodegeneration; gut–brain axis/neurodegeneration. Each disease (MS, PD, AD, ALS) was 

combined with all the meta-omics sciences (metagenomis,metatranscriptomics, metaproteomics, 

metabolomics), respectively. 

The references of all identified articles and recent review articles were cross-checked to ensure a 

valid and effective search. 

3. The Microbiome Investigation in the “Meta-Omics Era” 

The technological progress of the last decades has marked enormous changes in the 

methodology adopted for the investigation of the microbiota and its relationship with the host, 

moving from the traditional culture-based approach to the omics sciences.  

Conventional culture-based methods fail to identify all the microorganisms that make up the 

microbiota and are limited to analyze and elucidate up to only 10%–30% of the cultivated microbial 

community both in terms of composition and functions [43,44].  

Based on a holistic perspective, omics and meta-omics sciences, including shotgun 

metagenomics, metatranscriptomics, metaproteomics, and metabolomics, use attractive and 

powerful tools to characterize the microbial consortia, investigate functions and dynamics, and 

quantify the biomolecules they produce. In this perspective, the resident microbial genomes 

(metagenome), transcripts (metatranscriptome), proteins (metaproteome), and metabolites 

(metabolome) are investigated in the human frame, providing a comprehensive overview of the 

complex network of interconnections that regulate the functional dynamics of each anatomical 

district [43,45]. 

These techniques provide detailed information on taxa strains of the microbial population, 

evaluate potential microbial functions and molecular networks, and quantify their protein and 

metabolic products. In addition, the application of these meta-omics approaches to clinical samples 

has identified microbial species, protein and metabolic pathways that could be associated with the 

development and treatment of human diseases.  

The main challenge of the omics-based microbiome studies relies on the strong computational 

effort required to deal with the impressive amount of data generated by the constantly improving 

next generation sequencing (NGS) and mass spectrometry (MS) technologies [46].  

On the other hand, the integration of such omics sciences in the so-called multi-omics approach, 

provides more evidence of biological mechanisms and, ultimately, opens new perspectives for the 

development of novel therapeutic strategies and personalized medicine. 

The technical aspects of omics sciences have been widely described elsewhere [10,47–49]. 

The following paragraphs will provide an overview of the elective technologies used in the 

study of the gut microbiota and its crosstalk with the brain, and how these disciplines have 

contributed to elucidate the link between the human microbiota and neurodegenerative diseases.  

3.1. Metagenomics 

Metagenomics is a community-based powerful tool that studies the microbial genomes collected 

from the ecological niche (e.g., the gut) where the microorganisms coexist, in order to describe the 

phylogenetic, physical, and functional features of the microbiota, in a culture-independent manner.  

Current metagenomics techniques are based on the shotgun approach in order to provide a 

microbial community census starting from reads from DNA and alignment with reference genomes 

[43]. In parallel, phylogenetic composition of the microbial community has been mostly investigated 

by targeted sequencing of species-specific genes.  

Here, targeted sequencing of the 16S rRNA (prokaryotes) or 18S rRNA (eukaryotes) gene is one 

of the most attractive strategy for a reliable and cost-effective investigation of the overall microbial 

community diversity [50]. The obtained data are compared with curated taxa databases in order to 

cluster the analyzed reads into operational taxonomic units (OTUs) [51]. This “marker gene” 
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approach, based mainly on PCR techniques, offers several advantages: it is time- and cost-efficient, 

and is very sensitive to the specific marker gene analyzed [49,50,52]. Similarly, it shows some limits. 

In fact, since the analysis concerns a single gene, important information such as the complexity of the 

entire microbial community in the sample and the potential functional characteristics related to 

taxonomic classes are lost [53]. 

Shotgun metagenomics, instead, by sequencing all the microbial genomes, allows for a more 

complete picture of the functional gut microbiota overcoming the marker-gene limitations [54]. 

The investigation of the whole metagenome is based on the construction of the metagenomics 

library following DNA extraction and cloning [55]. The metagenomics library is then subjected to 

sequence- and/or function driven-analysis. The first approach provides a catalogue of the identified 

genes and genetic elements (e.g., mobile genetic elements) to allow the taxonomical assessment of the 

microbiome; in addition the function-driven analysis also provides an in-depth prediction of the 

potential function of the microbial community as assessed through the investigation of the functions 

attributable to the identified genes [56].  

