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Abstract: (1) Background: Compounds with multitarget activity are of interest in basic research to
explore molecular foundations of promiscuous binding and in drug discovery as agents eliciting
polypharmacological effects. Our study has aimed to systematically identify compounds that form
complexes with proteins from distinct classes and compare their bioactive conformations and molecular
properties. (2) Methods: A large-scale computational investigation was carried out that combined the
analysis of complex X-ray structures, ligand binding modes, compound activity data, and various
molecular properties. (3) Results: A total of 515 ligands with multitarget activity were identified that
included 70 organic compounds binding to proteins from different classes. These multiclass ligands
(MCLs) were often flexible and surprisingly hydrophilic. Moreover, they displayed a wide spectrum
of binding modes. In different target structure environments, binding shapes of MCLs were often
similar, but also distinct. (4) Conclusions: Combined structural and activity data analysis identified
compounds with activity against proteins with distinct structures and functions. MCLs were found to
have greatly varying shape similarity when binding to different protein classes. Hence, there were no
apparent canonical binding shapes indicating multitarget activity. Rather, conformational versatility
characterized MCL binding.

Keywords: small molecules; multitarget activity; promiscuity; protein classes;
complex X-ray structures; activity data; binding modes; shape similarity

1. Introduction

Small molecules with activity against multiple targets, also termed promiscuous compounds [1],
are of increasing interest in pharmaceutical research because they are able to elicit polypharmacological
effects that often contribute strongly to the efficacy of drugs [2–5]. Rationalizing multitarget activity of
small molecules is equally scientifically stimulating and relevant for practical applications. An ultimate
goal of understanding the molecular foundations of promiscuity is translating such insights into
the design of novel ligands with pre-defined multitarget activity [5–7]. However, the assessment
of compound promiscuity is complicated by potential experimental artifacts and varying activity
data confidence [8–10]. Several data analysis and data mining approaches have been introduced to
identify or predict promiscuous compounds [1,11–13]. Clearly, the most reliable approach to confirm
multitarget activity of small molecules and explore binding events at the molecular level of detail is
analyzing and comparing three-dimensional structures of ligand-target complexes [14,15]. It has been
shown, for example, that promiscuous compounds often bind to similar protein domains and binding
sites [15–17], as one might anticipate. On the other hand, ~700 crystallographic ligands were identified
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that formed complexes with proteins from different families [18]. Multifamily ligands were chemically
diverse (>98% non-analog ligands) and frequently displayed similar binding modes interacting with
different proteins (median root mean square deviation (RMSD): 1 Å). However, they typically formed
different interaction hotspots in binding sites [19]. Taken together, these findings provided some initial
insights into promiscuous binding events.

To further explore multitarget activity of compounds at the molecular level, we have been
interested in carrying out a systematic analysis of structural and activity data focusing on binding
shapes of compounds in different protein environments in combination with molecular property
analysis. The results of our analysis are presented in the following section.

2. Results

2.1. Target Classification

Emphasis was placed on studying compound binding to distantly or unrelated proteins, given that
evolutionarily defined protein families have varying degrees of relatedness and may contain similar
ligand binding domains and binding sites. Therefore, in this study, small molecule targets were
assigned to functional protein classes following Gene Ontology (GO) [20]. GO classes combine
functionally related families, and members of different classes are thus more distant from each other
than members of more narrowly defined families. Therefore, we have focused our current analysis on
multiclass rather than multifamily ligands.

