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Abstract: Quantum dots (QDs) are semiconducting nanoparticles that have been gaining ground in 

various applications, including the biomedical field, thanks to their unique optical properties. 

Recently, graphene quantum dots (GQDs) have earned attention in biomedicine and nanomedicine, 

thanks to their higher biocompatibility and low cytotoxicity compared to other QDs. GQDs share 

the optical properties of QD and have proven ability to cross the blood-brain barrier (BBB). For this 

reason, GQDs are now being employed to deepen our knowledge in neuroscience diagnostics and 

therapeutics. Their size and surface chemistry that ease the loading of chemotherapeutic drugs, 

makes them ideal drug delivery systems through the bloodstream, across the BBB, up to the brain. 

GQDs-based neuroimaging techniques and theranostic applications, such as photothermal and 

photodynamic therapy alone or in combination with chemotherapy, have been designed. In this 

review, optical properties and biocompatibility of GQDs will be described. Then, the ability of GQDs 

to overtake the BBB and reach the brain will be discussed. At last, applications of GQDs in 

bioimaging, photophysical therapies and drug delivery to the central nervous system will be 

considered, unraveling their potential in the neuroscientific field. 
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1. Introduction 

Since their first synthesis in the early 1980s [1], Quantum Dots (QDs) have been characterized, 

studied and applied in various devices, such as solar cells [2] and optical devices [3]. 

More recently, the interest in QDs has widely spread towards different branches of biology and 

medicine thanks to their photophysical properties [4], which make them excellent candidates for use 

in bioimaging, drug delivery and, importantly, in theranostic applications such as photothermal 

therapy. 

Quantum dots are semiconducting nanomaterials with dimensions below 100 nm [5]. Physical 

and chemical properties of QDs strictly depend on their size, due to quantum confinement effect [6]. 

Briefly, when an electron is promoted to the conduction band from the valence band, it leaves an 

empty electron state, a “hole”. Electrons and holes are attracted to each other by electrostatic 

Coulomb force, resulting in a bound state, called excitons [7], which are neutral quasiparticles. Since 

QDs have dimensions comparable to the exciton diameter, they can be treated as particles-in-a-box, 

in which the energy can be expressed as [8]: 
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ℎ���

2���
 

 



Int. J. Mol. Sci. 2020, 21, 3712 2 of 26 

where h is the reduced Planck constant, m is the mass of the particle and L is the length of the box. In 

QDs, this leads to a dependence of the bandgap energy on the size: the smaller the size, the bigger 

the bandgap energy (Figure 1A). This becomes evident by measuring their variations in absorption 

and emission as a function of the decreasing size, called “blue-shifts”, which indicate an increase in 

bandgap energy [5]. In QDs, as in the particle-in-a-box, electrons can occupy only certain discrete 

energy levels, which earned them the name of “artificial atoms” [9]. 

QDs have unique characteristics compared to organic fluorophores, one of which is the broader 

absorption spectra, enabling excitation by a wide range of wavelengths [10], and narrower emission 

spectra, which reduces signal overlap. Synthesis methods to produce QDs mainly involve surface 

passivation of an inner layer (core) by deposing a capping layer (shell), which is an inorganic 

semiconductor material. The core layer has a narrower bandgap than the shell. Synthesis of QDs 

usually occurs, in a coordinating solvent, in the presence of a core material from the 16th group 

(typically S or Se) and of an organometallic shell precursor (like Zn or Cd) at high temperatures 

(Figure 1B) [11]. 

QDs have also very stable light emission, which makes them less susceptible to photobleaching 

than other molecules. This has been outlined in many biological labeling experiments where the 

photostability of QDs was compared with commonly used fluorophores [10]. To demonstrate this 

feature, Bruchez and coworkers used, for the first time, cadmium selenide/cadmium sulfide (CdSe-

CdS) QDs to label mouse fibroblasts [12]. In their experiment, biotin was covalently bound to the 

surface of the nanocrystals. The conjugated molecule was used to specifically mark F-actin on the 

cells (Figure 1C). In this way, they established a class of fluorescent probes with a long fluorescence 

lifetime and higher tunability.  

