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Abstract: While pancreatic cancer (PC) survival rates have recently shown modest improvement,
the disease remains largely incurable. Early detection of pancreatic cancer may result in improved
outcomes and therefore, methods for early detection of cancer, even premalignant lesions, may
provide more favorable outcomes. Pancreatic intraepithelial neoplasias (PanINs) have been identified
as premalignant precursor lesions to pancreatic cancer. However, conventional imaging methods
used for screening high-risk populations do not have the sensitivity to detect PanINs. Here,
we have employed hyperpolarized metabolic imaging in vivo and nuclear magnetic resonance
(1H-NMR) metabolomics ex vivo to identify and understand metabolic changes, towards enabling
detection of early PanINs and progression to advanced PanINs lesions that precede pancreatic
cancer formation. Progression of disease from tissue containing predominantly low-grade PanINs to
tissue with high-grade PanINs showed a decreasing alanine/lactate ratio from high-resolution NMR
metabolomics ex vivo. Hyperpolarized magnetic resonance spectroscopy (HP-MRS) allows over
10,000-fold sensitivity enhancement relative to conventional magnetic resonance. Real-time HP-MRS
was employed to measure non-invasively changes of alanine and lactate metabolites with disease
progression and in control mice in vivo, following injection of hyperpolarized [1-13C] pyruvate.
The alanine-to-lactate signal intensity ratio was found to decrease as the disease progressed from
low-grade PanINs to high-grade PanINs. The biochemical changes of alanine transaminase (ALT)
and lactate dehydrogenase (LDH) enzyme activity were assessed. These results demonstrate that
there are significant alterations of ALT and LDH activities during the transformation from early
to advanced PanINs lesions. Furthermore, we demonstrate that real-time conversion kinetic rate
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constants (kPA and kPL) can be used as metabolic imaging biomarkers of pancreatic premalignant
lesions. Findings from this emerging HP-MRS technique can be translated to the clinic for detection
of pancreatic premalignant lesion in high-risk populations.

Keywords: metabolic plasticity and PanINs progression; metabolic imaging; metabolic rewiring;
kinetic rate constant and modeling; early detection; pancreatic cancer; hyperpolarization; MRS

1. Introduction

Detection of pancreatic cancer (PC) at early stages remains a great challenge in clinical oncology.
In contrast to the declines in cancer-related deaths from other malignancies, progress in the management
of pancreatic ductal adenocarcinoma (PDAC) has been slow, and the incidence of cancer-related deaths
due to PDAC continues to rise [1]. PDAC develops relatively symptom-free and is one of the leading
causes of cancer-related deaths in the United States [2–5]. In 2020 alone, it is estimated that about
57,600 people (30,400 men and 27,200 women) will be diagnosed with pancreatic cancer and about
47,050 people (24,640 men and 22,410 women) will die of the disease [6]. Early detection of PDAC
is unusual and typically incidental, with the majority (~85%) presenting with locally advanced or
metastatic disease, when surgery, the only curative modality, is not an option. Overall, PDAC is
associated with a dire prognosis and a 5-year survival rate of only 8% [7]. Despite these grim numbers,
there is unequivocal evidence that diagnosis of PDAC at earlier, resectable stages has a profoundly
favorable impact on prognosis. The 5-year survival of resected PDAC is as high as ~25%–30% in major
treatment centers, increasing to 30%–60% for tumors < 2cm, and as high as 75% for “minute” lesions
under 10 mm in size [8,9]. Thus, early detection of PDAC is an area of highest priority. The absence of
early symptoms and lack of a reliable screening test have created a critical need for identifying and
developing new non-invasive biomarkers for pancreatic cancer early detection [10]. Therefore, there is
an urgency to develop novel methods for the detection of pancreatic cancer preneoplastic lesions.