2.2. X-ray Structure-Based Identification of Single- and Multi-Class Ligands

Data sources and selection criteria for our analysis are detailed in the Materials and Methods
Section. Figure 1 below summarizes the analysis concept and distinguishes different stages. From the
Protein Data Bank (PDB) [21], X-ray structures of protein complexes with small molecular ligands
were extracted, provided the target could be classified on the basis of GO. Accordingly, a total of
64,556 complex structures were obtained, including 17,006 unique proteins from 20 different GO
classes. These structures were considered for further analysis if they contained one of 8331 ligands
for which a potency annotation of at least 10 µM was available. Applying a threshold for at least
weak compound potency was considered important to avoid potential overestimation of specific
binding events on the basis of X-ray structures, taking typically high local compound concentration
under co-crystallization conditions into account. Furthermore, only non-covalent inhibitors were
considered and ligands such as peptides, saccharides, various nucleosides, or other compounds not
relevant for our chemoinformatics-oriented analysis were omitted, which reduced the number of
qualifying complex structures and crystallographic ligands to 5707 and 4689, respectively. A subset of
1538 complexes yielded 515 ligands (11%) with structurally confirmed multitarget activity (without
requiring a potency annotation, nearly 1500 ligands would have been obtained). The distribution
of protein structures over ligands is reported in Supplementary Figure S1. The 515 promiscuous
compounds contained 443 single-class ligands (SCLs) from 1181 complex structures and 70 multiclass
ligands (MCLs) covering 331 structures. As an additional criterion, all MCLs were required to bind to
structurally distinct protein domains. The 70 MCLs we identified provided the basis for our subsequent
analysis. All 70 MCLs are listed with their PDB identifier and the number of associated proteins
and protein classes in Supplementary Table S1. Ligands binding to multiple distantly related or
unrelated targets are expected to be rare, consistent with our findings. Since our analysis has been
comprehensive, one can anticipate similar rates of MCLs among newly identified X-ray ligands with
confirmed multitarget activities. There are no intrinsic limitations in interpreting these findings.
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events. Ligands binding to multiple targets from the same protein class (single-class ligands, SCLs) 

and from different classes (multiclass ligands, MCLs) were identified. Two of 72 originally assigned 

MCLs were found to bind exclusively to very similar domains in different proteins and were thus not 

further analyzed. 

2.3. Distribution of Multiclass Ligands 

Table 1 reports the distribution of MCLs over different protein classes. The corresponding 

distribution of SCLs over different protein classes is reported in Supplementary Table S2. The 70 

MCLs were bound to a total of 255 unique targets from 19 different classes. The number of complex 

structures per class varied significantly, with only a single complex available for the enzyme 

regulator and isomerase class and a maximum of 81 complexes for the oxidoreductase class. The 

protein classes covered by MCLs mostly consisted of enzymes and included six different classes of 

transferases and four different classes of hydrolases having distinct functions. In addition to 

enzymes, signaling receptors, transcription regulators, and transporter proteins were also present. 

With 36 compounds, the oxidoreductase class was associated with most MCLs, followed by one of 

the transferase classes with 18, and the transporter class with 15 MCLs. Figure 2 shows the 

distribution of MCLs over pairs of protein classes. MCLs were widely distributed across different 
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nine for the oxidoreductase and transporter class. Hence, the distribution of MCLs over different 
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Table 1. MCL complexes. X-ray structures of complexes with MCLs are organized by protein class. 

For each class, the number of complexes, unique MCLs, and unique target proteins is reported. 

Protein Class  Complexes  MCLs  Proteins  

Enzyme regulator  1 1 1 

Hydrolase (C-N bonds, no peptides)  32 9 31 

Hydrolase (acid anhydrides)  3 2 3 

Hydrolase (ester bonds)  17 13 11 

Figure 1. Large-scale data analysis scheme. Ligands from X-ray structures were filtered for criteria
such as molecular weight, minimum potency, and (bio) chemical characteristics. X-ray structures
of classified proteins in complex with qualifying ligands were analyzed for non-covalent binding
events. Ligands binding to multiple targets from the same protein class (single-class ligands, SCLs)
and from different classes (multiclass ligands, MCLs) were identified. Two of 72 originally assigned
MCLs were found to bind exclusively to very similar domains in different proteins and were thus not
further analyzed.