 

Figure 1. Properties of quantum dots. (A) Correlation between optical properties and the size of 

quantum dots. Reproduced with permission [5]; (B) Typical structure of quantum dots with a central 

core in which electrons occupy only discrete energy levels, and an insulator shell; (C) 3T3 mouse 

fibroblasts labeled with cadmium selenide/cadmium sulfide quantum dots (CdSe-CdS QDs) [12]. 

Reproduced with permission from American Association for the Advancement of Science. 

Following this experiment, different studies started to focus on the production of biocompatible 

QDs [13], on their labeling of biological samples [14] and on the use of QDs as drug delivery systems, 

both with or without functionalization with specific target molecules [15,16]. Bao and colleagues 

produced cadmium telluride (CdTe) QDs by a novel synthesis strategy. They incubated S. Cerevisiae 
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with salts of Cd and Te, and the yeast was able to produce extracellular nanocrystals of CdTe with 

size-dependent emission [13]. Nanoparticles showed very high biocompatibility thanks to the natural 

spontaneous capping of biological macromolecules surrounding them. Zinc Oxide (ZnO) QDs 

surface functionalized with a biocompatible capping agent (3-aminopropyl trimethoxysilane) and 

were synthesized to provide potential applications in in vivo bioimaging and cancer detection [14]. 

ZnO is more biocompatible than Cd, since it is already present in biological systems. Furthermore, 

Zinc Selenide (ZnSe), ZnS, CdTe, CdS and CdSe QDs were used for different biomedical applications, 

such as tumor imaging, monitoring of extracellular and intracellular trafficking and nanoparticle-

mediated drug delivery [15]. These nanoparticles were surface modified with biomolecules to avoid 

potential toxic release of shell atoms [11]. 

As the popularity of QDs started growing, concerns about their cytotoxicity began to rise [17,18]. 

The main concerns were about the inherent toxicity of the core elements of the QDs, such as cadmium 

and selenium, that could affect both cell cultures and live animals [18,19]. 

In the last years, graphene quantum dots (GQDs) have been showing great photophysical 

properties as well as good biocompatibility [20], having more “molecule-like” character than other 

QDs [21], thus spreading in life sciences applications. 

Graphene is a bidimensional material, a single-atom-thick sheet of honeycomb-arranged, sp2-

bonded carbon atoms. Graphene and graphene oxide (GO) have been employed in several biomedical 

applications, as antibacterial agents [22–24], scaffolds for bone regeneration [25,26] and as diagnostic 

tools [27,28]. Despite the wide range of applications of graphene and GO in the biomedical field and 

their biocompatibility, the use of GQDs comes with further advantages. GQDs, as QDs, have unique 

optical properties which strictly depend on their size, shape and surface chemistry, making them 

highly suitable for bioimaging compared to other organic dyes [12,21]. Furthermore, the small 

dimensions of these nanoparticles easily allow them to cross biological barriers and target specific 

anatomical regions inaccessible for graphene and GO, making them good candidates for drug 

delivery. 

In this review, the optical properties of GQDs will be described. Then, an overview of synthesis 

methods will be briefly discussed. To point out their high suitability in biomedical applications, the 

current state of the art, including toxicity reports will be reported. We will discuss their capability of 

crossing the blood-brain barrier and how this capability has been used for bioimaging, phototherapy 

and drug delivery to the central nervous system (CNS). 

2. Graphene Quantum Dots 

GQDs are small graphene flakes (<100 nm) in which the quantum confinement of excitons 

becomes dominant [21], causing a random spacing of Coulomb blockade peaks rather than a periodic 

distribution [6]. Interestingly, in GQDs, quantum confinement is not given only by the size, since 

different boundaries lead to diverse spin polarization and energy spectrum (Figure 2A). Indeed, other 

factors involved in quantum confinement are related to the chirality and shape of graphene edges 

[6,29], thus it strictly depends on GQDs’ synthesis method.  

GQDs have absorption peaks that are comparable with those of other graphene-based materials. 