Pre-invasive pancreatic intraepithelial neoplasia (PanINs) have been identified as precursor lesions
of PC [11–14]. No current methods of screening in clinic can detect PanINs. While KRAS is the most
common mutated gene (over 70%) in PDAC, mutations have also been detected in several other genes,
such as TP53, SMAD4, CDKN2A, and GNAS [15,16]. It has been reported that genetic mutations, along
with the unique tumor microenvironment in PDAC, are susceptible to metabolic plasticity [17]. There
is an unmet need to develop capabilities to non-invasively detect PanINs prior to invasive stages of the
disease where the prevention and treatment will be most effective.

Real-time hyperpolarized magnetic resonance spectroscopy (HP-MRS) has become an emerging
imaging modality by providing valuable information on previously inaccessible aspects of biological
processes by detecting endogenous, non-radioactive 13C-labeled molecules that can monitor enzymatic
conversions in vivo through key biochemical pathways [18]. It allows over 10,000-fold sensitivity
enhancement relative to conventional magnetic resonance and is a non-toxic method for assessing
tissue metabolism and other physiologic properties [19]. To date, the most studied HP 13C compound
is pyruvate, as it plays a central role in many biochemical and metabolic pathways [20] Therefore,
pyruvate metabolism-based HP-MRS represents a potential methodology to identify and understand
early metabolic changes, to enable detection of early-stage and advanced PanINs, as well as early
PDAC, for which no methods of detection currently exist. A Phase I clinical trial employing HP
[1-13C] pyruvic acid for the diagnosis of prostate cancer was concluded at the University of California,
San Francisco; it demonstrated safety and feasibility in the clinic [21]. Recently, a pilot study reported
the feasibility of HP [1-13C] pyruvate imaging in pancreatic cancer patients, and no adverse effect was
observed after bolus injection of pyruvate [22].

The Warburg effect is a metabolic signature of many solid tumors that causes lactate production
from pyruvate even in the presence of oxygen [23]. The rate of lactate production by upregulation of
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lactate dehydrogenase (LDH) has been revealed as a metabolic biomarker for cancer initiation and
progression in multiple animal models [24–26]. Another metabolic pathway of interest from pyruvate
to alanine via the enzyme alanine transaminase (ALT) can be interrogated after injecting hyperpolarized
[1-13C] pyruvate. It was recently reported that the alanine/lactate concentration ratio, measured in
PanINs and PDAC lesions, showed a significant decrease with disease progression, primarily due
to an increase in lactate concentration, which was consistent with the increased fluorodeoxyglucose
uptake [27]. Our group has recently reported that hyperpolarized [1-13C] pyruvate metabolic imaging
is feasible in assessing aggressiveness in pancreatic cancer patient-derived xenograft (PDX) models [28].

In this current study, we performed a comprehensive metabolic imaging study applying
hyperpolarized pyruvate imaging in genetically engineered mouse (GEM) models with progression
of PanIN lesions. The study was designed to examine metabolic changes in the relevant GEM
models, as the PanINs evolve with mouse age. This experimental methodology and consequently
metabolic conversion kinetic parameters have been adopted to identify non-invasive surrogate imaging
biomarkers. This approach may aid detection of premalignant pancreatic lesions or pancreatic cancer
at the earliest resectable stages.

2. Results

2.1. Histology

Genetically engineered mouse (GEM) models (P48:Cre; LSL-KRASG12D (KC)) with progression of
PanIN lesions and control animals (P48:Cre or WT C57BL/6) without pancreatic lesions were employed
in our study. We collected tissue samples from the different age groups of mice and investigated
the evolution of disease with time by histology. Figure 1A displays Hematoxylin and Eosin (H&E)
micrographs of control mice (WT 20 weeks), KC mice (20 weeks), and KC mice (30 weeks of age).
The surface area of the lesions was quantified and is shown as mean % total area (+/− SEM; Figure 1B).