Thus, in general, metagenomic sequencing not only provides accurate information on the 

microbial composition and family classification, but can also allow functional annotation, and gene 

de novo prediction [55,57]. Nevertheless, metagenomics results are limited to information on gene 

sequences without considering the functional effectors such as transcripts and protein products [43]. 

Furthermore, the metagenomics sequencing cannot discriminate between genes from actually active 

or even dead bacterial populations, hence cannot provide sufficient information about microbiota 

functions; rather draft the functional potential of a given microbial consortia [43]. Moreover, 

metagenomics data may not have a very high genome coverage losing information on less abundant 

microorganisms [55,58]. 

Metagenomics studies should be supported by the constant updating of curated reference 

databases and calculation sequencing algorithms. The choice of database is a fundamental step. 

The Human Microbiome Project has provided a database of bacterial genome information useful 

to predict OUT functions [59]. Preferred curated databases to study the human gut microbiota include 

RefSeq [60] and MetaHit [61]. A wide number of bioinformatics tools are nowadays dealing with 

metagenomics sequences, enabling an integrative approach between omics data. Commonly used 

tools for metagenomics functional analysis are MEGAN (MEtaGenome ANalyzer) [62], IMG/M 

(Integrated Microbial Genomes/Metagenomes) [63], and MG-RAST (MetaGenome-Rapid Annotation 

using Subsystem Technology) [64], Kraken [65], MetaPhlAn [66], and TIPP [67]. In addition, MG-

RAST and IMG/M are also used as data repositories and, along with NCBI (National Center for 

Biotechnological Information) and EBI (European Bioinformatics Institute) represent the biggest data 

repositories currently available. Although based on different algorithms and slightly different 

statistics, these enable the taxonomic and functional annotation of the metagenomic sequences, and 

allow the comparative evaluation of multiple datasets [68,69]. 

3.2. Metatranscriptomics 

To overcome the metagenomics limits, metatranscriptomics is aimed at investigating the gene 

expression and activity of the whole microbial community [70,71].  

Despite the wide choice of techniques, metatranscriptomics studies mainly focus on mRNA 

sequencing to assess which genes are expressed in the analyzed community [43]. The sequencing 

technology is the same as that adopted in metagenomics; however, key differences are represented 

by the selective removal of the interfering nucleic acids (e.g., DNA, t-RNA, rRNA) and the reverse 

transcription of m-RNA to cDNA prior to library production and its subsequent sequencing [71]. 

Some limitations are related to the difficulties of obtaining sufficient amounts of RNA to be 

analyzed and, mostly, separate mRNA from the other abundant RNA, such as rRNA. Lastly, 

metatranscriptomics classification is limited to not enough reference databases.  

As for metagenomics, bioinformatic data analysis is of fundamental importance for the 

comprehensive functional characterization of the RNA molecules. In this perspective, efforts are still 
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required to improve and develop bioinformatics tools that integrate the metagenomics sequence with 

metatranscriptomics data [72].  

Simple Annotation of Metatranscriptomes by Sequence Analysis (SAMSA) was the first open-

source bioinformatics pipeline designed for metatranscriptomic data. It works with the 

metagenomics (MG) RAST server, a public resource for handling both metagenomic and 

metatranscriptomic data [73].  

SAMSA’s latest implementation, SAMSA2, based on several tools such as DIAMOND for 

sequence alignment and local databases, manages end-to-end metatranscriptome analysis for stand-

alone use on a computing cluster [74]. 

Along with MG-RAST, COMAN is a web-based tool to analyze metatrascriptomics data, 

although both do not support mapping to reference database. MetaTrans is another open-source 

pipeline as well as Anvi’o and IMP for the integrated metagenomics and metaproteomics analysis 

[75]. 

3.3. Metaproteomics 

The important role of proteomics for the effective reliable identification of the metabolically 

active microorganisms has been widely recognized [76,77]. There are no doubts that protein 

identification is a key step to providing information on microbiota functions [76].  

Metaproteomics (also known as Community Proteomics, Environmental Proteomics, or 

Community Proteogenomics) is the study of all protein samples recovered directly from 

environmental sources.  

Along with metabolomics, metaproteomics provides the most realistic picture of the key 

effectors that directly mediate the biochemical functions operated by the organisms at the specific 

moment of sampling [78,79]. 

