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Abstract: Bacteria evolved many strategies to survive and persist within host cells. Secretion of
bacterial effectors enables bacteria not only to enter the host cell but also to manipulate host gene
expression to circumvent clearance by the host immune response. Some effectors were also shown to
evade the nucleus to manipulate epigenetic processes as well as transcription and mRNA procession
and are therefore classified as nucleomodulins. Others were shown to interfere downstream with gene
expression at the level of mRNA stability, favoring either mRNA stabilization or mRNA degradation,
translation or protein stability, including mechanisms of protein activation and degradation. Finally,
manipulation of innate immune signaling and nutrient supply creates a replicative niche that enables
bacterial intracellular persistence and survival. In this review, we want to highlight the divergent
strategies applied by intracellular bacteria to evade host immune responses through subversion of
host gene expression via bacterial effectors. Since these virulence proteins mimic host cell enzymes or
own novel enzymatic functions, characterizing their properties could help to understand the complex
interactions between host and pathogen during infections. Additionally, these insights could propose
potential targets for medical therapy.

Keywords: virulence factors; bacteria; host-pathogen interaction; gene expression; immune response;
manipulation; inflammation; persistence; replicative niche

1. Introduction

Successful defence against extracellular and intracellular bacteria primarily relies on the ability of
innate immune cells to sense present bacteria followed by activation of the adequate matching immune
response. The identification of bacteria is enabled by a broad array of pathogen recognition receptors
(PRRs), which recognize extensively conserved pathogen-associated molecular patterns (PAMPs) as
nucleid acids, cell wall components and proteins from viruses, bacteria, fungi and parasites [1]. Toll like
receptors (TLRs) and NOD-like receptors (NLRs) represent the two major classes of PRRs, acting at the
cell surface or in the cytoplasm, respectively [2]. After activation, PRRs induce multiple signalling
pathways aiming at the expression of proinflammatory cytokines, which regulate the innate immune
response. The most prominent pathways involved are mediated by mitogen-activated protein kinases
(MAPKs) or nuclear factor-κB (NF-κB), which are initiated by path-specific adapter proteins and
transferred by downstream phosphorylation cascades [3]. Interestingly, all pathways can synergize to
guarantee a specific and appropriate immune response for the present pathogen. This is enabled by the
high diversity of PRRs, PAMPs and PRR adapter proteins and their numerous ways to be combined
during innate immune response [1,4].

The immune response has to be tightly controlled to ensure a clearance of the bacteria but also
to prevent tissue damage and necrosis as result of sepsis. There are several levels to influence the
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expression of inflammatory genes. A first level of interference is changing of the DNA’s structure
on the chromatin level. Epigenetic modulation enables remodelling of the chromatin to transfer
heterochromatin into euchromatin allowing transcription or vice versa [5–7]. In addition, the affinity
of promotors and other regulatory DNA sequences for RNA polymerases and transcription factors
(TFs) can be influenced by cytosine or adenine methylation. To induce transcription, TFs and RNA
polymerases are recruited to target genes, a step that represents another level to regulate gene expression.
Only a minor portion (fewer than 2%) of genes is transcribed into mRNAs, instead the majority is
transferred into so called non-coding RNAs (ncRNAs). The long ncRNAs (lncRNAs) as well as some
classes of short ncRNAs are also involved in epigenetic regulations but its most studied group, the
miRNAs (microRNA), are mostly involved in RNA destruction [8].

Another point for interference with gene expression is during processing of mRNAs, which
includes 5′ capping, alternative splicing and polyadenylation [9,10]. Primary ncRNAs can be processed
by the protein complex DICER (eukaryotic ribonucleases) to generate miRNAs, which can negatively
regulate expression of its primary transcript. To guarantee proper cell function, mRNAs need to be
degraded after a certain time frame; the RNA stability is, therefore, another switch to modify gene
expression. Polyadenylation and 5′capping prolongs RNA stability but several enzymes are able to
decap the 5′cap and to remove the polyadenyl tail of the RNA leaving an unprotected mRNA [11–13].
Nevertheless, these structures are crucial for translation initiation and can gain enough time for the
mRNA to be translated. This represents a further step for interference with gene expression, as there
is the need of several factors to induce and prolong translation [14]. Translation initialisation factors
have to be recruited leading to ribosome assembly and binding of the first amino acid loaded tRNA
(transfer RNA). To keep translation ongoing, elongation factors and ATP (Adenosine triphosphate)
have to be present. The nascent protein chain then needs to fold into its physiological form to be
active [15,16]. Therefore, protein-folding and activation catalysed by different chaperones is another
important step during gene expression and is also tightly controlled. Finally, a last step to regulate gene
expression is represented by the stability and degradation of, in some cases misfolded, proteins [17,18].
An overview of the steps during host gene expression targeted by bacterial pathogens, as well as the
bacteria involved, is given in Figure 1.

Host cells fight bacteria with a proinflammatory cytokine response, lysosomal degradation,
autophatic clearance and activation of the unfolded protein response, which in the end can lead to
apoptosis [19]. Bacteria can hijack all these defence mechanisms by interfering with the host’s gene
expression at any level. For that purpose, bacteria express several virulence factors, the so-called
effectors. These proteins are able to mimic host enzymes, thereby manipulating the host response
following invasion favouring intracellular survival, persistence and spreading. Since proteins and
enzymes of signal transduction pathways are involved in all defence mechanisms, they are a favoured
target of effector proteins [19]. It is worth noting that other virulence proteins own novel enzymatic
functions, which allow them to enter the nucleus and directly induce gene expression or repression.
Therefore, these bacterial effectors are termed nucleomodulins [20,21]. In the following we will present
an overview on the manipulation of host gene expression at different levels by nucleomodulins and
other bacterial effectors.
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Figure 1. Steps of host gene expression manipulated by bacterial pathogens. The figure provides
an overview over the main steps of gene expression that are indicated at the left side (I-VI). The numbers
in the scheme highlight distinct characteristic processes that are part of each gene expression level and
are listed in the legend at the right side. Different bacterial pathogens (indicated at the right) have
been described to target the distinct steps and processes during host gene expression to their favor.
For detailed information please refer to the text of this review.

2. Bacterial Virulence Factors Manipulating Host Gene Expression

2.1. Epigenetic Control of Gene Expression

The expression of genes is dependent on their accessibility for RNA polymerase II (RNA Pol II)
and TFs. As approximately 147 base pairs of the DNA are wrapped around histone octamers build
by the subunits H2A, H2B, H3 and H4 as well as the scaffold protein H1 to form the nucleosome,
those sequences are protected from transcription [5–7]. Therefore, the packaging of the nucleosomes
defines the chromatin state into euchromatin and heterochromatin enabling transcription or blocking
it. In order to react properly to a certain stimulus, the chromatin state can be remodeled to give
access to the required genes, a process called nuclear remodeling or histone modification. Enzymes
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posttranslationally modify the amino acids at the N-termini of the histone proteins (called histone tails)
by acetylation, phosphorylation, methylation and ubiquitination in a reversible manner to modify the
interaction between neighbored nucleosomes favoring an open or closed chromatin state [19,20,22].
Nucleosomes are then allowed to slide along the chromatin fiber in an ATP-dependent manner, to
give access to the DNA sequence. This reveals the dual function of chromatin, to provide a natural
scaffold and being part of an essential regulatory signaling network processing the incoming data to
create a special transient biological output [23]. On top, established posttranslational modifications
(PTMs) can be maintained beyond the initial signal and cell divisions inheriting cell type specific gene
expression enabling cell lineage specification and cellular identity [23–25].

The enzymes responsible for the modulation of the histone tails are divided into “writers,” which
attach the chemical units, “readers,” which recognize and translate them by recruitment of activating
or repressing factors and “erasers,” which remove the modifications. The resulting “epigenetic
code” is highly dynamic, as each established modification influences the addition or removement of
other modifications that in turn influence the own stability and persistence. Moreover, epigenetic
mechanisms represent the missing link between more or less stable gene expression and the impact of
environmental factors on gene expression that can also cause diseases as cancer [5,26,27]. Therefore,
these enzymes represent a central role in the regulation of immune responses as alterations in their
activity and expression profiles leading to global changes in the histone modification pattern have
been detected as cause of several chronic immune diseases as asthma, chronic obstructive pulmonary
disease, colitis, systemic lupus erythematosus and rheumatoid arthritis [28,29].

Additionally, the DNA can be methylated at cytosine or adenosine residues converting them
into methyl-cytosine or methyl-adenosine to cause transcriptional repression [30]. Hypermethylation
dominantly occurs at CpG islands, cytosine-guanine rich regions at promotor regions, disrupting TFs
and RNA polymerase binding to DNA or recruiting other co-repressors. A hypermethylated gene,
that was not methylated before is therefore, not suitable for transcription and with the recruitment
of further silencing-factors, will finally be silenced. This kind of modification is thought to provide
a stable gene silencing that can be inherited to the next generation of cells [31,32].

Moving away from the old definition of epigenetics as hereditable stable changes at chromatin and
DNA without changing its sequence, modern opinion changed towards a highly dynamic and reversible
mechanism of gene regulation also enabling short term adaptions to changing environments [30].
As consequence, regulation through ncRNAs are also included to the epigenetic regulatory repertoire
that can be classified according to their length into short ncRNAs (<200 nucleotides), which include
miRNAs or long ncRNAs (>200 nucleotides) [33].