2.3. Distribution of Multiclass Ligands

Table 1 reports the distribution of MCLs over different protein classes. The corresponding
distribution of SCLs over different protein classes is reported in Supplementary Table S2. The 70 MCLs
were bound to a total of 255 unique targets from 19 different classes. The number of complex
structures per class varied significantly, with only a single complex available for the enzyme
regulator and isomerase class and a maximum of 81 complexes for the oxidoreductase class.
The protein classes covered by MCLs mostly consisted of enzymes and included six different classes
of transferases and four different classes of hydrolases having distinct functions. In addition to
enzymes, signaling receptors, transcription regulators, and transporter proteins were also present.
With 36 compounds, the oxidoreductase class was associated with most MCLs, followed by one of the
transferase classes with 18, and the transporter class with 15 MCLs. Figure 2 shows the distribution of
MCLs over pairs of protein classes. MCLs were widely distributed across different pairs, including the
oxidoreductase class that shared varying numbers of MCLs with 15 other classes. There were no
strongly preferred pairs of classes. The largest number of shared MCLs was nine for the oxidoreductase
and transporter class. Hence, the distribution of MCLs over different target classes was overall balanced.
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Table 1. MCL complexes. X-ray structures of complexes with MCLs are organized by protein class.
For each class, the number of complexes, unique MCLs, and unique target proteins is reported.

Protein Class Complexes MCLs Proteins

Enzyme regulator 1 1 1
Hydrolase (C-N bonds, no peptides) 32 9 31

Hydrolase (acid anhydrides) 3 2 3
Hydrolase (ester bonds) 17 13 11

Hydrolase (glycosyl bonds) 9 7 8
Isomerase 1 1 1

Ligase 2 1 2
Lyase 13 8 9

Oxidoreductase 81 36 59
Peptidase 11 8 10

Signaling receptor 7 4 5
Transcription regulator 19 14 10

Transferase (acyl groups) 12 7 10
Transferase (alkyl or aryl groups, no methyl) 28 6 21

Transferase (glycosyl groups) 11 7 9
Transferase (one-carbon groups) 22 8 16

Transferase (other) 7 5 7
Transferase (phosphorus-containing groups) 33 18 23

Transporter 22 15 19
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Figure 2. Shared MCLs. The heatmap shows the number of MCLs shared by different protein classes.

2.4. Comparison of Ligand Binding Modes

Next, we investigated a central question of our analysis by comparing the binding modes of
MCLs in proteins from different classes. Figure 3 shows the distribution of Tanimoto shape similarity
values for pairwise comparisons of complexes plotted against the RMSD (Å) of best superimposed
alpha carbon traces of the target proteins. The large RMSD values for compared proteins reflected
the presence of distinct structures. For the calculation of shape similarity, MCL binding modes were
optimally superimposed (see the Materials and Methods Section). Importantly, shape similarity values
were very widely distributed, ranging from ~0.3, indicating very low shape similarity, to values
close to 1 for nearly identical binding shapes. Thus, in some instances, MCLs adopted essentially
the same binding mode in different proteins and in others, they bound with distinct conformations.
Many intermediate shape similarity values were obtained that also indicated the presence of binding
mode variations in different protein environments. The Tanimoto shape similarity value distribution
is bimodal in nature. We analyzed the distribution of rotatable bonds of MCLs in compared X-ray
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structures (Supplementary Figure S2) and identified overall largest subsets of shared MCLs having
0–2 and 4–11 rotatable bonds, respectively. These subsets of MCLs were likely to cause the bimodal
distribution of shape similarity values based upon pairwise comparisons. Extending the analysis of
protein similarity beyond sequence-dependent methods, binding site similarity scores were calculated
for pairs of complexes and plotted against ligand shape similarity (Supplementary Figure S3). There was
no apparent relationship between these protein and ligand similarity measures.
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Figure 3. MCL shape similarity versus target RMSD. The scatter plot reports pairwise comparisons
of MCL complexes containing proteins from different classes. Each dot represents a pair of complex
structures. The shape similarity of the bound conformations of the MCL in both complexes is plotted
against the alpha carbon RMSD of the protein structures on the basis of best possible rigid body
superposition. In addition, the value distributions along the horizontal and vertical axes are represented
as histograms.

In addition, Figure 4 shows the comparison of mean shape similarity for MCLs and SCLs.
As revealed by both the histograms and boxplots, SCLs displayed a clear tendency of binding to their
targets (from the same class) with binding modes having higher shape similarity than those of MCLs,
as one might expect (Mann–Whitney U test, p-value 8.1·10−6). For MCLs, the distribution of mean
shape similarity values was much wider than for SCLs, with median value of 0.78 and 0.88, respectively.
These observations also reflected further increased binding mode variability among MCLs relative
to SCLs.
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Figure 4. Shape similarity of MCLs versus SCLs. Histograms (top) and boxplots (bottom) report
the distribution of shape similarity values of MCLs and SCLs on the same scale. For each ligand,
shape similarity was calculated as mean of pairwise comparisons of binding modes across all targets.
Boxplots show the lower quartile (left boundary of the box), median value (vertical line), and upper
quartile (right boundary of the box). Additionally, whiskers indicate the 1.5-fold of the interquartile
range. Statistical outliers are depicted as circles.