In particular, GO shows two main peaks: one around 230 nm, and one red-shifted at 300 nm [30,31] 

(Figure 2B). These two distinct peaks depend on two specific electronic transitions: the first is 

determined by � − �∗ transitions within the aromatic rings and, in general, by the sp2-hybridized 

portions. The second, less intense, peak is due to � − �∗ transitions, and it is given by the presence of 

lone pairs within oxygens. As evidence, pristine graphene displays only a � − �∗ transition peak at 

270 nm, and no � − �∗. GQDs, in turn, have a first absorption peak between 200 and 270 nm, and one 

at wavelengths greater than 280 nm, which occur within � − �∗ and � − �∗ transitions, respectively 

[32]. The main features which determine the absorption and photoluminescence (PL) properties of 

graphene-based materials involve the size of the molecule, its sp2-hybridized fraction, the presence 

of functional groups containing, in particular, oxygen or nitrogen, and the relative synthesis method 

[33]. As mentioned above, size plays a crucial role in the PL of GQDs. The dimension of GQDs is 

comparable to the exciton diameter, so they can be treated as particles-in-a-box, for which the 
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bandgap energy is inversely proportional to the squared size. Higher bandgap energies correspond 

to smaller emission wavelengths [8]. Accordingly, it has been reported that the absorption peak of 

GQDs with lateral dimensions ranging from 1 to 4 nm is located at 270 nm, while 7–11 nm GQDs 

showed a maximum located at 330 nm. GQDs of 60 nm, conversely, had a peak at 280 nm [30]. This 

turnaround could easily be explained by taking into account the amount of sp2 structures within the 

molecule. As discussed by Eda and colleagues, in carbon materials containing a mixture of sp2 and 

sp3 bonding, the opto-electronic properties are determined by the � states of the sp2 sites, which are 

embedded in the consistently higher bandgap of � and �∗ orbitals [34]. Therefore, recombination of 

electron-hole pairs in sp2 clusters results in PL (Figure 2C). In order to tune PL emission, the amount 

and nature of sp2 sites can be controlled, since bandgap depends not only on shape and size, but also 

on the fraction of sp2 domains (Figure 2D). Eda measured the energy gap of carbon materials as a 

function of the number of sp2 aromatic rings. A single aromatic ring (benzene) showed a bandgap of 

5.4 eV. With the increase of the number of aromatic rings, a progressive reduction in energy gap 

occurred. GO with 20 aromatic rings had a bandgap of 2 eV, while 100 aromatics, which had a size of 

around 3 nm, showed an energy gap of 0.5 eV. The higher the number of aromatic rings, the less the 

energy gap, and the higher the wavelength of emission [35]. 

Carbon materials with disordered sp2 clusters act as amorphous semiconductors, in which the 

density of states for aromatic chains falls in localized states inside the bandgap, reducing the energy 

gap between valence and conduction band [36]. The number of functional groups containing nitrogen 

contributes as well in GQDs optical properties: their lone pairs increase the second absorbance peak 

related to � − �∗ transitions [34]. Wang and colleagues [37] synthesized nitrogen-doped carbon dots 

with a quantum yield of 23% and an absorption spectrum peaked at 280 nm instead of the previously 

reported (230 nm) [33]. The increase in oxygen contributed to the formation of smaller sp2 regions, 

which were responsible for the blue shifts accordingly to the bandgap related to the reduction of 

aromatic rings [38] (Figure 2E). Therefore, functionalization of GQDs’ surface plays a key role in their 

suitability for biological applications, in particular for bioimaging and drug delivery. Other 

bioimaging agents, such as organic compounds or even QDs, lack tunable surface specific 

functionalization when compared to GQDs, since chemistry of carbon is the most studied and 

characterized, allowing a more refined surface engineering. Lastly, the synthesis method can affect 

optical properties as well. Hydrothermal methods of synthesis can decrease the average number of 

oxygens, increasing the number of aromatic rings, thus reducing the bandgap energy [30].  