2.1.1. Manipulation at the Level of Histone Modifications

After recognition of bacterial presence by PRRs, signaling cascades activate proinflammatory
cytokine expression. To improve accessibility of TFs, such as NF-κB, to the promoters of inflammatory
response genes, an activating histone modification as phosphorylation of Serine 10 on histone H3
(H3S10) is established, which itself is mediated by MAPK signalling. It has been shown, that the
virulence factor LPS alone is able to induce a global increase of H3S10 leading to promotion of gene
expression proving the high sensitivity of the immune reaction [34].

Recent studies revealed that bacteria directly interfere with a host’s histone modifications to
dampen the expression of proinflammatory cytokines by the secretion of effectors. Presence of
Listeria monocytogenes induces phosphorylation of H3S10 but the bacterium is able to remove this
activating phosphorylation within short time [35–38]. The secreted virulence factor Listeriolysin (LLO)
mediates this mechanism and is also responsible for a global deacetylation of H3 and H4. Other
bacteria, as Clostridium perfringens or Streptococcus pneumoniae, produce toxins, such as perfringolysin
and pneumolysin, respectively, that belong to the same family as LLO and show also a similar effect
on H3S10 phosphorylation [36]. The decreased levels of phosphorylated H3S10 and acetylated H4
at proinflammatory genes resulted in transcriptional downregulation thereby damping the immune
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response. As this observation is only dependent on the membrane-binding ability of LLO, it is most
likely that LLO modulates the signal transduction to induce alterations in the histone modification
pattern [36].

Like L. monocytogenes, Shigella flexneri is also able to inhibit H3S10 phosphorylation by secretion
of phosphothreonine lyase effector OspF, which dephosphorylates MAPKs as p38 or ERK resulting
in attenuated NF-κB binding at promotors of inflammatory genes [39]. Together with OspB, another
effector of Shigella, OspF, interacts with the human retinoblastoma protein Rb that is capable of binding
several chromatin-remodeling factors [40,41]. In this constellation, Shigella adjusts the chromatin
structure at specific genes to downregulate host innate immunity.

L. monocytogenes owns another effector, which induces deacetylation on lysine 18 of histone H3
(H3K18). Thereby, Internalin B (InlB) activates the host histone deacetylase sirtuin 2 (SIRT 2), leading to
repression of transcriptional start sites through occupation by SIRT 2 and following downregulation of
the immune response, which could be attenuated by SIRT 2 inhibition [42]. The listerial virulence factor
LntA enters the nucleus after infection of epithelial cells targeting the chromatin silencing complex
component BAHD1. Together with heterochromatin protein 1 (HP1), methylated DNA-binding protein
1 (MBD1), histone deacetylases (HDAC1/2) and the KRAB-associated protein 1 (KAP1/TRIM28) that
are involved in heterochromatin formation, BADH1 targets interferon-stimulated genes (ISG) for
silencing by binding to their promotors [43,44]. This is inhibited by LntA, which is thought to promote
chromatin-unwinding and as consequence upregulation of ISG by histone H3 acetylation. The exact
mechanisms, how BAHD1 is recruited to its targets and how LntA interferes with this process has still
to be investigated [21].

Another prominent histone modification is the methylation or demethylation of lysine residues,
mediated by histone N-lysine methyltransferase (HKMT) or histone demethylases (HDM), respectively.
Several bacteria express HKMT effectors, which enable them to directly interfere with host gene
regulation as they are mimics of host chromatin modifiers. As there are many HKMT homologues
in the repertoire of bacterial effectors described this mechanism seems to be a successful strategy to
subvert host gene expression [45]. The nuclear effector (NUE), is secreted by Chlamydia trachomatis via
a type III secretion system (T3SS) to enable its localization to the nucleus, where it might methylate H2B,
H3 and H4. The homologous effectors RomA and LegAS4 secreted by Legionella pneumophila Paris and
L. pneumophila Philadelphia Lp02 strains, respectively, methylate H3 to alter host transcription but target
different residues [45,46]. RomA represses global transcription by methylation of histone 3 lysine 14
(H3K14), a modification that is known to compete with the activating acetylation of H3K14 [46]. Contrary
to RomA, LegAS4 increases transcription of ribosomal RNA genes (rRNA) through methylation of
histone 3 lysine 4 (H3K4) but if this modification is mediated by LegAS4 alone it is not clear yet [45].
Interestingly all described bacterial methyltransferases own a conserved SET (Suppressor of variegation,
Enhancer of zeste and Trithorax) domain, which uses a S-adenosyl-l-methionine (SAM) methyl donor to
catalyze methyl group attachment to lysine residues [45,47]. One example is the effector BtSET, secreted
by Burkholderia thailandensis that localizes to the nucleolus to methylate histone H3K4 promoting
transcription of rRNA genes. Some effectors are capable of more unusual modifications, for example,
the effector BaSET identified in Bacillus anthracis trimethylates histone H1 but none of the core histones.
This effector represses the expression of NF-κB target genes after transient overexpression in mammalian
cells and its deletion results in the loss of virulence [45–47].

Another modification, which differs from the known mechanisms of histone modification,
is represented by dimethylation of histone 3 on arginine 42 (H3R42me2), a residue critical for DNA
entry/exit from the nucleosome and not located at the histone N-termini. This modification is involved
in the regulation of ROS (reactive oxygen species) production, which represents a crucial host defense
mechanism against bacterial pathogens [48]. Mycobacterium tuberculosis represses genes involved in
ROS production by secreting Rv1988, a methytransferase able to establish H3R42me2 to increase
survival in host macrophages [48]. An overview of bacteria and their effectors that are secreted to
induce histone modifications is given in Table 1.
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Table 1. Histone modifications established by bacterial effectors.

Target Modification Bacterium Effector Mediator Cellular Function References

H3S10 de-
phosphorylation L. monocytogenes LLO unknown Reduced expression of

important immune regulators [36]

H3S10 de-
phosphorylation S. flexneri OspF MAPK [39,49,50]

H3S10 de-
phosphorylation Clostridium perfringens perifringo-

lysin unknown unknown [36]

H3S10 de-
phosphorylation Streptococcus pneumoniae pneumolysin unknown unknown [36]

H3K18 deacetylation L. monocytogenes InlB
c-Met induced SIRT2
recruitment
PI3K/AKT

Reduced expression of
important immune regulators [36]

H3K4 methylation L. pneumophila Philadelphia
LP02 LegAS4 direct Transcriptional activation of

ribosomal genes [49]

H3K4 methylation B. thaliandensis BtSET direct/NF-κB Transcription of rRNA genes [45,47]

H3K9 acetylation M. tuberculosis Rv3423.1 maybe direct [51]

H3K14 methylation L. pneumophila Paris RomA direct Transcriptional repression [46]

acteylation M. tuberculosis Rv3423.1 maybe direct [51]

H3K23 Global deacetylation H. pylori H3S10
dephosphorylation

Differential c-Jun and HSP70
expression [52]

H1 trimethylation B. anthracis BaSET direct/NF-κB Transcriptional repression of
NF-κB target genes [47]

H2B, H3, H4 methylation C. trachomatis NUE direct Transcriptional repression [53]

H3, H4 acetylation P. gingivivalis SCAFs, LPS unknown unknown

H3 deacetylation M. tuberculosis unknown HDAC1
Silencing of inteleukin-12β,
suppression of T-helper1
response

[54]

H4 deacetylation L. monocytogenes LLO
H3S10 de-
phosphory-
lation

unknown [36]

H4 deacetylation M. tuberculosis unknown

HDAC complex
containing
mammalian
co-repressor Sin3A

Inhibition of interferon-γ-
dependent HLA-DR gene
expression

[55]
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Influencing the expression of histone modifying enzymes is another possibility to affect histone
modifications in favor of bacterial survival (see Table 2). Modulation of the histone deacetylase HDAC1
appears to be most targeted by pathogens, to manipulate the key acetylation system enabling protection
against eradication. Infection with Anaplasma phagocytophilum, an intracellular pathogen causing
human granulocytic anaplasmosis, causes upregulation of HDAC1 leading to a globally increased
HDAC activity [56]. The recruitment of HDAC1 to AT-rich chromatin sites in promotors of host
defense genes is mediated by the effector ankyrin A (AnkA) resulting in the reduction of histone H3
acetylation and the suppression of target genes such as CYBB that encodes Cytochrome b-245, beta
polypeptide. As this element of the phagocyte NADPH oxidase is involved in the clearance of the
pathogen by neutrophils, it is preferentially targeted [57–60]. Furthermore, AnkA functionally mimics
SATB1, a protein able to bind AT-rich sequences distributed across distinct chromosomes at attachment
regions of the nuclear matrix. Proteins with this ability are involved in nuclear matrix attachment,
spatial organization of chromatin and large-scale transcriptional regulation [59,61–63]. AnkA could
also perform as global organizer of the neutrophil genome, thereby acting locally (cis) and at a distance
(trans) to a target gene. Moreover, pathogens as Chlamydia psittaci secrete nucleomodulins (SinC) that
could act like AnkA and influence anchoring factors and lamins that control the dynamics of chromatin
looping and organization, as the inner nuclear membrane proteins MAN1 and LAP1 [64].