2.5. Molecular Properties

We also compared the distribution of hydrogen bond donor and acceptor functions in MCLs
and SCLs as well as the number of rotatable bonds per ligand (as a measure of flexibility) and LogP
values (as a measure of hydrophobic character). The results are shown in Figure 5. For both sets of
ligands, the distributions of descriptors were compared using the Mann–Whitney U test since the
descriptors were not normally distributed. The distributions of rotatable bonds were very similar in
both cases (p-value = 0.45). With median values of six rotatable bonds per compound, many MCLs
and SCLs were intrinsically flexible. MCLs were found to contain overall more hydrogen bond donors
(p-value = 5.4·10−3) and acceptors (p-value = 4.7·10−2) than SCLs, which was an interesting observation
considering the variable binding modes of MCLs discussed above. In complexes, donor and acceptor
functions are typically implicated in molecular recognition and must thus be saturated. This requirement
also applies to different binding modes of a given MCL. Moreover, both SCLs and MCLs were overall
hydrophilic in nature, as indicated by low LogP values (p-value = 1.9·10−2). For SCLs, the median
LogP was 3.2 and for MCLs, the median was 2.3. We also compared the LogP distribution with
a random sample of 450 qualifying X-ray ligands according to Figure 1 without multitarget activity.
The LogP median value of the random sample (3.5) differed only slightly from SCLs (3.17) but further
increased compared to MCLs (2.3). Considering the complete distribution, random X-ray ligands
without multi-target activity differed significantly from SCLs and MCLs (Mann–Whitney U test, SCL:
p-value = 2.2·10−6, MCL: p-value = 2.8·10−5). However, it must also be taken into consideration that the
p-value depends on sample size and provides no indication of the magnitude of the effect. In addition,
a number of MCLs had LogP values approaching 0. Thus, promiscuous ligands were far from being
hydrophobic in nature, as is frequently assumed. Instead, SCLs and MCLs were predominantly
hydrophilic. This was another interesting finding.
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Figures 7 and 8 compare different binding modes for two MCLs, kanamycin, an antibiotic, and 

indomethacin, an anti-inflammatory, respectively. The representations illustrate that both MCLs 

were capable of adopting very similar or different conformations when binding to target proteins 

from different classes, which represented a frequent binding characteristic of MCLs. PDB IDs for 

complexes with both ligands are reported in Supplementary Table S3. 

Figure 5. Molecular properties of SCLs and MCLs. Boxplots report the distributions of the number of
hydrogen bond acceptors (HBA), hydrogen bond donors (HBD), and rotatable bonds, as well as of the
logarithm of the octanol-water partition coefficient (LogP).

Because the number of hydrogen bond donors, number of hydrogen bond acceptors, and LogP
are correlated, a principal component analysis was also carried out to generate an orthogonal feature
space for comparing SCLs and MCLs, as shown in Supplementary Figure S4. Although the first two
components of the reduced feature space explained over 80% of the data variance, no further separation
between SCLs and MCLs was observed, which also illustrated their global property resemblance.
Figure 6 compares the mean shape similarity for the 18 most hydrophobic MCLs (25%; upper quartile
to maximum LogP in Figure 5) and 18 most hydrophilic MCLs (25%; minimum LogP to lower
quartile). The mean shape similarity per ligand was overall only slightly higher for more hydrophobic
than hydrophilic MCLs. However, given the small sample sizes, this observation is not statistically
significant (Mann–Whitney U test: p-value = 0.23). Hence, mean shape similarity was considered
comparable for hydrophobic and hydrophilic MCLs.
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2.6. Representative Binding Modes