2.2. Active LDH and ALT Enzymes Assay

We performed an active LDH and ALT enzymes assay on the different PanINs tissues. We observed
the active concentration of LDH and ALT enzymes remained the same for control mice at 20 and
30 weeks of age, whereas as in KC mice, the active LDH concentration significantly increased at
30 weeks compared to 20 weeks of age (p = 0.013). In contrast, the active ALT concentration decreased
at 30 weeks for KC mice relative to 20 weeks (Figure 1C,D).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 4 of 13 

 

 
Figure 1. (A) Representative Hematoxylin and Eosin (H&E) micrographs for different mice groups. 
Histological staining demonstrates the differences in morphology and cellularity in normal pancreas 
(control 20 wks) and early- (P48:Cre; LSL-KRASG12D—KC; 20 wks) and advanced-stage (KC 30 wks) 
pancreatic intraepithelial neoplasias (PanINs). (B) Lesion quantification as presented by the percent 
of surface area varied with PanINs progression from early to advanced stage. Normalized values of 
active alanine transaminase (ALT) and lactate dehydrogenase (LDH) enzyme concentrations for 
different mice groups (n =8) are shown in (C) and (D) respectively. Normal pancreas and early-stage 
PanINs demonstrate high concentration of ALT and low levels of LDH, whereas the advanced-stage 
PanINs show low concentration of ALT and high concentration of LDH measured in mU/mg unit. * 
means p < 0.05; ** means p < 0.001. 

2.3. Ex Vivo 1H NMR Metabolomics Study 

We investigated the concentration changes of alanine and lactate as the PanINs progressed in 
KC mice and compared with pancreas of control mice using standard ex vivo NMR metabolomics 
analysis. Figure 2A depicts that highest alanine peak intensity is found in control mice which 
gradually decreased in KC mice as the PanINs progressed with age 20 and 30 weeks. In contrast, the 
lactate peak intensity increased in KC mice compared to control mice. The alanine/lactate ratio was 
plotted for different mouse groups and is presented in Figure 2B. The data revealed that the ratio was 
significantly decreased in advanced PanINs. 

Figure 1. Cont.
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Figure 1. (A) Representative Hematoxylin and Eosin (H&E) micrographs for different mice groups.
Histological staining demonstrates the differences in morphology and cellularity in normal pancreas
(control 20 wks) and early- (P48:Cre; LSL-KRASG12D—KC; 20 wks) and advanced-stage (KC 30 wks)
pancreatic intraepithelial neoplasias (PanINs). (B) Lesion quantification as presented by the percent of
surface area varied with PanINs progression from early to advanced stage. Normalized values of active
alanine transaminase (ALT) and lactate dehydrogenase (LDH) enzyme concentrations for different
mice groups (n =8) are shown in (C) and (D) respectively. Normal pancreas and early-stage PanINs
demonstrate high concentration of ALT and low levels of LDH, whereas the advanced-stage PanINs
show low concentration of ALT and high concentration of LDH measured in mU/mg unit. * means
p < 0.05; ** means p < 0.001.

2.3. Ex Vivo 1H NMR Metabolomics Study

We investigated the concentration changes of alanine and lactate as the PanINs progressed in
KC mice and compared with pancreas of control mice using standard ex vivo NMR metabolomics
analysis. Figure 2A depicts that highest alanine peak intensity is found in control mice which gradually
decreased in KC mice as the PanINs progressed with age 20 and 30 weeks. In contrast, the lactate peak
intensity increased in KC mice compared to control mice. The alanine/lactate ratio was plotted for
different mouse groups and is presented in Figure 2B. The data revealed that the ratio was significantly
decreased in advanced PanINs.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 5 of 13 

 

 
Figure 2. (A) Steady-state high-resolution nuclear magnetic resonance (1H- NMR) spectra of ex vivo 
tissue samples for different mouse groups (n = 10). The alanine and lactate peak intensity alters 
inversely with PanINs progression. For alanine, it decreases, but lactate peak intensity increases as 
the PanINs progress from early to advanced stage. (B) The net ratio of alanine to lactate 
(Alanine/Lactate) gradually reduces with PanINs progression to advanced stages. ** means p < 0.001. 