Pseudomonas aeruginosa, an opportunistic pathogen that infects and colonizes inflamed airways
and burn wounds, induces HDAC1 expression in human THP-1 monocytes with the help of a molecule
usually used for quorum sensing, 2-aminoacetophenone [65,66]. This is followed by global histone
H3K18 hypoacetylation and reduced expression of inflammatory cytokines and chemokines (e.g., TNF,
IL-1b and MCP-1) resulting in dampened host defense against the bacterium.

Considering that this effect was also dampened by knockdown or inhibition of class I HDACs and
the evidence that besides A. phagocytophilum and P. aeruginosa also Porphyromonas gingivalis modulates
HDAC1 during infections, HDAC1 family members might play a central role in development of
an epigenetic mediated tolerance against the pathogens [67]. In patients with chronic periodontitis,
mRNA and protein levels of HDAC1 expression were globally increased compared to healthy
individuals and colocalized with TNF expressing cells and tissues. Interestingly, epigenetic regulation
mediated by P. gingivalis seems to be cell-type specific, since HDAC1 and HDAC2 are downregulated
in gingival epithelial cells in vitro, while levels of acetylated histone H3 were increased in murine
epithelial cells of the gingival tissue [68,69]. In addition, the host acetylation system is also often
influenced by short chain fatty acids (SCAFs) produced by commensals or pathogenic bacteria as
P. gingivalis (for recent reviews please refer to References [70] and [71]).

Table 2. Bacteria targeting histone modifying enzymes.

Target Modification Bacterium Effector Cellular function References

HDAC1 induction A. phagocytophilum Ankyrin A
suppression of target genes as
CYBB that encodes cytochrome
b-245, beta polypeptide

[56]

HDAC1 induction P. aeruginosa 2-Amnoacetophenone
reduced expression of
inflammatory cytokines and
chemokines

[65]

HDAC1 induction M. tuberculosis unknown
Silencing of inteleukin-12β,
suppression of T helper1
response

[55]

HDAC2 repression P. gingivalis SCAFs Activation of genes [68,72–75]

P300 repression E. coli Proteinase NleC decreased IL-8 production [76]

HKMT repression P. gingivalis SCAFs Inhibition of heterochromatin
marks [73–75]

Another strategy followed by bacteria during host infection and manipulation of the epigenetic
regulatory mechanisms is to proteolytically degrade histone acetyl transferase (HAT) family members.
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One example of bacteria using this strategy are enteropathogenic and enterohaemorrhagic Escherichia coli,
which secrete the effector protein NleC, a zinc-dependent metalloproteinase targeting intracellular
signaling to dampen the host inflammatory response [76]. The protein specifically binds and degrades
the host HAT p300 in infected cells leading to decreased IL-8 production, an effect that can be restored
by p300 overexpression. Thus, HATs and HDACs can both be targeted by pathogenic bacteria to
modulate epigenetics and inflammatory gene expression in their benefit.

2.1.2. How to Control Host DNA Methylation

DNA methylation is another way to control gene expression. There are several enzymes called
DNA-(cytosine C5)-methyltransferases (DNMTs), which establish methyl residues to cytosine or
adenosine residues, respectively [71]. In contrast, the removement of DNA methylation patterns is
more complex, as the modified nucleotides or DNA sequences have to be exchanged by DNA-repair
mechanisms or the methylation has to be oxidized to form 5-Hydroxymethylcytosine, which can be
removed by enzymes [77]. DNA methylation patterns at promotors of tumor suppressor genes had
already been discovered, when first hints pointed towards an influence of bacterial inflammation on
mechanisms establishing DNA-methylation patterns after Helicobacter pylori infection. In this context,
among others, genes associated with cell growth (apc, p14 (ARF), p16 (INK4a)), cell adherence (cdh1,
flnc, hand1, lox, hrasis, thbd, p14ARC) and DNA-repair (brca1, mgmt., hMLH1) are influenced [52,78–80].
Similar observations of altered DNA-methylation patterns during inflammation were made following
uropathogenic E. coli, Campylobacter rectus and Mycobacterium leprae infections [81–83]. Still, the
questions if DNA-methylation is directly induced by bacteria or is a secondary reaction by the host
due to persistent inflammations, as well as the underlying mechanisms, are not completely answered
yet [84].

However, several Mycoplasma species to encode mammalian DNMTs like equivalents that target
cytosine-phosphate-guanine (CpG) dinucleotides to establish methylation patterns in the bacterial
genome [85–87]. Moreover, their expression in human cells results in their translocation to the nucleus,
where they set up unusual methylation patterns on the host DNA. This was shown for the DNMTs Mhy1,
Mhy2 and Mhy3 expressed by Mycoplasma hyorhinis in combination with up- and downregulation of
certain genes resulting in activation of proliferation specific pathways, a process that might contribute
to tumor progression [85,88].

Mycobacterium tuberculosis owns an effector called Rv2699 that can enter the nucleus of THP1
cells (a monocytic cell line derived from a patient with acute monocytic leukemia) and methylate
cytosines outside CpG dinucleotides. Notably, Rv2699 prefers cytosine-phosphate-adenine or
cytosine-phosphate-thymine sites to generate a type of methylation that is, with few exceptions,
normally not present in mammalian adult differentiated cells [89,90]. However, non-CpG methylation
could lead to a more stable type of modification that persists longer in the genome of infected
nondividing macrophages, offering an advantage for M tuberculosis by establishing an intracellular
environment for persistence [90]. A follow up study revealed that THP1 macrophages infected
with M. tuberculosis strain H37Rv created genome-wide de novo methylation patterns at non-CpG
dinucleotides that included hyper- and hypomethylated regions [90,91]. Additionally, clinical
isolates infecting THP1 cells may downregulate IL-6 receptor expression by hypermethylation of
CpG-dinucleotides at the promoter of the IL-6 receptor gene. Still, it has to be mentioned, that the
observations of M. tuberculosis induced DNA-methylation patterns depend on the infected cell type.

Another interesting bacterial induced modification of gene expression is represented by
differentiated Swann cells that adapt the phenotype of progenitor stem-like cells after M. leprae
infection. This is probably induced by silencing of the Sox10 gene after bacterial methylation [82].
In contrast to the decreased expression of Sox10, other genes involved in epithelial–mesenchymal
transition (EMT) were demethylated and transcribed leading to the transformation of Swann cells into
myofibers or smooth muscles in vitro and in vivo [92].
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P. gingivalis was shown to increase the methylation of the TLR-2 promotor in gingival epithelial cells
(GECs) reducing innate immunity activation and causing hyposensibility [69,93]. Besides, coinfection
with Filifactor alocis, another pathogen associated with periodontitis is suggested to influence the whole
cell transcriptome through impact on the nucleosome structure by reduced expression of H1 family
members [73,74]. Other histone modifications induced by LPS or short chain fatty acids (SCFAs)
produced by P. gingivalis are summarized in Tables 1 and 2.

Still, there is not much known about the relation of DNA-methylation and infection and the
underlying causalities [71,84]. Considering that many of these modifications are observed in the
context of cancer initiation and progression, further investigation may contribute to new therapeutic
agents and cancer prophylaxis.

2.1.3. Regulation of Host Gene Expression via lncRNAs

The role of lncRNAs during modulation of gene expression has been discovered in the recent
years. Similar to mRNAs, lncRNAs are transcribed by RNA polymerase II or III, followed by splicing,
5′capping and in some cases polyadenylation at the 3′end. Contrary to mRNAs, the expression of
lncRNAs is much lower and in a cell-, tissue- and developmental stage-specific manner [94].

Dependent on of their position relative to the neighboring protein-coding gene, lncRNAs are
classified as sense, antisense, bidirectional, intronic or intergenic and, despite their enormous number,
they were previously considered as “dark matter” or “junk” in the genome [95]. Au contraire, lncRNAs
are now respected as important physiological regulators during cell homeostasis, growth, differentiation
and anti-viral responses [96–99]. In addition, gene imprinting, regulation of the p53 pathway, stem
cell self-renewal and differentiation and DNA damage response were reported as lncRNA controlled
mechanisms [100–103].

The functionality of lncRNAs is not restricted to the neighbored protein-coding gene (in cis),
in contrast they are also able to act in trans to regulate gene expression across chromosomes.
In this context, lncRNAs regulate different processes as chromatin remodeling, transcription and
post-transcriptional regulation via their capacity as signals, decoys, guides and scaffolds [104,105].
Interestingly, another origin of lncRNAs is the expression of pseudogenes and gaining Influence over the
expression of pseudogenes could, therefore, provide a possibility to control infectious responses [106].

Immune regulation through lncRNAs has already been known after viral infections but recent
research indicates its involvement also whilst fighting bacteria [107]. In that context, 76 enhancer RNAs
(eRNAs), 40 canonical lncRNAs, 65 antisense lncRNAs and 35 regions of bidirectional transcription
are differentially expressed in human monocytes after LPS stimulation [108]. LPS stimulation alone
induces a differential expression of about 27 lncRNAs leading to histone trimethylation or acetylation
of neighboring genes after de-regulation, pointing towards their regulatory influence during the
innate-immune response [109]. The observation, that 44% of total lncRNAs varied in their expression
after Salmonella infection in HeLa cells could foster these results and substantiate them by a function
in the early phase of infection as sensitive markers for pathogen activity [110]. In line with this,
the lncRNA HOTAIR that contributes to transcriptional repression of HOX genes also promotes
inflammation in mice cardiomyocytes by TNF-α production mediated through phosphorylation of p65
protein and NF-κB activation after LPS induced sepsis [111,112].