The recent interest in the investigation of more complex samples, such as the gut microbiota, 

leads to the advent of high-performance MS platforms, which are now the dominant approaches for 

metaproteomics investigations. The actual MS technologies enable the investigation of different 

features of the metaproteome, such as differential proteins expression (e.g., time or treatment 

dependent), investigation of sub-proteomes (i.e., protein profile of the subcellular structures), post-

translational modification (PTM) pattern, protein–protein interactions, and absolute protein 

quantitation [78,79]. Although several MS-based proteomics protocols have been optimized as widely 

reviewed [9,80,81], gut metaproteome is mainly investigated through a “bottom-up” approach, 

which allows to analyze entire proteomes starting by peptides obtained through a proteolytic 

digestion (typically by trypsin) from the extracted proteins. Peptides are usually separated first by 

liquid chromatography (LC) prior to their measurement at the mass spectrometer. Different methods 

of sample preparation and treatment have been developed to “resolve” the complex mixtures 

required for the MS analysis [76]. These are compatible with the advanced online separation 

technologies (such as nano Ultra Performance Liquid Chromatography, nUPLC) and provide a better 

separation of the complex mixture, thus improving protein detection rate [82].  

Following computational assistance and using protein reference databases, MS data are 

processed to analyze the peptide sequences and, subsequently, provide protein identifications.  

A typical MS experiment generates hundreds of thousands of fragmentation spectra and an 

enormous amount of MS data that cannot be manually elaborated. Efficient bioinformatics software 

and tools are currently available to perform the computational operations required to translate the 

myriad of spectra into a meaningful output that is both concise and informative [78]. Commonly used 

search engines are OMSSA (Open Mass Spectrometry Search Algorithm) [83], X!Tandem [84], 

MASCOT [85], Andromeda [86], and SEQUEST [87]. Major tasks of these tools include quality 

filtering of the raw MS spectra, peptide-spectrum matching and scoring, protein database searching, 

data mining, and graphical representation of the obtained results [88]. 

Moreover, the bioinformatics data analysis and the availability of reference 

genome/metagenome sequences is undoubtedly of paramount importance in order to obtain a 

comprehensive picture of the metaproteome analyzed.  
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Similarly to metatrascriptomics, the availability of enough reference databases can represent one 

of the technical limitations of this omics approach. In addition, robust, well-standardized protocols 

should be integrated in the experimental workflow especially for quantitative metaproteomics 

studies, which are still lacking [89]. 

3.4. Metabolomics 

Metabolomics provides a snapshot of the metabolites array produced by the microbial 

community at the moment of sampling, enabling a comprehensive investigation of the microbial 

population and the interactions between the microbial ecosystem and its host [90]. Together with the 

knowledge about genetic products obtained from mRNA studies and the metaproteomic analysis, 

metabolomics draws the metabolomics profiles, elucidating the network of interactions between the 

host and its associated microbiota [43] as well as providing key information on the role of each 

microbial member in the onset and/or development of specific pathological conditions [91]. 

Identification of the metabolites catalogue enables a comprehensive elucidation of the ongoing 

physiological processes and the investigation of the cross-talks occurring between host–microbes and 

among microbial species [91,92]. 

The main steps in metabolome investigation include the pre-resolution of the complex 

metabolite mixture, following the sample lysis and/or purification of the extracted metabolites from 

samples of interest. Metabolites separation is generally accomplished through high performance 

liquid chromatography (HPLC) or gas chromatography (GC), enabling a wide range of metabolites 

to be analyzed through high sensitivity MS platforms. Similarly to metaproteomics, metabolites 

identification and their subsequent quantitation is computed on the basis of the mass spectral 

fingerprint and the MS fragmentation pattern. 

Nevertheless, nuclear magnetic resonance (NMR) spectroscopy is also widely used in analyses 

that specifically target a reduced number of metabolites [93].  

The metabolomics raw data requires complex processing steps to obtain small molecules and 

metabolite identification [94]. Several databases are available such as Golm Metabolome Database 

[95] and Metlin [96] for GC–MS and LC-MS data, respectively, while the Human Metabolome 

Database (HMDB) allows both LC-MS and GC–MS data identification analysis [97]. 

3.5. Multi-Omics Approach 

As we previously described, each omics technology sheds light on an important aspect of the 

multifaceted microbial intestinal community, however, it is limited to a single perspective. Although 

each single approach has its own limits linked to technical issues, multi-omics integration can 

generate a comprehensive scenario that includes more evidence while explaining biological 

mechanisms and phenomena.  

In this context, insights integrated by combinations of different multi-omic sciences 

(metagenome, metatranscriptome, metaproteome, and metabolome) can provide a more detailed 

description of microbiota–host interactions, in order to reveal the bilateral flow of information that 

underlies different diseases, including neurodegeneration. 