2.4. In Vivo 13C MRS of Pyruvate 

We employed high-resolution T2-weighted proton (1H) MRI to examine the normal pancreas 
tissue in control mice and the evolution of PanINs over time in KC mice. We saw normal pancreas 
morphology (Figure 3A) on MRI scans in control mice independent of age (10, 20, or 30 weeks). 
However, we observed prominent PanIN nodules by MRI from 20 weeks onwards (Figure 3B) for 
KC mice. We saw an increase in the number and size of PanIN nodules in all KC mice at 30 weeks, 
which we labelled as aggressive PanIN (Figure 3C). 

We selected a slab with 4–5 mm thickness to acquire real-time 13C MRS in vivo to measure 
changes of alanine and lactate metabolites with disease progression compared to control mice, 
following injection of hyperpolarized [1-13C] pyruvate. There is always a possibility of admixing of 
some HP-MRS signal originating from normal tissue. Chances of such signal contamination is 
reduced with the progression of PanIN as PanIN nodules increase in size with advanced 
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3A, B, C). These results demonstrated that there were significant alterations of alanine and lactate 
production from injected hyperpolarized [1-13C] that favored the transformation of aggressive 
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Figure 2. (A) Steady-state high-resolution nuclear magnetic resonance (1H- NMR) spectra of ex vivo
tissue samples for different mouse groups (n = 10). The alanine and lactate peak intensity alters
inversely with PanINs progression. For alanine, it decreases, but lactate peak intensity increases as the
PanINs progress from early to advanced stage. (B) The net ratio of alanine to lactate (Alanine/Lactate)
gradually reduces with PanINs progression to advanced stages. ** means p < 0.001.
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2.4. In Vivo 13C MRS of Pyruvate

We employed high-resolution T2-weighted proton (1H) MRI to examine the normal pancreas
tissue in control mice and the evolution of PanINs over time in KC mice. We saw normal pancreas
morphology (Figure 3A) on MRI scans in control mice independent of age (10, 20, or 30 weeks).
However, we observed prominent PanIN nodules by MRI from 20 weeks onwards (Figure 3B) for KC
mice. We saw an increase in the number and size of PanIN nodules in all KC mice at 30 weeks, which
we labelled as aggressive PanIN (Figure 3C).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 6 of 13 

 

 

Figure 3. T2-weighted coronal MR image, in vivo 13C MR spectra (acquired from selected slabs) and 
normalized signal intensity of different metabolites presented for (A) control mice with 20 weeks of 
age, (B) KC mice with an age of 20 weeks, and (C) KC mice with an age of 30 weeks. MRI images 
depict the smaller number of nodules on early stage PanINs (B) and the number and the size of the 
nodules increase as the PanINs progress to advanced stages (C). The real-time 13C MR spectra were 
acquired in vivo following injection of hyperpolarized pyruvate. The lactate production is 
significantly higher in advanced PanINs. The time evolution of all three metabolites was captured up 
to two minutes, and the experimental data were fitted to unidirectional kinetic modelling (C) for 
apparent rate constants kPA and kPL determination. The fitted parameters are summarized in Table 1. 

  

Figure 3. T2-weighted coronal MR image, in vivo 13C MR spectra (acquired from selected slabs) and
normalized signal intensity of different metabolites presented for (A) control mice with 20 weeks of age,
(B) KC mice with an age of 20 weeks, and (C) KC mice with an age of 30 weeks. MRI images depict
the smaller number of nodules on early stage PanINs (B) and the number and the size of the nodules
increase as the PanINs progress to advanced stages (C). The real-time 13C MR spectra were acquired
in vivo following injection of hyperpolarized pyruvate. The lactate production is significantly higher
in advanced PanINs. The time evolution of all three metabolites was captured up to two minutes, and
the experimental data were fitted to unidirectional kinetic modelling (C) for apparent rate constants
kPA and kPL determination. The fitted parameters are summarized in Table 1.