Long intergenic non-coding RNAs (lincRNAs) are a subtype of lncRNAs, as they are expressed
from intergenic regions. In response to an LPS stimulus, bone-marrow dendritic cells expressed about
20 lincRNAs with the majority being dependent on NF-κB activity, including lincRNA-Cox2, which is
also upregulated in bone marrow-derived macrophages following L. monocytognes infection [113,114].
Additionally, bacteria sabotage lncRNA activity, as BCG (attenuated strain M. bovis bacillus
Calmette-Guérin BCG) infected macrophages repress the expression of 11 lncRNAs that are not
dampened by infection with heat activated bacteria [115]. Still, possible subversion of lncRNA-mediated
inflammatory regulation needs to be further investigated.
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2.2. Bacterial Effectors Manipulating the Host Transcription Machinery

Proper RNA Pol II complex formation is essential for protein expression and tightly controlled by
regulators, who are expressed by approximately 10% of all genes [116]. These are general or specific
TFs, which serve as activators and repressors and determine specificity and efficiency of transcription
at individual promotors [117,118]. Considering the large number of factors involved in transcriptional
regulation, it is not surprising that bacteria target those regulators to drive transcription in their
favor. For example, activator protein-1 (AP-1)–dependent gene transcription is inhibited by NleD,
an effector of E. coli that cleaves and inactivates the MAPKs, JNK and p38. Also, the recently identified
nucleomodulin OrfX secreted by L. monocytogenes that influences host transcription via its interaction
with the Ring1 YY1-binding protein (RYBP), a multifunctional nuclear protein owning a zinc finger
motif to interact with several TF components of the polycomb repressive complex 1 [119,120]. Moreover,
RYBP promotes gene silencing and transcriptional repression of developmental genes, as it is part of
the BCL6 corepressor (BCOR) complex [121,122]. In contrast, it is also involved in the activation of
the Cdc6 promoter and mediates interaction of the TFs E2F and YY1 [123]. Furthermore, the TF p53
(a tumor suppression factor) is assumed to be stabilized by RYBP through binding of MDM2, an E3
ligase, preventing p53 from proteosomal degradation. As p53 controls intracellular levels of reactive
oxygen (ROS) and nitrogen species (RNS) that are part of the immune defense of macrophages, OrfX
targets RYBP for degradation to interrupt P53 activity promoting intracellular bacterial survival. Still,
this model needs to be verified [120,124].

Salmonella Typhimurium inhibits the expression of NF-κB mediated genes by secretion of PipA,
GogA and GtgA via its type II secretion system [125–128]. These proteins belong to the family of
zinc metalloproteases and contain the short metal binding-motif HEXXH, which consists of two
histidine residues coordinating the active-site zinc and a glutamate residue that is essential for catalytic
activity [129]. They can cleave NF-κB TF subunits, including p65, RelB and cRel, thereby suppressing
their ability to control the transcription of innate immune genes [125–128]. In addition, Jennings et al.
predicted suppression of the transcriptional coactivator ribosomal protein S3 (RPS3) by GtgA family
members, as it produces p65 (1–40) after cleavage of p65.

Enteropathogenic and enterohemorrhagic E. coli possess another zinc metalloprotease that also
owns the HEXXH motif and is able to cleave p65, RelB and cRel, as well as NF-κB1 (p105/p50) and
NF-κB2 (p100/p52) [126–128,130]. Following cleavage, the subunits are left inactive except for the
N-terminus of p65, which prevents the nuclear import of the transcriptional coactivator ribosomal
protein S3 (RPS3). This in turn inhibits the expression of a specific subset of NF-κB–dependent genes
requiring RPS3 for their expression.

The non-pathogenic E. coli strain 83972, who is the agent causing persistent asymptomatic
bacteriuria (ABU), suppresses host defense in the urinary tract by inhibition of RNA Pol II dependent
transcription. While infections with pathogenic strains induce urinary tract infections, these bacteria
create an asymptomatic carrier state that reminds of bacterial commensalism and protects patients
against infection with more virulent strains. Therefore, therapeutic urinary tract inoculation with the
ABU strain is a promising alternative to appease symptoms of therapy resistant, recurrent urinary tract
infections [131–133].

Studies with patients and human cells treated with ABU strain 83972 revealed that 24 h after
inoculation, over 60% of all genes were suppressed, including regulatory elements as transcriptional
repressors, transcriptional activators, regulators of translation and chromatin or DNA organizing
factors [134,135]. This phenomenon was observed for many genes of the innate immune response but
about 22.5% of the effected genes are involved in Pol II transcription or in regulating Pol II–dependent
pathways. After Ingenuity Pathway Analysis, a network incorporating FOSB, HSPA6, RN7SK, RGS4
and IFIT1, inversely regulated genes that control Pol II for instance through TATA box–binding proteins
(TBP) [136–138], appeared.

Another fascinating observation revealed that 50% of ABU strains lack virulence genes due to
point mutations or deletions resulting in smaller genome sizes. Considering that ABU strains evolved
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from uropathogenic E. coli, this could be a hint for a reductive evolution creating a niche through
active adaptation to the host environment [139]. Thereby, the ABU strain generates a commensal
like state characterized by a well-balanced immune environment that finally protects the host from
colonialization with more virulent strains and destructive immune activation [134,140–144].

Ambite et al. observed in a follow up study that obtaining one single virulence factor was
enough to induce virulence of a non-virulent strain causing symptoms in the host, in contrast to the
broad repertoire of virulence factors that are normally expressed by pathogens [145]. In this context,
reconstitution of the papG adhesin gene recreated functional P-fimbriae leading to virulence of the
avirulent ABU strain. Considering the high frequency of ABU strains carrying inactive papG genes,
the loss of P-fimbriae might induce development of virulence attenuation and evolution towards
commensalism [96,134].

L. pneumophila is another pathogen that induces global reprogramming of transcription,
by interference with transcriptional elongation by Pol II. Its effector AnkH interacts with LARP7,
a component of the 7SK small nuclear ribonucleoprotein (snRNP) complex involved in Pol II pausing.
Thereby, theβ-hairpin loop of the third ankyrin repeat of AnkH impairs LARP7 interaction with the other
7SK snRNP complex components resulting in promotion of gene wide transcriptional elongation [146].
The nucleomodulin SnlP expressed by Legionella also regulates RNA Pol II mediated transcription
elongation by inhibition of SUPT5H that is part of the 5,6-Dichlorobenzimidazole 1-β-D-ribofuranoside
(DRB, a selective inhibitor of transcriptional elongation by RNA pol II) sensitivity-inducing factor
(DSIF) complex [147].

2.3. RNA Processing as Target during Infections

Following transcription the immature pre-mRNA is processed to mature mRNA, a process that
includes 5′ capping, 3′polyadenylation and splicing and is essential for normal cell function [148].
Splicing of mRNAs can include omitting or retaining of exons to create a protein with altered structure,
function and stability, a process called alternative splicing. In the human genome, more than 90% of
all genes are adjusted by alternative splicing, which enables a variation and dynamism in the static
genome as protein domains can be easily new combined to form isoforms with unique functional
abilities [148,149]. The process is controlled by multi-molecular complexes that assemble at splice
junctions, thereby evaluating splicing enhancer/silencer elements flanking splice junctions, which in
their combination determine inclusion or exclusion of exons. Those elements are divided into cis
elements including splicing enhancers and silencers and trans elements as snRNPs, hnRNPs, SR proteins
(serine-arginine containing proteins) and several other accessory proteins [149,150]. Furthermore,
the rate of transcription has a critical influence on alternative splicing, as a paused or decelerated RNA
Pol II can use newly transcribed splice junctions that could have been skipped at higher translation
speed [151–153].

Recent studies indicate that the host splicing machinery is targeted by pathogens to perturbate
immune response. This has been extensively reported for viral infections but quite less is known about
bacterial interference. Nevertheless, global alterations of splicing patterns were detected after infection
of human macrophages with M. tuberculosis, Salmonella or Listeria [154–157]. More specifically, hnRNP
M interacts with LLO leading to a hampered INF-γ response [158] and co-immunoprecipitation of
splicing factors hnRNP U, hnRNP H, hnRNP A2/B1 isoform A2 and SRSF3 with the bacterial protein
mtrA was shown in macrophages overexpressing specific secreted proteins that are infected with
M. tuberculosis [159]. Another hint for the interaction of mycobacterial proteins and host splicing factors
is the precipitation of host splicing proteins as SRSF2, SRRM2, SF1, HTATSF1, GCN1L1, CPSF6 and
many more by the mycobacterial proteins EsxQ, Apa, Rv1827, LpqN, Rv2074 and Rv1816 [160].

Mycobacterium avium subsp. paratuberculosis, also induces alternative splicing of 46.2% of all genes,
including two genes responsible for monocyte to macrophage differentiation-associated maturation
and lysosome function. Since their splice variants lead to failure of macrophage maturation, bacterial
intracellular persistence is improved in the early phase of infection by hampered clearance [161].
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Furthermore, alternative splicing of RAB8B, a key regulator of phagosome maturation, induced by
M. tuberculosis infected cells leads to the production of a truncated protein. The alternative splicing
event results in nonsense-mediated decay of RAB8B mRNA resulting in lowered protein levels,
that dampens phagosome maturation [156].