An important task in the field of multi-omics sciences concerns the annotation and integration 

of the identified molecules (DNA, RNA transcripts, proteins, and metabolites) into predicted classes, 

and clustering them into functional groups. For this purpose, data repositories commonly used are 

Kyoto Encyclopedia of Genes and Genomes (KEGG) [98,99], Gene Ontology (GO) [100], BioCarta. 

These provide information concerning the sub-cellular localization, biological process, and molecular 

function for each of the listed gene product. In addition, comprehensive repositories (e.g., KEGG), 

enable browsing of the literature available for each of the selected dataset entry, link it with known 

pathologies or pathogenetic mechanisms, and group the dataset entries into biochemical pathways, 

allowing for a thorough and deep study of the microbial community. Several software and web-based 

applications, such as Web MGA, Cytoscape, IPath, DAVID, and others are used to retrieve and 

integrate functional annotation from one or a plurality of sequence repositories, providing a more 

comprehensive functional annotation of the investigated microbiome [69]. 
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4. The Gut–Brain Axis  

Gut microbiota is in close connection with the central nervous system (CNS) through the GBA, 

enabling a bidirectional communication from gut to brain and vice versa. Briefly, the GBA includes 

the following key components: the CNS, the autonomic nervous system (ANS), the enteric nervous 

system (ENS), the hypothalamic–pituitary–adrenal axis (HPA), the immune system (cytokine and 

chemokines) [101,102]. Complex connections develop both anatomically and biochemically, 

including direct and indirect pathways between the cognitive and emotional centers of the brain and 

peripheral intestinal functions. The ANS guides the afferent and efferent neural signals between the 

intestine and the brain. The HPA axis and the Vagus nerve with many spinal and vagal sensory 

neurons carry information from the intestinal end to the brain stem, which, in turn, includes the 

hypothalamus and the limbic system. Similarly, projections descending from the limbic system (HPA 

axis) influence the autonomic activity of the gut, especially under stress stimuli [101]. The intestinal 

microbiota plays a fundamental role in the development and maturation of both the human CNS and 

the ENS from the first postnatal weeks. For example, the interaction between the intestinal 

microbiome and the gastrointestinal mucosa membrane helps to refine and strengthen the 

developing immune system [103]. 

Biologically active neurochemical molecules of bacterial origin provide a mechanistic basis on 

how the microbiota may influence brain homeostasis and physiological processes [104]. 

Much research on the brain–gut microbiota axis is based on the use of GF animals. Many of these 

studies suggest that the intestinal microbiota produces relevant levels of neurotransmitters that are, 

in part, responsible for many aspects of brain health and disease [102,105]. For instance, several 

species of Lactobacillus and Bifidobacterium produce microbial metabolites, such as gamma-

aminobutyric acid (GABA), which is the main inhibitory neurotransmitter in the brain. Candida, 

Escherichia, and Enterococcus produce the neurotransmitter serotonin (5-HT), while some species of 

Bacillus secrete dopamine. In particular, 5-HT has different roles. In the peripheral system, it is 

involved in the regulation of gastrointestinal secretion, motility (e.g., contraction and relaxation 

smooth muscle), and pain perception, while in the brain 5-HT is involved in regulating mood and 

cognition. The gut microbiota also plays an important role in the metabolism of tryptophan, precursor 

of 5-HT production, and in the stimulation of enterochromaffin cells, which are the main producers 

of 5-HT in the intestinal mucosa (about 95%) [102,106]. Bacteria fermenters produce short-chain fatty 

acid (SCFAs), such as butyric acid, propionic acid, and acetic acid, which are able to stimulate the 

sympathetic nervous system, the release of serotonin into the mucous membranes, and affect brain 

memory and learning processes [107]. In addition, bacterial products are able to stimulate 

enteroendocrine cells (EEC) to produce different neuropeptides, such as peptide YY, neuropeptide Y 

(NPY), and substance P, that can enter the bloodstream and affect the ENS [102]. 

A strong functional integrity and interplay of the GBA is required for the homeostasis of the 

nervous systems. Alterations of these connections in the GBA may influence the progress of 

neurodegeneration or even contribute to its onset [108,109]. 

4.1. Gut Microbiota and Neurodegeneration 

Over recent years, accumulating evidence has suggested that the gut microbiota is involved in 

neurodegeneration. The alteration of the brain–gut microbiota homeostasis could worsen the 

etiology, the pathogenesis, and/or the progression of some disorders such as MS, PD, AD, ALS, and 

others [110].  