Figures 7 and 8 compare different binding modes for two MCLs, kanamycin, an antibiotic,
and indomethacin, an anti-inflammatory, respectively. The representations illustrate that both MCLs
were capable of adopting very similar or different conformations when binding to target proteins from
different classes, which represented a frequent binding characteristic of MCLs. PDB IDs for complexes
with both ligands are reported in Supplementary Table S3.Int. J. Mol. Sci. 2020, 21, 3782 8 of 12 
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analysis is that investigated binding events are confirmed and not affected by false-positive assay 

artifacts. Previous studies have shown that ligands binding to members of different protein families 

Figure 7. Kanamycin bound to different targets. Compared are binding modes of kanamycin in the
active sites of (a) aminoglycoside 3’-phosphotransferase (gray, PDB ID: 1L8T), with ligand carbon
atoms (LCs) colored in orange, and aminoglycoside acetyltransferase (black, PDB ID: 6BFH), LCs
in cyan (shape similarity: 0.94), and (b) ribosome inactivating protein (gray, PDB ID: 3U6T), LCs in
orange, and 2”-aminoglycoside nucleotidyltransferase (black, PDB ID: 4WQL), LCs in cyan (shape
similarity: 0.61).
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Figure 8. Indomethacin bound to different targets. Compared are binding modes of indomethacin
in lactoylglutathione lyase (gray, PDB ID: 4KYK; LCs orange) and (a) prostaglandin G/H synthase 2
(black, PDB ID: 4COX; LCs cyan, shape similarity: 0.94) or (b) aldo-keto reductase 1_C2 (black, PDB ID:
4JQ4; LCs cyan, shape similarity: 0.68).

3. Discussion

In pharmaceutical research, multitarget activity of small molecules is of high relevance, for more
than one reason. While it provides the foundation of desirable polypharmacology, multitarget activity
is also responsible for unwanted side effects of drugs. Thus, achieving a reasonable balance
between desired therapeutic and undesired side effects is key for advancing promiscuous compounds.
Although such compounds are intensely investigated in drug discovery, it is currently only little
understood how multitarget activity of small molecules is enabled at the molecular level of detail.
A deeper understanding of structural features or molecular properties that contribute to or drive
multitarget activity would substantially aid in designing compounds with pre-defined activity profiles,
which currently is a topical issue in pharmaceutical research. For rationalizing molecular origins of
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promiscuity, identifying multitarget ligands on the basis of complex X-ray structures principally is
an attractive approach. Although structural data are still limited, despite significant growth over
the past decade, the intrinsic advantage of basing promiscuity analysis on structural analysis is
that investigated binding events are confirmed and not affected by false-positive assay artifacts.
Previous studies have shown that ligands binding to members of different protein families frequently
adopted similar binding modes but displayed different interaction patterns in binding sites [14,19].
These findings also raised the question of whether there might be a limited repertoire of binding modes
for promiscuous ligands, which partly inspired our current study. Moreover, we were interested
in exploring and characterizing promiscuous compounds capable of binding to structurally and
functionally distinct proteins. Such ligands were thought to represent the most prominent cases of
chemical entities with defined multitarget activity. Therefore, we designed and implemented a rigorous
analysis scheme combining the exploration of structural data with chemoinformatics, as reported
herein. On the basis of our analysis, we identified 70 MCLs that were widely distributed over
19 functional protein classes and compared their binding modes in different structural environments.
Our study produced some unexpected results. While we also identified similar binding modes of
MCLs, we found that a given MCL was often capable of binding with either very similar or very
different conformations, depending on the target proteins. These results substantially extended earlier
findings. In fact, binding shape diversity was a general characteristic of newly identified MCLs (and
canonical binding shapes were not detected). Furthermore, we determined that MCLs and SCLs were
comparably flexible and predominantly hydrophilic, another new finding. The most hydrophilic and
most hydrophobic MCLs had comparable mean shape similarity.

Taken together, the results of our investigation revealed characteristic features of promiscuous
small molecules binding to proteins from different classes. On the basis of our findings, the ability to
adopt very similar or distinct binding modes, depending on the target proteins, is a hallmark of MCLs,
consistent with their intrinsic flexibility.

4. Materials and Methods

4.1. X-ray Structures of Ligand-Target Complexes

Structures of ligand-target complexes were systematically extracted from the Research
Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB) (accessed 2 March 2020) [21].
For each PDB entry, corresponding UniProt IDs [22] were mapped using BioServices (accessed 2 March
2020) [23]. Each protein was assigned to a specific class according to the GO organization scheme [20].
Unclassified proteins and others associated with multiple classes were discarded.