Analysis of RNAseq data revealed that specific genes are chosen by pathogens for the manipulation
of alternative splicing. Indeed, most dominant isoforms of protein kinases produced end up with the
loss of critical functional domains including kinase domain or protein–protein interaction domains
like SH2, SH3 and PH domains [162]. Considering nonsense-mediated decay of RAB8B mRNA after
M. tuberculosis infection, it is concluded that this mechanism describes the two strategies host and
bacteria developed during their evolutionary concurrence [156]. In this theory, increase of transcription
after infection represents the host response, whereas splicing into a truncated isoform, which is
destinated for decay, exemplifies bacterial interference. The exact mechanism how bacteria manipulate
alternative splicing is not clear yet. Possibly, they activate cryptic or weak splice sites in the host
genome to alter the splicing pattern but this has still to be proven [149].

However, another aspect that needs to be considered is the high diversity with that individuals
react to the same pathogenic agent. For example, only 5–10% of the individuals in tuberculosis
endemic countries that had contact with M. tuberculosis develop disease, whereas the majority either
eliminates the pathogen or controls it in a metabolically altered latent phase [163,164]. An explanation
are single-nucleotide polymorphisms (SNPs) that disrupt splice-site consensus sequences in 15% of
human disorders induced by inherited point mutations, whose influence induce strongly fluctuating
pathological conditions after varying activation of disease associated genes [165–167]. This was
already reported for diseases as diabetes and seems to be also true for infections, as several SNPs
were identified that change the host susceptibility to M. tuberculosis infections for example, in the
intronic region of human ASAP1 (dendritic cell migration). Another polymorphism in IL-7RA helps
to protect against tuberculosis due to an impaired IL-7Ra splicing [168,169]. Therefore, alternative
splicing gets into focus of possible medical therapy developing splicing inhibitors that are already
tested for cancer [149,170,171]. Nevertheless, the knowledge about alternative splicing during bacterial
infections and their interplay is very limited and deserves more attention, as this could give more
insights in individual susceptibility and immunity.

2.4. The Advantage of Modulating Host RNA Stability and Degradation

The lifetime of mRNAs has a major impact on the amount of proteins that can be produced;
the shorter an mRNA is present, the less it can be transcribed. Since the lifetime of an mRNA is
dependent on its stability, there are mechanisms to increase resistance to degrading RNases [11–13].
First, the 5′m7G cap and the 3′poly-A tail that are established post transcriptionally at all mRNAs but
especially the length of the poly A tail can vary between mRNAs, determining the duration of resistance
against enzymatic degradation [9]. Besides, these structures are involved in virus clearance, as viral
mRNAs lack these structures, what marks them for RNA degradation machinery [172]. In addition,
the structure of the mRNA alone influences its stability, as hairpin-structures and other secondary
structures are formed dependent on the sequence and therefore, increase the stability [11–13]. In the
following paragraphs we want to highlight the regulation of mRNA stability and decay mediated by
miRNAs during infections and how bacteria interfere with this part of the host immune defense.

Manipulation of miRNAs to Favor Bacterial Survival

Their physiological properties enable non-coding RNAs (ncRNAs) to base-pair with their targets
and interfere with a twofold effect on gene expression—one single ncRNA can bind multiple targets,
thereby influencing several pathways at once and one gene can be regulated by several ncRNA fine
tuning gene expression [173]. miRNAs are involved in several cellular processes as cell proliferation
or differentiation and after studies with human monocytes treated with LPS, miR-146 was identified
as anti-inflammatory miRNA proving miRNA involvement in inflammation [174–176]. Indeed,
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subsequent studies revealed specific expression of miRNA sets including miR-155, miR-146, let-7 and
miR-29 (see Table 3) due to infection with different bacterial pathogens regulated in a time dependent
manner [177–181]. Another study with dendritic cells infected with six different bacteria demonstrated
a core infectious response in a temporal manner including 49 miRNAs that were always expressed and
may, therefore, play essential roles in infectious responses. Additionally expressed miRNAs might hint
towards specific variability and signatures arising from the individual pathogens [182]. Interestingly,
following infection, the proportion of miRNA variants, the so called isomiRs, varies, which is supposed
to effect miRNA identity and regulatory potential but has not been proven yet [182].

The induction of miRNAs is often dependent on PRR and NF-κB pathway induction in response
to bacterial stimuli as LPS. Interestingly, there is a dose dependent reaction to the stimulus, as a low
dose activates miR-146 that acts as anti-inflammatory regulator promoting tolerance to low doses
by targeting two members of the NF-κB pathway, TRAF6 (TNF Receptor-associated factor 6) and
IRAK1 (IL-1R-associated kinase 1) [176,183]. In contrast, at high doses of LPS, TNF-α and Interferon β

induce miR-155 via TAB2 to maintain the proinflammatory NF-κB activity fighting pathogens and
exerting a negative feedback on the immune system. Therefore, both mi-RNAs protect the host from
sepsis and overreaction [183,184] but in a dose dependant manner. miR-155 is also involved in T
helper cell development or promoting autophagy by inhibition of the mTOR (mammalian/mechanistic
target of rapamycin) pathway, indicating that it represents an important part of an efficient immune
response [185–187]. Actually, upon Citrobacter rodentium or L. monocytogenes infection, miR-155 null
mice showed slower clearance and an impaired CD8+ T-cell response, respectively and miR-155 was
identified as an essential factor during the vaccination process against S. Typhimurium [188–191].

Table 3. Activity of miRNAs in the host response. The arrows indicate changes of miRNA expression
induced after bacterial infection that result in the described alterations..

miRNA Target
Cellular
Function/Cells
Involved

Induced Changes
During Infection Described for Infection with References

let-7B TLR4 TLR sensing
↓ Promoted TLR
sensing and NF-κB
activity

several bacteria [192]

let-7A,
let-7D IL-6, IL-10

Pro-inflammatory
and
anti-inflammatory
cytokine

↓Maintaining
balanced immune
response

several bacteria [193]

let-7C mTOR-pathway ↓Modulation of
T-cell activity several bacteria [194]

let-7I SNAP23 Exosome release
↓ Antimicrobial
response, cell to cell
communication

several bacteria [195]

miR-29 IFN-γ

Immune response
to intracellular
bacteria/NK-cells,
CD4+ and CD8+

T-cells

↓ increased IFN-γ
expression and
bacterial clearance

L. monocytogenes,
Mycobacterium bovis bacillus
Calmette-Guérin (BCG)

[196]

miR-192,
miR-378,
miR-215,
miR-148A,
miR-200C,
miR-200B

zinc finger
E-box–binding
homeobox ZEB1
and ZEB2
(transcriptional
repressors of
E-cadherin)

Intestinal
homeostasis,
gut transcriptome,
tissue integrity,
immunity and
metabolism

↓ L. monocytogenes [197,198]

Another miRNA family, the let-7 family, is repressed during infection or exposure to LPS, as Lin-28B
expression is induced in a NF-κB dependent manner that blocks let-7 maturation [154,192,193,195,199,200].
Additionally, active repression of these miRNAs by bacteria has been reported in several studies (see
Table 3). Many other bacteria induce miRNA expression and manipulate expression of these immune
regulators in their favor (summarized in Table 4.)
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Table 4. Bacteria manipulating host miRNA to circumvent immune response. Arrows indicate an up or downregulation and refer to the miRNA before.

Bacterium miRNA Cellular Function miRNA Target miRNA Expression
Induced by Bacterial Benefit References

L. monocytogenes miR-29 ↑ Expression of IFN-γ by NK
cells IFN-γ mRNA unknown [196]

Salmonella miR-30c, miR-30e ↑ Host SUMOylation

Ubc9 (cellular E2
SUMO-
conjugating
enzyme)

Reduction of host SUMOylation [201]

miR-15 family ↓ Cell cycle Cyclin D1
Inhibition of tran-
scriptional factor E2F1
production

De-repression of cyclin D1,G1/S
cell cycle transition, bacterial
intracellular replication

[202]

miR-128 ↑ Recruitment/ activation of
macrophages

Macrophage
colony-
stimulating factor
(M-CSF)

p53 signalling
pathway

Impairment of M-CSF mediated
macrophage recruitment [203]

H. pylori miR-21, miR-222 ↑ tumour suppressor
RECK [204,205]

miR-30b ↑
Formation and maturation
of autophago-
somes

BECN1 and
ATG12 transcripts

Autophagy interference,
intracellular persistence and
survival

[206]

M. tuberculosis miR-132, miR-26a Recruitment/ activation of
macrophages

Tran-
scriptional
coactivator p 300

Downregulation of INF-γ
signalling cascade, limitation of
macrophage response to INF-γ
signalling

[207]

miR-125b, miR-155,
miR-99b

Recruitment/ activation of
macrophages TNF-α

Reduction of TNF-α production,
increase of SHIP1 transcription,
reduced macrophage
recruitment

[208,209]

miR-155↑
Recruitment/
activation of macrophages
and macrophage apoptosis

Repressing
BACH1, SHIP1
and SOCS1, Rheb

Induction of heme oxygenase
1 expression, activation of
serine/threonine kinase AKT

[199,210,211]

let-7f↓ Inhibitor of NF-κB pathway
A20
(deubiquitinating
enzyme)

favored bacterial survival in
macrophages [212]
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In addition to H. pylori with miRNAs (see Table 4), there are two more interactions described,
which depend on the effector CagA that activates NF-κB pathway. This effector induces an increased
expression of miR-1289 that in turn leads to a decreased gastric acidity, as miR-1289 targets HKα,
a component of the gastric H+/K+ ATPase [213]. Furthermore, Cag A induces cell cycle arrest at G1/S
transition, which inhibits the renewal of the gastric epithelium, supporting H. pylori colonization [214].
In this context, miR372 and miR-373 expression is suppressed by Cag A, whereas miR-584 and miR-1290
expression is promoted. The latter target FOXA1, a negative regulator of the epithelial-mesenchymal
transition, for inhibition, thereby favoring bacterial persistence and survival within the gastric
epithelium [215]. Moreover, CagA suppresses miR320 and miR370 expression, who induce MCL1
(an anti-apoptotic gene) or downregulate FoxM1 expression, respectively. FoxM1 downregulation in
turn activates p27K1P1 leading to cell cycle inhibition. Together, these factors decrease apoptosis and
favor cell proliferation, which can lead to tumor development.