Neurodegenerative diseases are multifaceted disorders in which a close interaction of genetic 

and environmental factors seem to initiate the pathological process.  

Microbial metabolites and molecules trigger and/or amplify inflammatory brain processes, 

including perturbation of host immune homeostasis, alteration of blood–brain barrier and brain 

structure (Figure 1). 
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Figure 1. Major mechanisms employed by gut microbiota to impact neurodegenerative diseases. The 

figure depicts the most relevant endogenous (i.e., age, gender) and environmental (i.e., diet, 

environment, and drugs) variables affecting gut microbiota composition and functions. In turn, 

microbiota dysbiosis impacts neurodegenerative diseases through direct production of neuroactive 

molecules (e.g., short-chain fatty acid (SCFAs), neurotransmitters) and/or stimulation of neuroactive 

mediator production by the secretory epithelial cell (e.g., Citokynes, chemokine, gut peptides). 

Examples of neuroactive molecules are mentioned in the figure. Ach: Acetylcholine; His: Histidine; 

DA: Dopamine; 5-HT: Serotonin; NpY: Neuropeptide-Y; CcK: Cholecystokinin; ILs: Interleukins; 

TNF: Tumor Necrosis Factor; CRP: C-Reactive Protein. 

It is well known that oxidative stress (OS) is closely related to mitochondrial dysfunctions and 

is one of the main factors associated to neurodegenerations [111]. Interestingly, several lines of 

evidence showed that the microbiota can interact with host cells by merging with the mitochondrial 

activities [112–114]. Potential interactions between the microbiota–gut–brain axis and CNS oxidative 

stress could exist. Microbiota dysbiosis could increase the levels of reactive oxygen species (ROS) 

amplifying the OS scenario and neuronal inflammation. On the other hand, brain lesions, 

characteristic of various neuro-pathologies, can cause changes in gut microbiota composition and 

functions. The close correlation between OS–mitochondria–microbiota and neurodegenerative 

diseases sheds light on the importance of gut–brain axis connections [112].  
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Moreover, the reduced diversity of gut microbiota during aging, also influenced by dietary 

habits accumulated over the years, could have a role in the development of neurodegeneration.  

It is well known that composition of microbial community changes in diversity during aging 

[115]. The phyla Bacteriodetes and Firmicutes remain dominant, although their relative proportions 

may change significantly. An increase in pathogenic bacteria (pathobionts) usually occurs along with 

a concomitant decrease of beneficial bacteria (symbionts) [116]. 

Omics and multi-omics sciences support ongoing research studies to elucidate these intriguing 

connections and open new perspectives for therapeutic approaches for various neurodegenerative 

diseases. 

The following sections describe the implications of an altered gut microbiota in some of the most 

relevant neurodegenerative disorders. An overview of some recent and relevant meta-omics studies 

has been proposed. 

In Table 1, the most relevant meta-omics studies of the last 5 years are listed for each discussed 

disease.  

4.1.1. Implications of Gut Microbiota in Multiple Sclerosis (MS)  

MS is an inflammatory disease characterized by immune-mediated axon demyelination leading 

to distinct signs, including autonomic and cognitive alterations as well as motor, sensory, and visual 

defects [117]. It is well known that the MS pathogenesis is strictly related to an impairment of the 

immune system, with significant contributions of other different factors including both genetic and 

environmental variables. Therefore, due to its function in the innate immune signaling, an 

involvement of the gut microbiota has also been proposed in MS [118,119].  

Experimental evidence suggests that MS is also characterized by alterations of the intestinal 

permeability and bile acid metabolism which may consequently further contribute to complications 

in the immune regulation of the nervous system [119]. 

The role of intestinal dysbiosis in the onset or development of MS is currently not well 

understood.  

Experimental observations support the hypothesis of a cross-correlation between inflammatory 

demyelination of the CNS and modification of the microbiome. A few experimental evidences have 

been collected from analysis based on 16S rRNA sequencing on GF mice and experimental 

autoimmune encephalomyelitis (EAE) mice, a well-established mouse model of MS. [13]. In this cited 

study, by 16S rRNA sequencing, the authors show reductions in several bacterial components, such 

as Lactobacillus, that contribute to an impairment of immune system in fecal samples of EAE mice 

[13]. 

Recently, an integrated studied based on 16S rRNA sequencing and computational 

metabolomics has revealed that basis of the beneficial effect of the use of cannabidiol for the treatment 

of muscle spasticity of MS patients. The authors showed in EAE mice that cannabinoids directly 

prevent microbial dysbiosis, acting by the reduction of mucin degrading bacterial species, such as 

Akkermansia muciniphila, and consequently suppress neuroinflammatory processes [23]. 