Many studies reported upconversion properties of GQDs [21,39,40]. Photon upconversion 

occurs when emitted photons have higher energy (shorter wavelength) than incident photons (Figure 

2F). This phenomenon in quantum dots has been explained as an anti-stokes transition in which π 

orbital electrons, after being excited from the highest occupied molecular orbital (HOMO) to the 

lowest unoccupied molecular orbital (LUMO), go back to a σ orbital (with lower energy); therefore 

the resulting emitted photon has higher energy than the incident one [40,41] (Figure 2G). While the 

LUMO-HOMO transition appears to be a reasonable explanation for the upconversion, some studies 

suggest that other principles might be inherent in GQDs’ behavior. Gan and coworkers [42] and Wen 

and colleagues [43], raised objections on this optical property of quantum dots. They stated that 

shorter emission wavelengths could be due to second order diffraction through the monochromators 

[43]. 
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Figure 2. Graphene quantum dots’ optical properties. (A) Hexagonal and triangular-shaped graphene 

quantum dots (GQDs) in two distinct conformations: armchair (left) and zigzag (right), and their 

relative charge distribution (negative in red and positive in blue). Adapted with permission [6]; (B) 

Typical absorption peaks of GQDs at 230 and 300 nm. Adapted with permission from The Royal 

Society of Chemistry [31]; (C) Photoluminescence (PL) intensity at different excitation wavelengths. 

Adapted with permission from The Royal Society of Chemistry [31]; (D) Reduction of energy gap (red 

shift) as a function of sp2 domains. Reproduced with permission [34]; (E) Influence of functional 

groups on PL properties. Amination increases quantum yield, while carboxylation causes blue shifts 

due to the clusterization of sp2 domains. Adapted with permission [38]; (F) Upconversion of GQDs, 

showing a reduction in emitted wavelength at higher excitations [41]; (G) HOMO-LUMO transitions 

for big GQDs (b,c) and smaller GQDs (a,d). F and G were reproduced with permission from The Royal 

Society of Chemistry [41]. 

3. Synthesis of GQDs 

The main strategies of GQDs’ synthesis are reported in Scheme 1. 

 

Scheme 1. Representation of the main strategies for the synthesis of GQDs. 

Synthesis methods of GQDs can be classified in top-down and bottom-up [44,45] approaches. 

Top-down strategies have the advantage to use cheap, easily available and bulk graphene-based 

carbonaceous precursors such as GO, carbon fibers, carbon black and graphite. In this approach, 

materials are cut into small-sized GQDs through chemical, electrochemical or physical methods [46]. 

In top-down methods, graphene-based materials are exfoliated and decomposed in multiple steps by 

concentrated acids, strong oxidizing agents and high temperatures [21]. 

In the hydrothermal method, GO sheets are furtherly oxidized under acidic treatment (HNO3), 

to create a line of rupture along the C–C bonds, due to the formation of epoxy groups [47]. In 

hydrothermal conditions (200 °C, 10 h) and alkaline medium (pH = 8), the epoxy groups are stabilized 

in carbonyl groups, which make the so-formed GQDs soluble in water. This procedure has 

subsequently been implemented by thermally reducing GO in graphene sheets (600 °C, 2 h) and by 

improving alkaline conditions (pH = 12), obtaining green luminescent GQDs [46]. Hydrothermally 

synthesized QDs can have different PL properties according to the acidic conditions used for 

synthesis [48]. By passivating GQDs with polyethylene glycol (PEG), a highly luminescent and up-

converted dispersion of GQDs can be obtained [48]. Zhu reported a different thermally-mediated 

synthesis of GQDs, called solvothermal, in which dimethylformamide (DMF) was used as a solvent 

and reducing agent [49]. This step was followed by a chromatographic separation based on the 

degrees of oxidation, obtaining different PL GQDs [21]. 
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The acidic exfoliation is one of the simplest ways to produce GQDs. In this procedure, GO is 

treated with strong acids, resulting in negatively charged (hydrophilic) and highly defective GQDs. 

One of the sources used to produce GQDs is coal [50]. Ye et al. synthesized coal starting from GO in 

a solution of H2SO4 and HNO3. GO was then sonicated for 2 h, then stirred and heated at 100 °C for 

24 h. The pH was set to 7 by adding NaOH, and the solution was furtherly dialyzed to obtain a 

monodisperse solution of GQDs. Other sources for acidic exfoliation are carbon fibers [51] and carbon 

black [52], with the same chemical treatments. 