The M. tuberculosis effector ESAT-6 is also capable of manipulating miRNA expression to the
benefit of the bacterium [212]. ESAT-6 downregulates let-7f expression in macrophages, leading to
an enrichment of the deubiquitinating enzyme A20 that negatively regulates the NF-κB pathway.
Furthermore, miR-155 expression is stimulated, resulting in BACH1 (a transcription regulator protein)
and SHIP1 (SH-2 containing inositol 5′ polyphosphatase 1, a multifunctional protein expressed
predominantly by hematopoietic cells) repression that in turn induces heme oxygenase 1 expression.
Concurrently, serine/threonine kinase AKT is activated fostering bacterial dormancy and survival.
This is subsidized by downregulation of SOCS1 (suppressor of cytokine signaling 1) and targeting of
Rheb (Ras homolog enriched in brain), which is followed by macrophage apoptosis [199,210,211].

Evidence exists that bacteria are able to also produce their own regulatory RNAs that interfere
with the host. In 28 bacterial genomes 68 possible candidate bacterial RNAs were found during an in
silico search, which harbor secondary structures that could form miRNAs after host procession and be
involved in 47 human diseases [216]. As an example, after E. coli ingestion che-2 and F42G9.6 gene
expression was modulated and probably degraded in Caenorhabditis elegans by E. coli OxyS and DsrA
ncRNAs [217]. Furthermore, Mycobacterium marinum expresses a pre-miRNA that associates with the
host RISC complex in its mature, 23 nucleotide long form and could effectively downregulate its target
mRNA when overexpressed [218].

It has been reported that exosomal transfer of host cell miRNAs is used to spread the host response
to other cells and the ratios of miRNAs transported differ in a time and bacterial dependent manner.
Hence, the ratios of miR-146a and miR-155 in exosomes can subsequently modulate host cell responses,
favoring inflammation or recovery, respectively. The use of exosomes containing miRNAs could give
rise for therapeutic possibilities to treat inflammation or to be used during vaccinations [219–226].
Moreover, exosomes containing miRNAs could be used for diagnosis, since they can be detected in
many sample types (blood fluids, saliva, tears, urine, amniotic fluid, colostrum, breast milk, stool, etc.)
and since there are unique patterns for each pathogen [219–221].

Regulation of gene expression through ncRNAs as miRNAs happens more immediately and
flexibly than through transcriptional regulators [33]. The faster response is enabled by the cell and tissue
type specific differentially regulated reservoir of ncRNAs, which also allows a precise fine-tuning of
gene expression to organize immune defense and damage protection [33]. Taken together, investigation
of the host-pathogen crosstalk with a focus on miRNAs and their usage and manipulation by bacteria
provides new perspectives to fight bacterial mediated diseases.

2.5. Controlling Host Translation Improves Bacterial Persistance

Translation is a major regulator of gene expression and immune response. As many factors are
needed to induce Ribosome association, start of translation and ongoing elongation, many ways exist
to regulate or interfere with the translation machinery. Not surprising, inhibition of translation is
a well-known strategy followed by bacteria to circumvent immune defense [227].
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In most cases, eukaryotic translation is controlled during initiation, when ribosomes are recruited
to the mRNA mediated by eukaryotic initiation factor 4F (eIF4F) that recognizes the 5′ cap structure
with the help of its cap-binding subunit eIF4E [228]. The reversible association of this subunit with
4E-binding proteins (4E-BPs) inhibits the assembly of eIF4F and its release and activation are in turn
mediated by the phosphorylation of the 4E-BPs [229–231]. This phosphorylation is induced by the
serine/threonine kinase mTOR complex 1 (mTORC1), thereby requiring the protein Raptor for mTOR
substrate binding whereas rapamycin binding inhibits phosphorylation and dissociation [232,233].

Legionella pneumophila (L. pneumophila) expresses five effectors, Lgt1, Lgt2, Lgt3, SidI and SidL,
involved in global protein translation inhibition by interference with the eukaryotic elongation factors
eELF1A and eELF1Bγ [227,234–236]. Moreover, L. pneumophila was also shown to negatively influence
cap-dependent translation initiation mediated by ubiquitination of the mTOR pathway leading to
suppression of the eukaryotic initiation factor 4E (eIF4E) through decreased eIF4E assembly into the
translation initiation complex eIF4F [237].

Finally, the synthesis of IκB, an inhibitor of the NF-κB TF, is inhibited by L. pneumophila. This leads
to a prolonged NF-κB activation resulting in the so-called effector-triggered response (ETR) including
transcription of target genes, such as Il23a and Csf2 that create a more pro-inflammatory state.
Fascinatingly, mutants lacking effectors or the Dot/Icm type IV secretion system transferring them,
still inhibit host translation via TLRs and NF-κB activation but not sufficient enough to fully induce
ETR [234,235]. In addition, macrophages lacking TLR and Nod signaling still mediated MAPK signaling
after exposure to the five L. pneumophila effectors that leads to inhibition of host translation. Therefore,
translational inhibition does not exclusively rely on ETR but also on effector independent mechanisms
that induce mTOR pathway downregulation and cytokine biasing [237]. In this context it is suggested
that the host immune system senses not only for PAMPs but also for pathogen-encoded enzymatic
activities that disrupt crucial cellular processes [227]. Interestingly, even if host translation is inhibited at
the stage of initiation and elongation by L. pneumophila, there is still an inflammatory response detectable.
The immune response is quite weak compared to its normal potential but few inflammatory cytokines,
as IL-1α and IL-1β, circumvent translational inhibition by L. pneumophila, which is mediated by MyD88
signaling [227]. This demonstrates that the interference with cap-dependent host translation results
in promotion of host defense, as highly abundant transcripts, which often encode proinflammatory
cytokines, are favored for translation. Thereby, the bacterial benefit through blockage of host translation
may consist of increased availability of amino acid nutrients beneath the dampened immune response,
which is impeded by the host [234].

Translational inhibition is also known for P. aeruginosa infections in C. elegans, where Exotoxin A
after its endocytosis into intestinal cells leads to suppression of elongation factor 2 (EF2), followed by
selective translation of ZIP-2 and thus, induction of pathogen clearance [238,239]. As the 5′ UTR of zip-2
contains several untranslated ORFs (uORFs), it was proposed that the uORFs could mediate selective
translation. Moreover, inhibition of translation by pharmacological inhibitors also caused induction of
various stress response genes including Il6, Il23, Il1α and Il1β [240–242]. As these cytokines are still
expressed when the elongation machinery is attacked by P. aeruginosa with Exotoxin A, a consideration
of similar functionalities of the 5′ UTR or the 3′ UTR of cytokine genes to uORFs was raised. However,
the ADP-ribosylation of elongation factor 2 (EF2) in host cells also triggered a strong immune response
that is supposed to be the result of a conserved surveillance mechanism in response to inhibition of
the translation elongation machinery [236,243]. Thus, a set of elongation factors can be considered,
that are resistant to modification by these effectors or are at least not targeted. Therefore, future
research is needed to get more information about the underlying mechanisms and potential therapeutic
targets [227].
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2.6. Modification of Protein Degradation/Activity as Last Possibility to Evade Host Immune Defense?

2.6.1. Mechanisms to Interfere with Protein Degradation

To maintain cellular homeostasis, the quality of synthesized proteins must be controlled for
a proper folding and products with quality issues must be degraded in a controlled manner. This quality
control is taking place in the cytosol or the ER lumen, where chaperones and heat shock proteins
catalyze and stabilize the protein folding [244]. In the case of physiological stress caused by DNA
damage, chemical stimuli or pathogens, the ratio of misfolded or unfolded proteins in the ER lumen
increases, causing additional stress. Then, the unfolded protein response (UPR), an evolutionary
conserved signaling network, is activated resulting in downregulation of overall protein synthesis,
except for chaperones and induction of ER associated protein degradation (ERAD [245]. The main
kinases controlling the UPR, the inositol-requiring protein 1 (IRE1), PKR like ER kinase (PERK)
and activating TF 6 (ATF6) are located inside the ER membranes. Their luminal domains bind the
ER chaperone immunoglobulin binding protein (BiP) in unstressed conditions but in case of stress,
BiP is released causing activation of the receptor proteins (IRE, PERKI and ATF6) [246]. Following
BiP dissociation, oligomerization and autophosphorylation, the cytosolic RNase domain of IRE1 is
activated targeting X-box-binding protein 1 mRNA (XBP1u) and transfers it into its spliced form
(XPB1s). This enables transcription of the TF responsible for upregulation of UPR target genes fostering
ERAD and enhances overall ER protein folding capacity [240–242]. The ER transmembrane kinase
PERK1 also oligomerizes and autophosphorylates after activation, catalyzing the phosphorylation of
the α-subunit of the eukaryotic initiation factor 2 (eIF2). This is followed by downregulation of global
mRNA translation to reduce ER stress but favoring translation of some mRNAs as ATF4. ATF4 in turn
induces several UPR target genes including C/EBP homologous protein (CHOP) [247,248]. In contrast
to IRE1 and PERK, ATF6 translocates to the Golgi followed by its activation after proteolytical cleavage
and activation of the b-ZIP TF to induce UPR target genes.