Some few attractive studies have also been performed on human samples. 

Through 16S rRNA biomarker sequencing, a characterization of gut microbiota composition has 

been carried out in fecal samples of pediatric MS compared to control children matched for age and 

sex. Perturbations in the gut microbial community composition have been shown in recent onset 

pediatric MS [21] and subsequent relapse risk [21]. 

Interestingly, two shotgun metagenomics based studies have been performed on cerebrospinal 

fluid of MS patients providing information about bacterial and viral composition also in such 

important biofluid [12,14]. 

In fact, previous research studies, based on marker-16sRNA gene, have highlighted a MS 

dysbiosis related to bacterial abundance such as Faecalibacterium [120] and cClostridial species [121] in 

fecal samples. 
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The use of antibiotics cocktails or probiotics, which clearly modify the composition of intestinal 

microflora commensals, improves immune responses as well as can generally attenuate the 

symptomatology of the disease [122]. 

These results provide a basis for future studies in which the controlled microbiota modulation 

could potentially contribute to the treatment of MS. 

4.1.2. Implications of Gut Microbiota in Parkinson’s Disease (PD) 

PD is the second common worldwide neurodegenerative disease characterized by the death of 

dopaminergic neurons in the substantia nigra pars compacta (SNpc). Clinical symptoms generally 

appear when significant neuronal loss has already occurred. These include characteristic signs, 

especially related to the motor system, such as tremor, bradykinesia, rigidity, and postural instability. 

The recognition of these symptoms is the basis for a clinical diagnosis of advanced PD. Pharmacologic 

interventions are targeted at alleviating symptoms rather than preventing and/or resolving the 

disease [123]. Indeed, up to 30% of patients show non-motor symptoms, including olfactory and 

gastrointestinal impairments such as nausea, vomiting, and constipation [124–126]. The onset of 

constipation can also precede the motor symptoms and worsens with disease progression [127,128]. 

Growing experimental evidence focused on the microbiome demonstrating the potential role of 

gut microbiota on the disease state, as extensively reviewed in a recent paper by Sampson et al. [129]. 

As it is well known, Lewy bodies, characterized by toxic alpha-synuclein (αSyn) aggregates, are 

the main pathological hallmark of PD SNpc neurons [123]. It has been reported that αSyn deposition 

in neurons may begin in the neurons of the intestinal submucosa [130,131].  

A large number of metagenomics studies have been focused on the identification of microbial 

taxa in PD gut microbiota, its taxonomic diversity and abundance. Many of these have been 

performed especially in fecal samples due to the non-invasiveness of the sample collection. Although 

some controversies occur in the results, it is well evident the idea of a clear correlation of alteration 

of gut microbiota in PD in comparison to a healthy status. In particular, 16S rRNA analysis showed 

higher prevalence of Enterobacteriaceae and reduced Prevotellaceae in fecal microbiota of PD patients 

compared to age-matched controls. Interestingly, the increased abundance of Enterobacteriaceae was 

correlated to the severity of postural instability and walking difficulties as well as a decrease of 

Prevotellaceae. Indeed, Prevotella produces SCFA, and thiamine and folate as by-products, that 

promote a healthy intestinal environment [25]. 

A shotgun metagenomic approach has been used by Bedarf et al. to investigate also the fecal 

microbiota of PD patients and healthy participants. The observed results revealed differences in the 

colonic microbiome composition and ẞ-glucuronate and tryptophan related metabolism at an 

unprecedented detail that was not achievable through other investigation techniques such as 16S 

rRNA gene sequencing [15]. 

Further metagenomics analysis has been shown that fecal microbiota of PD patients is featured 

by a decreased abundance of butyrate producing bacteria, known for their anti-inflammatory 

properties. Moreover, a parallel increase of pro-inflammatory Proteobacteria has been detected in PD 

mucosa [24]. 

An integrated metagenomics and metabolomics approach has highlighted that impaired 

concentrations of SCFAs, among the main metabolic products of gut-associated bacteria fermenters, 

may contribute to the gut microbiota-mediated alterations. Such alterations could worsen the ENS 

environment and, consequently, contribute to the gastrointestinal dysmotility of PD patients. 

Particularly, the reduction in SCFAs levels, along with a decrease of Bacteroidetes and Prevotellaceae 

and an increase of Enterobacteriaceae have been shown as the key players in PD fecal samples [27].  