The acidic exfoliation has been implemented with microwave irradiation, which provides 

uniform heating for the reaction medium [53]. The initial acidic exfoliation was performed in a 

mixture of GO, H2SO4, and HNO3. The mixture was then heated for 3 h, filtered and dialyzed. In this 

way, green and blue luminescent GQDs were obtained. Interestingly, Tang et al. used the microwave 

irradiation method with glucose, obtaining GQDs emitting in the deep ultraviolet (303 nm) [54]. 

Another top-down strategy is electrochemical oxidation. In this method, a cyclic voltammogram 

was applied on graphene in phosphate buffer. Oxygen plasma was used as a working electrode, while 

the counter electrode consisted in platinum wire. The suspension was filtered with a microporous 

membrane and furtherly dialyzed, obtaining green luminescent GQDs [55]. 

Zhou and coworkers synthesized GQDs with up-converted and down-converted emission 

which appeared to be independent of the excitation wavelength [40]. In this top-down procedure, 

GO was ultrasonicated for 12 h, filtered and dialyzed. 

Bottom-up techniques provide excellent control of the properties of the final product. In these 

strategies, chemical reactions, like stepwise organic synthesis, are exploited to convert small organic 

molecules (such as citric acid, fullerene and polycyclic aromatic hydrocarbons) to high-quality GQDs. 

However, the main disadvantage of bottom-up techniques lies in the complexity of the procedures 

of synthesis [46]. 

The most used bottom-up method is pyrolysis. Dong prepared GQDs, using as a starting 

material, citric acid (CA) [56]. In this work, CA was heated to 200 °C, after 5 min CA was liquated, 

and after 30 min, the color of the solution changed to orange, suggesting the formation of GQDs. The 

suspension was then dissolved, drop by drop, in 100 mL NaOH until it reached neutral pH. GQDs 

obtained with this method were passivated due to the incomplete carbonization of CA, and showed 

a blue PL. Li and coworkers used, as a precursor for the synthesis of nitrogen-doped quantum dots, 

1,3,5-tri-amino-2,4,6-trinitrobenzene (TABT) heated in a furnace at 750 °C in nitrogen atmosphere 

[57]. Then, the sample was cooled down until it returned to room temperature. The so-formed N-

GQDs were sonicated for 2 h and stirred with H2SO4 and HNO3 for 24 h at 100 °C. The pH was then 

tuned to 8 with Na2CO3 and dialyzed. Blue PL N-GQDs sheets of 15 nm in size were imaged with 

atomic force microscopy (AFM), showing a height mostly distributed in the range of 0.5–2.0 nm 

(single and double layers). 

GQDs were also synthesized by using fullerene (C60) as starting material [58]. In that procedure, 

surface-catalyzed decomposition of fullerene on reactive transition metal (ruthenium) was used, by 

reaching a temperature of 1200 K. To avoid the formation of carbon aggregates, low coverage of C60 

was exploited, so that the interparticle distance was increased. In this way, GQDs with mainly 

triangular shape and almost no surface defects were obtained. Another group synthesized highly 

soluble GQDs containing 168 conjugated carbon atoms, the largest soluble GQDs reported, via 

stepwise organic synthesis [59]. They developed a strategy to reduce the tendency of forming 

insoluble aggregates by large graphene nanostructures, which consisted of covalently attaching 

multiple 1,3,5-trialkyl-substituted phenyl moieties to the edges of graphene. 

4. Biocompatibility and Cytotoxicity of Quantum Dots (QDs) and Graphene Quantum Dots (GQDs) 

Though research on GQDs is at a relatively early stage, their high biocompatibility and low 

cytotoxicity have already been demonstrated in vitro and in vivo, enhancing the interest in these 

nanomaterials compared to other QDs. In Table 1, we summarized studies on GQDs and QDs 

discussed in this review. 
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Table 1. Toxicity of graphene quantum dots (GQDs) and quantum dots (QDs). 

Nanoparticles Functionalization 
Cell line/ 

Animal model 

Exposure 

Time 
Concentration Tests Toxicity Ref. 