4.2. Characterization of Crystallographic Ligands and Activity Data

Information about crystallographic ligands was extracted from ‘Macromolecular Crystallographic
Information Files’ (MMCIF) available in the Protein Data Bank in Europe (PDBe) (accessed March
2020), a resource integrating structural and functional data [24]. Ligands denoted as ‘obsolete’ were
discarded. In addition, peptides, saccharides, nucleosides, nucleoside analogs, metal complexes,
and polymers were omitted. In addition, solvent and buffer molecules were eliminated using the
ChEBI database [25]. In this analysis, ligands were required to have a molecular weight (MW) between
300 and 900 Da and at least one numerically defined potency annotation of at least 10 µM (pKi, pKd,
pIC50 ≥ 5) reported in ChEMBL (version 26) [26] or PDBbind (version 2019) [27]. On the basis of these
criteria, 8331 qualifying ligands were identified and for these compounds, SMILES representations [28]
were generated and standardized with the aid of the OpenEye chemistry toolkit [29]. For ligands, MW,
the number of hydrogen-bond acceptors (HBA), number of hydrogen-bond donors (HBD), number of
rotatable bonds, and the logarithm of the octanol-water partition coefficient (LogP) were calculated
from SMILES using the RDKit [30].
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4.3. Analysis of Ligand–Target Interactions

To restrict the analysis to qualifying compounds forming extensive ligand–target interactions,
complexes with less than eight residues within 5.0 Å distance to ligand atoms were disregarded.
The 5.0 Å distance was chosen because it exceeds the contact distance for weakest non-bonded polar
and van der Waals interactions (~4.5 Å), and hence represents a meaningful threshold distance for
intermolecular contacts. Complexes with fewer than eight residues in proximity to the ligand were
disregarded because the residue count exceeded 1.5-fold of the interquartile range below the first
quartile in the distribution of contact residues of X-ray ligands. Hence, these complexes represented
statistical outliers. In addition, only non-covalently bound ligands were considered. On the basis of
these criteria, 5707 structures of complexes remained that contained a total of 4689 ligands.

To further examine MCL assignments, systematic structural comparisons of ligand binding
domains of targets of each MCL were carried out to identify conserved binding domains that might
occur in proteins from different classes. After superposition, ligand binding domains of all complexes
with RMSD values less than 10 Å were subjected to visual inspection and binding domains that closely
superposed were identified. If a conserved binding domain was detected, only one of these targets
was retained, which reduced the number of MCLs to a final count of 70.

4.4. Binding Mode Comparison

Bound conformations of SCLs and MCLs were extracted as structure-data files (SDF) [31] from
RCSB structures. Pairwise Tanimoto shape similarity of 515 MTLs was calculated on the basis
of optimally superimposed conformers using Rapid Overlay of Chemical Structures (ROCS) [29],
as implemented in the OpenEye toolkit. For shape similarity calculations, molecular surface property
values such as electrostatic potential were not taken into consideration in order to focus the analysis on
binding shapes. In addition, RMSD of alpha carbon positions of protein structures with shared MCLs
was calculated using Molecular Operating Environment (MOE) version 2019 [32]. Protein binding site
similarities were calculated using SiteEngine [33].

5. Conclusions

Herein, we have reported a large-scale data analysis designed to identify promiscuous compounds
binding to different protein classes. The set of MCLs we newly identified was thoroughly characterized
focusing on binding modes and molecular properties in comparison to SCLs, which we also assembled.
MCLs were shown to be mostly flexible and hydrophilic in nature. Shape diversity of binding modes
in different protein environments emerged as a signature of MCLs, which provided insights into
binding characteristics and molecular mechanisms underlying multitarget activity. Our findings also
provide some guidance for the design of new multitarget ligands since MCLs adopting diverse binding
modes can also be considered as templates for design efforts. Therefore, both MCLs and SCLs we
identified in our study are freely available upon request.
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unique ligand-protein complexes with kanamycin or indomethacin.
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MCL Multiclass ligands
MTL Multitarget ligands
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SCL Single-class ligands
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