We selected a slab with 4–5 mm thickness to acquire real-time 13C MRS in vivo to measure changes
of alanine and lactate metabolites with disease progression compared to control mice, following
injection of hyperpolarized [1-13C] pyruvate. There is always a possibility of admixing of some
HP-MRS signal originating from normal tissue. Chances of such signal contamination is reduced
with the progression of PanIN as PanIN nodules increase in size with advanced precancerous lesions.
The alanine-to-lactate (Ala/Lac) signal intensity ratio was found decreased as the disease progressed
from normal pancreas to low-grade PanINs and high-grade PanINs (Figure 3A–C). These results
demonstrated that there were significant alterations of alanine and lactate production from injected
hyperpolarized [1-13C] that favored the transformation of aggressive PanINs lesions.
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2.5. Kinetic Modeling

We fitted the real-time metabolic conversion data to extract the kinetic rate constants, kPA

(pyruvate-to-alanine) and kPL (pyruvate-to-lactate), applying the unidirectional model as shown in
Figure 3C. The RStudio software (RStudio Inc., Boston, MA, USA) was used for kinetic modeling and
fitting the experimental data. We briefly described our approach for fitting the experimental data in
the Supplementary Materials section. The values of real-time conversion kinetic rate constants (kPA

and kPL) varied with PanINs progression (Table 1). Our results suggested that real-time conversion
kinetic rate constants (kPA and kPL) can be used as metabolic imaging biomarkers for assessing the
early stage of pancreatic diseases.

Table 1. Real-time in vivo metabolic flux data obtained by HP-MRS.

Mice Group
(n = 10) Ala/Pyr Lac/Pyr Kinetic Constant kPA,

(s−1)
Kinetic Constant kPL,

(s−1)

Control (20 weeks) 0.195 ± 0.004 0.261 ± 0.003 0.0098 ± 0.0005 0.0125 ± 0.0005

KC (20 weeks) 0.132 ± 0.005 0.452 ± 0.002 0.0076 ± 0.0006 0.0224 ± 0.0004

KC (30 weeks) 0.096 ± 0.006 0.643 ± 0.003 0.0055 ± 0.0005 0.0296 ± 0.0004

Alanine-to-pyruvate ratio (Ala/Pyr) and the kinetic constant kPA values decrease as the PanINs progress to advanced
stages. In contrast, lactate-to-pyruvate ratio (Lac/Pyr) and the kinetic constant kPL values increase in advanced
stages of PanINs.

2.6. Immunohistochemistry

We investigated whether there was a difference in the expression level of the LDH-A protein
depending on the stages of PanINs. LDH-A was significantly overexpressed in advanced-stage PanINs
(30 weeks) compared with early-stage PanINs (20 weeks; Figure 4A). We also quantified the score for
positive staining of LDH-A, and it is statically significant between the two groups of mice (p = 0.035;
Figure 4B).
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Figure 4. (A) Immunohistochemistry staining of LDH-A protein expression level for normal pancreas
(control 20 wks) and early- (KC 20 wks) and advanced-stage (30 wks) PanINs. (B) Comparison of
positive staining (%) scores among the tree different mice groups (n = 10). The percentage of LDH-A
positive staining significantly increases as the PanINs progress to advanced stage. (C) A schematic of
conversion kinetics of pyruvate to lactate and alanine and the corresponding conversion rate constants
(kPL and kPA). The PanIN progression significantly alters these enzymatic kinetics. * means p < 0.05;
** means p < 0.001.



Int. J. Mol. Sci. 2020, 21, 3722 7 of 12

3. Discussion

Molecular imaging techniques targeting changes in metabolism present exciting opportunities for
detecting early stages of cancer. The successful application of HP-MRS to detect aggressiveness of
the patient-derived pancreatic cancer xenografts has been reported recently by our group [28]. Grade
dependent (low and high) prostate cancer demonstrates significant differences in lactate production,
which is measurable in vivo via [1-13C] pyruvate-based HP-MRS [29]. It is worth noting that HP-MRS
scans can be completed in 2–3 min, compared to 10–30 min of imaging times in other metabolic imaging
modalities like FDG-PET.