Studies performed on GF mouse models have been remarkably contributing to elucidating the 

molecular mechanisms underlying the microbiota–PD connection. As stated above, alterations of gut 

microbiota could be a trigger for αSyn aggregations [130,132].  

Using αSyn overexpressing mice as a well-validated model for PD, it has been reported that gut 

microbiota promotes motor deficits, microglia activation and neuroinflammation, and ultimately 

αSyn accumulation [26]. Remarkably, colonization of αSyn-overexpressing mice with fecal microbes 
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from PD patients show motor impairments in comparison to αSyn-mice treated with healthy feces. 

Microbiota composition of such mice highlighted taxa-related changes, specifically regarding the 

family Enterobacteraceae, and in particular Proteus spp. [26] which also is one of the main bacteria 

involved in the small intestinal bowel overgrowth (SIBO), a pathological condition of the small 

intestine. PD patients often show a SIBO-comorbidity related to worsening motor symptoms [133].  

Following an innovative approach, Flores Saiffe Farías et al. performed an in-silico framework 

to associate metaproteins with the brain proteins expression through ontological labels. Out of the 

metaproteome-derived data, PD was found to be associated with selected bacterial taxa, and 

functional classes related with neuronal communication, DNA/RNA metabolism, and alterations in 

the Major Histocompatibility Complex-I [41].  

In general, it must be taken into account that PD is a multifaceted disease due to a complex 

interaction among genetic and environmental factors. These studies underline a pivotal role of the 

microbiome dysbiosis in PD, and further investigations are desirable to determine how it could 

trigger and/or amplify the neuronal damage. 

4.1.3. Implications of Gut Microbiota in Alzheimer’s Disease (AD) 

AD is a chronic neurodegenerative disease characterized by synapses loss and neuronal death 

leading to a progressive decline in cognitive function, loss of memory and, lately, to dementia. 

Deposition of amyloid beta peptide (Aβ) in plaques and accumulation of hyperphosphorylated tau 

in the so-called neurofibrillary tangle (NFT) are the main hallmarks of AD [134].  

The mechanisms underlying these toxic depositions, which lead to an increased neuro-

inflammation, are not fully understood, but it has been supposed an important role of the gut 

microbiota in this context [135]. 

Cattaneo et al. highlighted a close connection between brain amyloidosis and pro-inflammatory 

gut bacterial taxa. Following a deep metagenomics approach, patients with cognitive amyloidosis 

damage showed higher levels of pro-inflammatory cytokines, a rectal Eubacterium deficiency (known 

for the peculiar anti-inflammatory function) and an overabundance of Escherichia/Shigella, when 

compared to healthy patients. [19].  

In GF Aβ precursor protein (APP) transgenic mouse model, a remarkable reduction of cerebral 

Aβ amyloid deposition has been shown when compared to control mice with intestinal microbiota.  

The absence of intestinal microbiota caused a significantly decreased cerebral Aβ amyloid 

pathology. Based on 16rRNA sequencing, the colonization experiments showed the importance of 

the nature of the donor (diseased transgenic versus wild-type model) for the promotion of AD. Thus, 

persistent gut microbial dysbiosis can regulate host innate immunity mechanisms that affects Aβ 

amyloidosis, and, consequently, microbiota modulation can induce positive effects on neuronal 

pathways, slowing down the progression of AD [33]. 

A recent study of Haran and colleagues has applied a metagenomics approach to comparatively 

evaluate the gut microbiome of AD elders versus the stool microbiome of non-AD elders. The study 

highlighted numerous microbial taxa and functional genes to be considered as predictors of AD 

dementia. Specifically, AD-microbiome is characterized by a lower proportion and prevalence of 

butyrate-producing bacteria along with a higher abundance of bacterial taxa commonly known to 

cause proinflammatory states [17]. 

4.1.4. Implications of Gut Microbiota in Amyotrophic Lateral Sclerosis (ALS) 

ALS is a neurodegenerative disease characterized by the death of lower and upper motor 

neurons in the spinal cord, brain stem, and motor cortex, leading to progressive paralysis and 

weakness. Although many factors are known to be implicated in the neuronal damage, such as 

microglia activated inflammation, neurotoxicity, redox unbalance, and a severe mitochondrial 

dysfunction, the deep and complex pathological mechanism affecting motor neuron is still not fully 

understood [111].  

As widely reviewed by McCombe et al., theoretical reasons support the hypothesis of the 

involvement of gut microbiota in the pathogenesis of ALS. They include the important connections 
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with the impaired metabolism, host immunity, and production of toxins that induce brain damage 

[54].  