Since permanent ER-stress, which cannot be solved by UPR and ERAD, will finally induce
apoptosis, intracellular bacteria have evolved strategies to interfere with those pathways [249–251].
Surprisingly, induction of UPR pathways can also promote bacterial replication, as bacterial effectors
have been detected that induce UPR [19]. As result, it is difficult to refer an upregulation of UPR to
bacteria using the increased ER folding capacity for their benefit or to the defense system of the host.
In the case of L. monocytogenes infection, the effector LLO activates all three UPR pathways leading to
induction of ER stress and reduction of bacterial survival. In contrast, the pharmacological block of
UPR during infection reduced the intracellular replication of Brucella melitensis and Brucella abortus
significantly [252].

B. melitensis and B. abortus both induce the IRE1 branch, a process often mediated by TLRs.
The TLR adapter protein myeloid differentiation primary response gene 88 (MyD88) than mediates
XBP1u splicing. Interestingly, the bacterial effector protein TcpB, secreted by B. melitensis, is able to
induce the UPR target genes BiP, CHOP and ER DnaJ-like 4 (ERdj4) in a MyD88 independent manner;
instead, the TcpB protein itself is required for UPR induction [253].

The induction of IRE1 by B. abortus is mediated by the secreted effector VceC after binding of BiP
inside the ER lumen. This is followed by IRE1 dependent activation of Nod1/Nod2 innate immune
signaling resulting in proinflammatory cytokine expression [254,255]. The ectopic expression of VceC
leads to the structural reorganization of the ER and IL-6 production is stalled after infection with
B. abortus vceC mutants unable to induce UPR. In mice infected with B. abortus vceC mutants necrosis
was reduced and survival of the pups was increased [255]. Following infection with B. abortus WT,
similar effects were observed after treatment with the general UPR inhibitor tauroursodeoxycholic
acid, leading to the assumption that pharmacological UPR inhibition could be a promising treatment
of B. abortus infections.

Several other bacteria are known to inhibit the UPR pathway, as it represents a major host defense
mechanism involved in bacterial sensing mediated by TLR signaling. Some examples are summed up
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in Table 5 but unfortunately, the underlying mechanisms are rarely understood. In some cases, as for
L. pneumophila, it is known that the observed downregulation of UPR is effector dependent, as mutants
lacking functional T4SS were unable to induce those changes but the effectors and its targets have not
been identified yet [256,257].

Table 5. Inhibition of unfolded protein response (UPR) by bacteria.

Effector Bacterium Target Cellular Function Manipulation Reference

glucosyltransferase
effector proteins L. pneumophila unknown IRE1 branch of UPR Inhibiting splicing of XBP1u

mRNA [256,257]

unknown L. pneumophila unknown UPR inhibit the translation of BiP
and CHOP [256–258]

unknown Simkania negevensis unknown UPR BiP induction (early), later on
inhibition [259]

unknown Simkania negevensis unknown UPR
blocks the translocation of
preexisting CHOP protein to
the nucleus

[259]

unknown Simkania negevensis unknown PERK branch of UPR Reduced phosphorylated eIF2
levels [259]

unknown L. monocytogenes unknown PERK branch of UPR Reduced phosphorylated eIF2
levels [260]

unknown C. trachomatis unknown PERK branch of UPR Reduced phosphorylated eIF2
levels [260]

Taken together, bacteria follow different strategies of interference with protein folding to ensure
their intracellular survival. Manipulation of UPR is one strategy to achieve the best outcome for
bacteria by either activation or inhibition of UPR. Activation may be induced to take advantage from
increased protein folding capacity and lipid biosynthesis by host cells, whereas UPR blockage should
hamper host defense, such as apoptosis or innate immunity [261]. In this context, further investigations
are needed to understand the underlying mechanisms, how bacterial pathogens manipulate the UPR
and which strategy is favored by the individual pathogens in a spatially and temporally manner.

2.6.2. Control of Protein Activity enables Bacteria to Direct Host Immune Reaction

As already mentioned above, the final level to regulate gene expression, for example, to avoid
prolonged inflammatory response, is to control the activity of proteins followed by their degradation.
The mechanisms to influence protein activity or to mark a protein for degradation are mediated via
attachment of functional groups. To ensure a precise signal transduction, proteins are activated in most
cases by addition of phosphate groups, which must be removed when the inducing stimulus is ending.
The dephosphorylation of MAPKs and the resulting interruption of host signaling cascades, leading to
reduced inflammation and an increase of bacterial replication inside the host, is a common bacterial
strategy, for example, used by S. Typhimurium by secretion of the effector SpvC, a phosphothreonine
lyase [262].

In addition, protein activity, subcellular localization and stability is not only regulated
by ubiquitination or phosphorylation but also by reversible acetylation which is proposed for
approximately 1700 proteins [263]. These include TFs, structural proteins and signal transduction
regulators, indicating that reversible acetylation is critical for cell homeostasis [264]. As there are many
examples for this kind of activation of proteins (e.g., histones) mentioned in the chapters above, the
focus will here lie on the description of the signaling mechanism by ubiquitination. An ATP-dependent
enzymatic cascade establishes covalent ubiquitin attachment to proteins, mediated by enzymes that
activate ubiquitin (E1), conjugate ubiquitin (E2) and ligate ubiquitin (E3). Ubiquitin can be ubiquitinated
at seven distinct lysine residues and is able to form linear or branched chains; the degree and the
linkage determine, whether the substrate is degraded or associated with cell signaling [265]. The
established ubiquitin modifications can be removed and modified by deubiquitinases (DUBs) to change
the linkage pattern and, as consequence, the destination of the substrate.
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Intracellular bacteria are able to mimic enzymes involved in ubiquitination processes, especially
DUBs and E3 ubiquitin ligases, to modulate the ubiquitin pathway [266,267]. The SidE effector
family (SidE, SdeA, SdeB and SdeC), secreted by intracellular bacteria as L. pneumophila, possesses
domains conferring multiple enzymatic functions used for ubiquitination into a single effector
without the requirement of ATP. Thereby, the mono-ADP-ribosyltransferase domain of SidE family
members modifies host ubiquitin posttranslationally by attachment of phosphoribose on arginine
42 to generate ADP-ribosylated ubiquitin (ADPR-Ub) [268–271]. This intermediate is than cleaved
by nucleotidase/phosphohydrolase/phosphodiesterase domains into AMP and phosphoribosylated
ubiquitin (PR-Ub), which in the next step is attached to host proteins via a noncanonical serine-linked
phosphodiester bond. The DUB domain (also found in SidE family members) than removes host
ubiquitin modifications but not the SidE-mediated ubiquitination and reduces the level of ubiquitination
on the surface of the L. pneumophila-containing vacuole (LCV) [271]. In addition, overexpression of
SidE effector family members in mammalian or yeast cells generates a pool of PR-Ub that interfere with
E1 and E2 enzymes hampering conventional host ubiquitination pathways. This results in interruption
of mitophagy, immunity, as shown for TNF-induced NF-κB nuclear translocation, proteasomal
degradation (for example of hypoxia inducing factor 1α) and other ubiquitin-regulated processes in
the host [268,269]. Furthermore, ER structure and host membrane trafficking are modulated by SidE
effector family members to enable LCV biogenesis. To ensure precise temporal control over the signal
transduction mediated by ubiquitination, L. pneumophila secretes another DUB effector, SidJ, that is
able to remove ubiquitin modifications established by the SidE effector family and the mammalian
ubiquitination machinery [268,269,272].

S. flexneri also owns an effector with E3 ubiquitin ligase activity, IpaH9.8, that disrupts the NF-κB
dependent pathway in the cytosol and impairs the activity of U2AF35, an mRNA splicing factor,
leading to host inflammatory responses being suppressed [273–275]. The effector owns an N-terminal
domain containing Leucine-Rich Repeats (LRR), also known as the LPX-domain, that is responsible for
substrate recognition and a C-terminal E3 ubiquitin ligase domain, referred to as NEL domain (novel
E3 ligase). Notably, the original structure of this domain differs from known eukaryotic E3 ligases,
therefore, IpaH9.8 and its orthologues in other bacteria, for example, SspH 1 of Salmonella enterica,
are part of a novel family of bacterial E3 ubiquitin ligases [276–281]. SspH 1 targets the host kinase
PKN1 for proteasomal degradation, thereby functioning as ubiquitin ligase. In this context, it inhibits
NF-κB dependent pro-inflammatory genes and regulates activation and function of neutrophils and
macrophages as part of the androgen receptor pathway [278].