The ability to accurately probe the metabolic phenotypes in vivo is essential to understand the
nature of aggressive pancreatic cancer. The expression levels of LDH-A depend on the stages of
PanINs. We also assessed the alteration of LDH and ALT enzymes activity with PanINs progression.
Hyperpolarized pyruvate has been proven to be an important metabolic imaging probe, as the kinetic
measurements of pyruvate-to-lactate and/or pyruvate-to-alanine conversion (Schematic Figure 4C)
can predict the critical switching point from early-stage PanINs to advance PanINs that may correlate
with transformation to PDAC. These alterations, known as metabolic reprogramming, provide a clear
biochemical phenotype for detection and grading and may guide potential treatment and prevention
options in the clinics. The metabolic switching as observed in this study, LDH actively dominating
over ALT function, is a clear indication of PanINs progression to advanced stages. From a therapeutic
intervention perspective, there will be a window of opportunity for inhibition of metabolic pathways
to suppress the disease progression. At the same time, the clinical evaluation can be achieved by
non-invasive HP-MRS.

HP-MRS is thus an efficient technique to interrogate reaction kinetics driven by metabolic enzymes
in vivo. The metabolite ratios were used as indicators for biological processes in diseases and healthy
status. In addition, it is desirable to quantify the reaction rate constants. The first-order rate constants,
kPL and kPA of LDH and ALT mediated reactions, respectively, were extracted by modeling the signal
intensity versus time data of hyperpolarized [1-13C] pyruvate, lactate, and alanine. The data suggest
competitive enzyme activities between ALT and LDH in PanIN lesions, and LDH dominates over ALT
when PanINs progress to advanced stages.

Our metabolic imaging study demonstrates the ability to assess altered metabolism applying
HP-MRS and 1H-NMR spectroscopy to genetically engineered mouse models that develop different
stages of PanINs with time. This offers us an opportunity to longitudinally monitor the progression
of PanINs along with metabolic plasticity via real-time in vivo imaging. This result will drive the
development of a novel imaging strategy for detection of preneoplastic lesions in high-risk individuals
in a clinical setting. Imaging murine pancreas by MRI is challenging given its small size. Each lobe
of pancreas consists of several smaller lobes called lobules. In humans, lobules measure 1–10 mm in
diameter, whereas in mice, they are 0.5–1.5 mm in diameter [30]. We adopted a slab-selective approach
to acquire HP-MRS data in this study. This approach has some limitations as described in the Results
section. Our future study will employ more precise and localized 13C-HP-MRI methodology employing
chemical shift imaging (CSI). Eventually, that approach may be translated in human subjects with high
risk of developing pancreatic cancer. If successful, early detection could lead to earlier interventions at
higher cure rates. Since a latency period of up to 15 years has been reported [31] for precursor lesions to
malignant transformation in pancreatic cancer, screening of high-risk population may open a window
of opportunity for significant outcome improvements.

4. Materials and Methods

4.1. Development of Genetically Engineered Mice

All animal experiments were conducted in compliance with the National Institutes of Health
(NIH) guidelines for animal research and were approved by the Institutional Animal Care and Use
Committee (IACUC) of the University of Texas MD Anderson Cancer Center. We used the conditional
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P48:Cre; LSL-KRASG12D (KC) mice, which were bred and maintained at our facility. We sacrificed mice
(n = 10 for each group) at 10, 20, and 30 weeks of age, respectively, as described in the early work on
PanINs [12]. As control, we used P48:Cre or WT C57BL/6 littermates sacrificed at the same age as
experimental mice.

4.2. Histology and Quantification of PanINs Progression

Murine pancreatic tissue was fixed in 4% paraformaldehyde, embedded in paraffin, and cut
into 5 µm sections. Tissue was then stained with H&E following standard protocols. We used
ImageJ software for pancreatic lesions quantification as previously described [2,31]. Briefly, lesions
were classified as either acinar-to-ductal metaplasia (ADM), early pancreatic intraepithelial neoplasia
(PanINs), or advanced PanINs. The software calculated the percent of total tissue surface area occupied
by each lesion for 8–10 random fields in each of the slides.