CdSe QDs 
tri-n-octylphosphine oxide 

capping 

Rat 

hepatocytes 
24 h 

0.06,0.25,0.1 

mg/mL 

MTT 

(viability) 
High due to release of Cd atoms Derfus et al. [19] 

CdSe QDs ZnS capping 
Rat 

hepatocytes 
24 h 

0.06,0.25,0.1 

mg/mL 
MTT 

Low, no release of Cd (dangerous in 

vivo) 
Derfus et al. [19] 

CdSe/ZnS QDs 
mercapto-undecanoic acid 

capping 

Vero, h. 

hepatocytes, 

HeLa 

24 h 
From 0.05 to 

0.4 mg/mL 

CCK-8 

(viability) 

High at concentrations higher than 0.1 

mg/mL 
Shiohara et al. [17] 

CdSe/CdS QDs 
mercaptopropionic acid 

conjugation 

Female Balb/c 

mice 

Up to 15 

days 

0, 5, 10, 25 

mg/kg 

NADPH 

oxidase, LDH, 

IL-6 (ELISA) 

High in spleen, liver, lung and plasma at 

25 mg/kg 
Haque et al. [60] 

GQDs - H. leukocytes 36 h 0.2, 0.5 mg/mL XTT (viability) Low (10%) at 0.5 mg/mL 
Fasbender et al. 

[61] 

GQDs NH2 C. elegans 6 days 
From 1 to 100 

mg/L 

Lethality, 

movement, 

neurons assay 

Neural damage after chronic exposure Li et al. [62] 

GQDs NH2 

Rat alveolar 

macrophages 

(NR8383) 

24 h 
From 0 to 0.5 

mg/mL 

CCK-8, FITC 

Annexin V 

(apoptosis), 

DNA damage 

At high concentrations (0.2 mg/mL) Xu et al. [63] 

GQDs -, PEG HeLa, A549 24 h 
From 0 to 0.64 

mg/mL 

WST-1 

(viability), 

ROS, LDH 

Low toxicity up to 0.16 mg/mL, no ROS 

and LDH 
Chong et al. [64] 

GQDs NH2, COOH, DMF A549, C6 24 h 
From 0 to 0.2 

mg/mL 

MTT, trypan 

blue, FITC 

Annexin V 

Low toxicity (viability higher than 80%) Yuan et al. [38] 

GOQDs FITC PC12 24 h 
From 0 to 0.2 

mg/mL 

CCK-8, ROS, 

senescence 
No toxicity Ren et al. [65] 

GOQDs FITC Zebrafish 24 h 

From 0 to 0.2 

mg/mL (0.1 for 

speed and 

distance) 

Mortality, 

malformation 

rate, speed 

No toxicity Ren et al. [65] 
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GQDs COOH MDA-MB231 24 h 
From 0 to 0.5 

mg/mL 

MTT, calcein, 

LDH, FITC 

Annexin V 

Low toxicity (viability around 90%) 
Nurunnabi et al. 

[66] 

GQDs COOH 

KB, MDA-

MB231, A549, 

MDCK 

24-48 h 
From 0 to 0.5 

mg/mL 
MTT, LDH 

Mild toxicity for KB cells in both LDH 

release and viability (60%) 

Nurunnabi et al. 

[67] 

GQDs COOH 
SKH1 female 

nude mice 
22 days 5, 10 mg/kg 

Serum 

biochemistry, 

histopathologi

cal analysis 

No histopathological evidences, 

physiological serum biochemistry 

Nurunnabi et al. 