Enterohaemorrhagic E. coli express the T3SS effector protein NleG5-1, which contains a ubiquitin
ligase U-box domain for ubiquitination and degradation of nuclear proteins. One target is a member of
the mediator complex, MED15 that is a master regulator of RNA Pol II- dependent transcription [282].
The Ank-family expressed by Orienta tsutsugamushi (causative reagent of scrub typhus) is another
protein family involved in ubiquitination and degradation, characterized by N-terminal Ank repeats
and a C-terminal F-box-like domain termed as PRANC (pox protein repeats of ankyrin C terminus)
motif. This family includes the proteins 1U5, 1A, 1B, 1E, 1F, 1U4 and 1U9 that interact with two
members of multiprotein E3 ubiquitin ligase complexes, CULLIN-1 and SKP1 [283,284]. These proteins
are supposed to act as mediators, as the ANK domain shall specifically bind target substrates, while the
F-box recruits SKP1 promoting complex formation and finally inducing substrate degradation. This is
also suggested for the degradation of the TF EF1α, probably induced via function of Ank 1U5 [283].

Especially the ubiquitin–proteasome system is a favored target of bacterial pathogens to manipulate
the host cell cycle (summarized in Table 6). Two prominent targets are Skp1–Cullin1–F-Box protein
(SCF, active throughout the cell cycle) and Anaphase-Promoting Complex/Cyclosome (APC/C, only
regulatory active during Mitosis and late G1 phase), two classes of E3 ubiquitin ligase complexes
inducing the degradation of cell cycle key regulators, thereby promoting its progression. A RING
finger protein within both complexes enables binding to a scaffold cullin-like protein, the ubiquitin
conjugating enzyme (E2) and distinct substrate-binding subunits. SCF are rated among the large family



Int. J. Mol. Sci. 2020, 21, 3730 20 of 37

of Cullin-Ring E3 ubiquitin ligases (CRLs) as they are regulated via conjugation/deconjugation of the
ubiquitin-like protein NEDD8 at the cullin subunit of SCF [285–289].

Table 6. Bacteria manipulating the host cell cycle.

Effector Bacterium Target Cellular Function Manipulation Reference

VIRF Agrobacterium SCF

cell-cycle progression
by targeting key
regulators for rapid
degradation

Promoting cell
proliferation [290,291]

cycle inhibiting
factors (CIF)

E. coli (CifEc)
Yersinia
pseudotuberculosis
(CifYp)
Burkolderia pseudomallei
(CifBp)

SCF
CRL

arrest of the
cell cycle at G1 and
G2 phases

Inhibition of host cell
proliferation [292]

IPAB S. flexneri Mad2L2/MAD2B inhibitor
of the APC/Ccdh1 cell cycle arrest [293]

Diverse animal pathogens, such as E. coli, Yersinia pseudotuberculosis, Burkolderia pseudomallei and
Photorhabdus spp., express so-called Cycle inhibiting factors (Cif) that target SCFs and CRLs resulting
in cell cycle arrest [292]. This effector expressed by E. coli, CifEc, induces cell cycle arrest at G1/S and
G2/M transitions by accumulation of cyclin dependent kinase inhibitors p27/Kip1 and p21Waf1/Cip1 and
inhibition of key kinases. The appearing cytopathic effect is accompanied by cell enlargement and
production of actin stress fibers.

Delay of mitotic progression was observed when IpaB, an effector of S. flexneri, induced
unscheduled APC/Ccdh1 activation and degradation of its substrates [293]. IpaB has to localize
to the nucleus during G2/M phase and has to bind Mad2L2/MAD2B, the mitotic spindle assembly
checkpoint protein that inhibits APC/Ccdh1. The benefit of these mechanisms for the bacteria is not
completely clarified yet but it is suggested that delay of cell renewal and cell turnover enables the
bacteria to persist and further colonize the host tissues.

3. Conclusions

During the long coevolution of pathogenic bacteria and their host cells, several strategies developed
on both sides to fight their counterpart and keep predominance. Thus, intracellular bacteria reach for
the establishment of an intracellular niche that allows survival, replication and persistence. This state
is achieved through disarming of the host immune defense while keeping it healthy enough to gain
permanent nutrition excess. Bacterial effectors are crucial tools during the whole process, thereby
targeting the host immune response at each level of gene expression. Even, if there are already
many bacterial effectors reported mimicking host enzymes or featuring novel enzymatic functions,
the complex interaction mechanisms and networks are still not completely understood. Moreover,
it appears, that pathogenic bacteria can target different pathways simultaneously or one pathway with
several effectors, thereby creating a species-specific modification pattern. Therefore, understanding the
individual strategies gain new insights into the complex host-pathogen interactions during infections.
Further investigation might unravel, which bacterial strategies are more efficient or where host
cells already found strategies to circumvent attempts of bacterial manipulation. This highlights the
importance of further research on bacterial subversion of the host immune response considering each
level of gene expression, as new promising targets for successful bacterial clearance during medical
therapy might emerge.
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Abbreviations

ABU Asymptomatic bacteriuria
AMP Adenosine monophosphate
ADP Adenosine diphosphate
ADPR-Ub ADP-ribosylated ubiquitin
AnkA Ankyrin A
APC/C Anaphase-Promoting Complex/Cyclosome
ATF6 activating transcription factor 6
ATP Adenosine triphosphate
BCG M. bovis bacillus Calmette-Guérin
BiP Immunoglobulin binding protein
CHOP C/EBP homologous protein
Cif Cycle inhibiting factors
CRLs Cullin-Ring E3 ubiquitin ligases
CpG Cytosine-phosphate-Guanosine
DNA Desoxyribonucleidacid
DNMT DNA-(cytosine C5)-methyltransferases
DUBs Deubiquitinases
eELF Eukaryotic elongation factor
EHEC Enterohaemorrhagic E. coli
eIF Eukaryotic initiation factor
ERAD ER associated protein degradation
ERK Extracellular signal-regulated kinases
ETR effector-triggered response
GECs gingival epithelial cells
HAT Histone acetyl transferase
HDAC Histone deacetylases
HKMT Histone N-lysine methyltransferase
HvgA Hypervirulent GBS adhesin
iagA invasion associated gene A
Inl Internalin
IL Interleukin
IRAK1 IL-1R-associated kinase 1
IRE1 Inositol-requiring protein 1
ISG Interferon-stimulated genes
JNK c-JUN N-terminal kinases
lincRNAs Long intergenic non-coding RNAs
LCV L. pneumophila-containing vacuole
LLO Listeriolysin O
lncRNA Long non-coding RNA
LOS Lipooligosaccharide
LOX 1 Lipoprotein receptor 1
LPS Lipopolysaccharide
LRR Leucine-Rich Repeats
MAPK Mitogen activated protein kinase
MBD1 Methylated DNA-binding protein 1
mRNA Messenger RNA
miRNA MicroRNA
mTOR Mammalian/mechanistic target of rapamycin
mTORC1 mTOR complex 1
NADPH Nicotinamide adenine dinucleotide phosphate
ncRNA Non-coding RNA
NF-κB Nuclear factor κB
NO Nitric oxide
NLR NOD like receptor
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NOD Nucleotide-binding oligomerization domain
NUE Nuclear effector
PAMPs Pathogen-associated molecular patterns
PERK PKR like ER kinase
PTM Posttranslational modifications
PPRs Pattern recognition receptors
PRANC Pox protein repeats of ankyrin C terminus
PR-Ub Phosphoribosylated ubiquitin
Rb retinoblastoma protein
Rheb Ras homolog enriched in brain
RNA Ribonucleidacid
ROS Reactive oxygen species
RPS3 Ribosomal protein S3
RNA Pol II RNA Polymerase II
rRNA Ribosomal RNA
RYBP Ring1 YY1-binding protein
SAM S-adenosyl-l-methionine
SCAFs Short chain fatty acids
SCF Skp1–Cullin1–F-Box protein
SET Suppressor of variegation, Enhancer of zeste and Trithorax
SHIP1 SH-2 containing inositol 5′ polyphosphatase
SIRT 2 Sirtuin 2
SNPs Single-nucleotide polymorphisms
snRNP Small nuclear ribonucleoprotein
SR proteins serine-arginine containing proteins
SOCS1 Suppressor of cytokine signaling 1
SSR Serine-rich repeat
T3SS Type three secretion system
TBP TATA box–binding proteins
TF Transcription factor
TLR Toll like receptors
TNF Tumor necrosis factor
TRAF6 TNF Receptor-associated factor 6
tRNA Transfer RNA
Ub Ubiquitin
uORFs untranslated ORFs
UPR unfolded protein response
XBP1 X-box-binding protein 1
4E-BPs 4E-binding proteins
Pathogens:
A. phagocytophilum Anaplasma phagocytophilum
B. abortus Brucella abortus
B. anthracis Bacillus anthracis
B. melitensis Brucella melitensis
B. thailandensis Burkholderia thailandensis
C. perfringens Clostridium perfringens
C. trachomatis Chlamydia trachomatis
E. coli Escherichia coli
H. pylori Helicobacter pylori
L. monocytogenes Listeria monocytogenes
L. pneumophila Legionella pneumophila
M. leprae Mycobacterium leprae
M. tuberculosis Mycobacterium tuberculosis
P. aeruginosa Pseudomonas aeruginosa
P. gingivialis Porphyromonas gingivalis
S. pneumoniae Streptococcus pneumoniae
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S. flexneri Shigella flexneri
Salmonella Typhimurium Salmonella enterica subsp. enterica serotype Typhimurium
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