4.3. Immunohistochemistry

Paraformaldehyde-fixed, paraffin-embedded murine pancreatic tissue sections were deparaffinized
and rehydrated. For antigen retrieval, tissue was boiled with 1X citrate buffer, pH 6.0 (Sigma), for 15 min.
We then put slides in 3% H2O2 for 15 min to block endogenous peroxidases. Nonspecific epitopes were
blocked with HyClone Bovine Serum Albumin (GE Healthcare Life Sciences) for 15 min. The sections
were incubated overnight at 4 ◦C with LDH-A Antibody (Cell Signaling Technology). This was followed
by an HRP-conjugated secondary antibody for 1 h. Then we applied Signal Stain DAB Substrate Kit
(Cell signaling) following the manufacturer’s instructions. Finally, slides were counterstained with
hematoxylin and mounted in Acrytol Mounting Medium (Electron Microscopy Sciences).

4.4. Lactate Dehydrogenase (LDH) and Alanine Aminotransferase (ALT) Enzymes Assay

Active LDH and ALT enzymes assays (colorimetric) (MAK066 and MAK052, Sigma) were
performed using homogenized murine pancreatic tissue collected at 20 and 30 weeks of age. The assays
were performed according to the manufacturer’s instructions. Murine tissue was homogenized with
LDH or ALT buffer. Lysates were used to check for LDH or ALT activity, and samples were measured
every 3-5 min for up to 60–90 min. The protein concentration of each homogenized tissue was measured
by Quick Start Bradford Protein Assay (Bio-Rad) and normalized.

4.5. 13C Pyruvate Hyperpolarization

[1-13C] pyruvic acid was purchased from Isotec Sigma Aldrich (St. Louis, MO, USA).
The OX063 trityl radicals were purchased from GE Healthcare, Amersham, Little Chalfont, UK.
A solution of 25 µL of [1-13C] pyruvate, containing 15 mM of OX063 and 1.5 mM of chelated
gadolinium (Magnevist, Bayer Healthcare, Wayne, NJ, USA), was polarized at 3.35T and 1.4 K
in a HyperSense DNP polarizer (Oxford Instruments, Abingdon, UK). Each hyperpolarized
sample was rapidly dissolved in 4.0 mL of a superheated alkaline dissolution buffer, containing
40 mM of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, 30 mM of NaCl, and 100 mg/L of
ethylenediaminetetraacetic acid (EDTA). 13C- dynamic spectra were acquired right after the 80 mM
hyperpolarized [1-13C] pyruvate solution was administrated via a tail vein catheter.

4.6. T2-weighted proton MRI

Conventional MRI and 13C MRS in vivo were performed on a 7T MRI scanner (Bruker Biospin
MRI GmbH, Ettingen, Germany) with a dual tuned 1H/13C volume coil (ID: 35 mm, Doty Scientific Inc.,
Columbia, SC, USA). Proton anatomic images were taken using a multi-slice T2-weighted RARE (rapid
acquisition with relaxation enhancement) sequence. Respiratory gating was adopted to minimize
motional artifact during image acquisition. Images of different view/planes including axial, coronal,
and sagittal were acquired to identify the best location of the PanINs or region of interest on the mouse
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pancreas. The imaging parameters of the T2-weighted scans were: echo time TE = 15 ms, repetition
time TR = 2.0 s, field of view = 40 mm x 30 mm, 256 µm x 256 µm in-plane resolution, 10–12 1 mm
slices, and four averages.

4.7. In Vivo 13C MRS

A series of slab-selective 13C spectra (thickness 4–5 mm on pancreatic lesions) were collected right
after injection of hyperpolarized [1-13C] pyruvate using spFLASH sequence. Total of 90 transients were
acquired with a time delay between each transient being 2 s (total time 3 min). Each transient used a
12 ◦ flip angle excitation pulse (gauss pulse) and 2048 data points. A small 8 M 13C-urea phantom
doped with Gadolinium-DPTA was placed in each mouse experiment for chemical shift referencing.
Data were processed in MATLAB (MathWorks Inc., Natick, MA, USA), TopSpin (Bruker BioSpin GmbH,
Ettlingen, Germany), or MestReNova (Mestrelab Research, Santiago, Spain). The dynamic spectra were
manually phased, and line-broadening was applied (10–12 Hz). The area under the spectral peaks
for pyruvate and lactate were integrated over the whole array. The lactate-to-pyruvate metabolic flux
ratios (Lac/Pyr) were calculated by taking the ratio over the sum of lactate and pyruvate signals [32].
Similarly, the Ala/Pyr ratio was assessed. The apparent rate constants kPL (pyruvate to lactate) and kPA

(pyruvate to alanine) were determined using the unidirectional kinetic modeling [33–35] with further
refinement as described in the Results section.