[67] 
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Concerning QDs, data on toxicity are controversial. In vitro QDs’ short-term exposition 

experiments were mainly carried out on cancer cell lines such as HeLa [68], or human breast cancer 

MDA-MB-231 [69] cell lines, which are known to be less sensitive to heavy metals. On these cells, 

QDs did not show significant toxicity. Conversely, Derfus and coworkers [19] used rat hepatocytes 

to demonstrate a high toxicity due to cadmium ions release, proportional to the degree of oxidation 

of the QDs [70]. In the same year, Shiohara and colleagues confirmed toxicity on Vero cells, human 

hepatocytes and, interestingly, on HeLa cells [17]. In vivo toxicity studies were conducted on mice 

with repeated intraperitoneal injection with mercaptopropionic acid-conjugated CdSe-CdS QDs at 

different doses every 3 days, for 15 days [60]. QDs were detected in the liver, spleen, lung and 

kidneys, but not in the brain and heart. A dose-dependent distribution was reported with oxidative 

stress measured in spleen and liver at high doses of QDs, and in lung and plasma 7 days after 

injection. In this work, the level of pro-inflammatory cytokines was also evaluated, showing an 

increase in the spleen and liver, and in the plasma samples at day 10, 13 and 15. 

Another group reported accumulation of water-soluble cadmium containing QDs in mice in the 

liver, kidney, spleen and lung, carrying out an 80-days experiment. At 15 days post-injection, uptake 

in the liver decreased, while uptake in kidney greatly increased [71]. Afterward, uptake in liver or 

kidney was stable during this time. It was also pointed out that kidney uptake could be related to the 

size of QDs: when the hydrodynamic diameter was increased from 2.9 to 4.5 nm, kidney uptake 

decreased as well, indicating that QDs with smaller sizes are more easily absorbed by the kidney. In 

this in vivo toxicity study, mice survived for 80 days after intravenous injection, without evident toxic 

effects, differently from mice in Haque and coworkers’ study [60]. 

GQDs’ toxicity studies reported promising results. In a recent work, cell viability of the total 

population of mononuclear blood cells was investigated after incubation with GQDs, and cytotoxicity 

was not reported below 500 µg/mL [61]. Tomić and coworkers studied the suppression of the 

inflammatory response of T cells through the induction of autophagy on dendritic cells by GQDs [72]. 

At concentrations higher than 300 µg/mL, cell viability started decreasing, reaching approximately 

50% at 500 µg/mL. Accordingly, another work has shown the effects of C. elegans nematode chronic 

exposure to three graphene-based materials (graphene, GO and GQDs) [62]. GQDs showed lower 

lethality compared to GO, while in all cases, similar neurotoxicity was pointed out. Toxicity was 

related to physiological parameters such as body bending and head thrashing. After exposure to 

graphene-based materials, they also found significant decrease in mean speed, frequency of bending 

and wavelength of the crawling movement, suggesting that high concentrations of these 

nanomaterials could damage dopaminergic and glutamatergic neurons. 

Furthermore, while these findings demonstrated a correlation with concentration and exposure 

time, other works highlighted a dependence of cellular viability on the presence of specific functional 

groups on GQDs. Xu and colleagues have demonstrated aminated GQDs’ (NH2-GQDs) potential role 

as nuclear markers in rat alveolar macrophages [63]. NH2-GQDs’ cytotoxicity at relatively low 

concentrations (<200 µg/mL) was also studied. Chong and coworkers investigated the toxicity of 

GQDs in vitro, on HeLa cells (Figure 3A), and in vivo, by measuring PL intensity and weight indexes 

of mice’s organs at different timepoints after the injection of GQDs or GO, showing fast clearance and 

no toxicity [64]. Yuan and coworkers focused on the synthesis of three different types of 

functionalized GQDs with -NH2, -COOH and -DMF groups [38]. After the synthesis, they compared 

the relative cytotoxicity and observed their cellular distribution in human A549 lung carcinoma cells 

and human neural glioma C6 cells. A significant proliferation decrease was induced by aminated and 

DMF GQDs when the concentration reached 200 µg/mL (Figure 3B). When the concentration of 

carboxylated GQDs reached 50 µg/mL, cell viability was statistically different from the control. 

Similar results were obtained on C6 cells. However, even at the highest concentrations, more than 

80% of the cells remained vital, demonstrating how GQDs with different functional groups possess 

low cytotoxicity, in contrast with Xu results. 