Most of the experimental evidence of gut dysbiosis comes from studies on mouse models for 

ALS, such as the SOD1G93A mouse model.  

A dysfunction in the intestinal tract has been highlighted in transgenic SOD1G93A mice, compared 

to wild-type mice, by Wu et al. Alterations in tight junction structure at the intestinal level and a 

reduced expression of the related protein (ZO-1), have been correlated to an increased intestinal 

permeability enabling the passage of toxins from intestinal lumen into blood circulation [136].  

In ALS mouse altered microbiome composition and function have recently been highlighted, 

even before the onset of symptoms due to motor neuron dysfunction [20]. In particular, by shotgun 

metagenomics and 16S rRNA gene sequencing, it has been shown that the alteration of several strains, 

such as Parabaceroides distasonis, Lactobacillus gasseri, Prevotella melaninogenica, Ruminococcus torques, 

Akkermansia muciniphila (AM), and others, is related to disease condition. Interestingly, AM has been 

shown to decrease in a time dependent manner with the disease progression [20].  

In general, a few studies have been performed on human ALS, and with conflicting results. 

Brenner et al. have compared an ALS patient group, strictly selected without symptoms of 

dysphagia, gastrostomy, non-invasive ventilation, or low body mass index to an age- and gender-

matched healthy control group. The metagenomics analysis of fecal microbiota has revealed that ALS 

patients do not show substantial alterations in gut microbiota composition, rather in the total number 

of microbial species and in the abundance of uncultured Ruminococcaceae. The authors concluded that 

ALS cannot undoubtedly be associated with a significant gut microbiota impairment [39]. 

Similarly, Rowin et al. showed a low diversity of intestinal microbial composition in fecal 

samples of ALS compared to controls, inferring that there is no direct and significant gut microbiota–

disease correlation. Only a few ALS patients showed low Ruminococcus abundance, and low 

Firmicutes/Bacteroidetes (F/R) ratio, as an indicator of dysbiosis. In contrast, most patients showed 

inflammatory markers, such as fecal secretory IgA, eosinophilic protein X, and calprotectin. The 

authors therefore assumed that gut-mediated inflammation is likely to be involved in ALS onset or 

progression [38].  

In a previous metagenomics study, a reduced Firmicutes/Bacteroides ratio has also been shown in 

ALS patients along with an increase of the abundance of genus Dorea and a decrease of the abundance 

of genus Oscillibacter, Anaerostripes Lachnospiraceae [37].  

Conversely, Mazzini et al. highlighted an altered ALS gut microbiota by quantitative PCR 

analysis. Specifically, the authors showed a cluster distinction between bacterial profiles of ALS 

patients compared to controls, especially related to an increase of Escherichia coli and Enterobacteria, 

and a decrease of Clostridium and yeast [40]. 

Fecal microbiota transplantation (FMT) has emerged as a promising strategy to restore gut 

microbiota dysbiosis involved in complex pathologies including neurodegenerative diseases [137].  

To this regard, a very recent paper has proposed a multicenter randomized double-blind clinical 

trial employing FMT as a therapeutic intervention for ALS patients at an early stage, opening new 

avenues for the treatment of neurodegenerative diseases by acting on the microbiota modulation 

[138].  

5. Conclusions 

It is nowadays well established that the gut microbiota is able to influence human health by 

acting on several physiological processes. In recent years, huge efforts have been made to shed light 

on the myriad of established cross-communications between the gut microbiota and distant organs, 

such as the brain. There is still an open debate about whether dysbiosis is a factor that determines 

neurodegeneration or rather an epiphenomenon resulting from it.  

The mutual correlation has undoubtedly been confirmed by many animal and human studies. 

However, this field is still in its infancy and further complementary studies are needed to 

address the outstanding issues.  
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In this context, the integrated approach based on the potential and experimental strength of the 

omics and meta-omics sciences currently opens new perspectives and provides powerful tools to 

support ongoing research and clinical studies. The valuable contribution meta-omics sciences have 

already made in the investigation of taxonomic characterization and functional dynamics of gut 

microbiota should be acknowledged. These sciences make it possible to obtain functional data and 

results not achievable with the other investigation methods available so far. 

We are confident that the continuous technological progress and the development of innovative 

omics-based investigation methods will allow, in the near future, even more in-depth studies on a 

wide range of microbiota related disorders, including but not limited to neurodegenerative diseases. 
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