4.8. Ex Vivo 1H NMR Spectroscopy

PanINs nodules were excised and flash-frozen in liquid nitrogen. The frozen tissue samples
were weighed, crushed, and immersed in 3 mL of methanol and water mixture (2:1) on top of 0.5 mL
of polymer vortex beads inside a 15 mL test tube. A process of mechanical homogenization was
performed by vortexing the tubes for 30 seconds, again flash-freezing in liquid nitrogen for 1 min, and
allowing the mixture to thaw. This process was repeated three times. The samples were then subjected
to centrifugation for 10 min to separate the water-soluble metabolites from the proteins and other
cellular constituents. The supernatant was extracted and subjected to rotary evaporation to remove the
methanol. The samples were further desiccated by placing them on a lyophilizer overnight, leaving
just the collection of metabolites. The metabolites were then immersed in a solution of 600 µL of
D2O, 36 µL of K2HPO4 buffer, and 4 µL of 80 mM TMSP [3-trimethylsilyl)-1-propanesulfonic acid-d6

sodium salt]. The phosphate buffer was added to stabilize any potential pH variations, and the TMSP
served as the reference standard to which we normalized the spectral signal from each metabolite.
All supplies (D2O, TMSP, phosphate buffer) were purchased from Sigma-Aldrich and used without
further purification.

NMR spectra were obtained using a Bruker AVANCE III HD® NMR scanner (Bruker BioSpin MRI
GmbH) at a temperature of 298 K. The spectrometer operates at a 1H resonance frequency of 500 MHz
and is endowed with a triple resonance (1H, 13C, 15N) Prodigy BBO cryogenic temperature probe
with a Z-axis shielded gradient. A pre-saturation technique was implemented for water suppression.
The spectra were obtained with a 90 ◦ pulse width, a scan delay trel of 6.0 s, a 10,240 Hz spectral width,
and an acquisition time tmax of 1.09 s (16,000 complex points). A total of 256 scans were collected and
averaged for each spectrum, which resulted in a total scan time of 32 min and 49 seconds. Here, trel +

tmax was nearly 8 s, so that it was greater than 3 × T1 of the metabolites observed. The time domain
signal was apodized using an exponential function.

After the spectra were acquired, metabolic profiling was performed in Chenomx NMR Suite 8.1
software (Chenomx Inc., Edmonton, Canada). Quantification of the metabolites was then performed
using MestReNova software (Mestrelab Research, A Coruña, Spain) by integrating some nonzero
region centered about the chemical shift at which the metabolite is known to resonate. This integral
value is then normalized by the value of the integral of the TMSP reference peak [28].
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4.9. Statistical Method

Experimental values reported are means ± SD (standard deviation). Statistical significance among
the animal groups was assessed by using a two-sample t-test assuming unequal variances and plotted
using Graph-Pad Prism software (GraphPad Software, La Jolla, CA, USA). Statistical significance was
considered at the p value < 0.05 level where p value is probability value.

5. Conclusions

We demonstrated that hyperpolarized metabolic imaging is capable of separating the metabolic
signatures of benign and aggressive pancreatic cancer precursor lesions. The ability to monitor the
progression non-invasively and the management of high-risk patients can be achieved by HP-MRS. This
technique may have the potential to identify a window of therapeutic opportunity in which emerging
therapeutic interventions might be applied to the high-risk pancreatic cancer subjects. The research
described here has the potential for leading to practice-changing recommendations for non-invasively
detecting and monitoring advanced PanIN lesions and incipient pancreatic cancer.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/21/10/3722/s1,
Kinetic Modelling.
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