Ren and colleagues demonstrated a reduction in apoptosis and oxidative stress mediated by 1-

methyl-4-phenyl-pyridinium ion (MPP+) when PC12 cells were treated GQDs, thus showing 

neuroprotective effects of these nanomaterials [65]. Neuroprotection was furtherly confirmed in the 



Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 11 of 26 

same work in vivo on zebrafish (Figure 3C,D). The treatment with GQDs and MMP decreased both 

caspase-3 expression (apoptosis), as well as the oxidative stress, when compared to control and 

zebrafish treated with MMP only. Another group focused on the effects of functionalization of GQDs 

with carboxyl residues both in vitro and in vivo [66]. In vitro studies were carried out on different 

types of cells: human breast adenocarcinoma MDA-MB-231, KERATIN-forming tumor KB cells, A549 

and Madin-Darby Canine Kidney MDCK cells after treatment with carboxylated GQD at 50, 100, 250 

and 500 µg/mL concentration. Results were proportional to the concentration of GQDs but no acute 

toxicity or morphological changes were noted. In vivo experiments were conducted to investigate 

GQDs’ biodistribution and imaging in mice. Nanoparticles were administered to tumor-bearing 

Balb/c nude mice intravenously at 5 or 10 mg/kg. After 12 h, fluorescence signals were observed in 

vivo at the tumor site (Figure 3E). After 24 h, no signal was measured from the tumor or other regions 

of the body. Dissected organs and ex vivo images showed an increase after 2 h of GQDs’ concentration 

in the liver and heart of mice and a rapid decrease over time. After 12 h, the concentration of particles 

in kidneys started to slightly increase, suggesting a mechanism of rapid clearance of GQDs. Ex vivo 

PL intensity at 24 h post-injection was lower than that at 12 h, which is likely due to the rapid 

excretion of GQDs. Nurunnabi and coworkers investigated changes in hematological factors after 

GQDs’ administration, hypothesizing that their size comparable to viruses and small proteins could 

cause inflammatory responses [67]. The values of parameters such as hemoglobin concentration, 

white blood cells, hematocrit, and platelet count, were measured and found to be within normal 

ranges and were similar with control. 

Taken together, these findings strongly suggest that GQDs possess very high biocompatibility 

and low cytotoxicity in vivo compared to QDs.  

 

Figure 3. Toxicity of GQDs. (A) Cell viability tests and reactive oxygen species (ROS) production on 

HeLa cells. Reprinted from [64]. Copyright 2014, permission from Elsevier; (B) Cell viability on A549 

(top) and C6 (bottom) after the treatment with aminated GQDs (aGQDs), carboxylated GQDs 

(cGQDs) and DMF GQDs (dGQDs). Reproduced with permission [38]; (C) Oxidative stress on 

zebrafish after the treatment with MMP and GQDs with relative fluorescence intensity on head and 

heart. Reprinted from [65]; (D) Fluorescence intensity of caspase-3 after the treatment with GQDs and 

MMP [65]; (E) In vivo and ex vivo imaging of mouse after injection with carboxylated GQDs [67]; (F) 

Accumulation of different concentrations of carboxylated GQDs in mouse organs, 160× magnification. 

E and F were reprinted with permission [67]. Copyright 2013, American Chemical Society. 

5. Overtaking the Blood-Brain Barrier (BBB) with GQDs 

The key element that makes the use of GQDs in the biomedical and neuroscientific fields crucial, 

is the increasing amount of evidence indicating their capability of crossing biological barriers [73]. In 

particular, the greatest challenge to date for overtaking biological barriers is represented by the 

blood-brain barrier (BBB) (Figure 4A). From an anatomical point of view, the BBB is constituted by 
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an inner layer of endothelial cells with tight junctional complexes, pericytes, astrocytes and neurons. 

The interaction of these cellular populations is called neurovascular unit [74]. The BBB works as a 

critical checkpoint between the CNS and the bloodstream. On one hand, BBB prevents harmful 

substances from entering the brain and, on the other hand, provides the essential nutrients for 

neurons. The restrictive nature of the BBB represents an obstacle for drug delivery to CNS [75]. 

Indeed, the BBB can be considered as a dynamic interface that controls the influx and efflux of a large 

variety of substances, including potentially useful drugs for a wide range of brain diseases, thus 

making most of the current therapies ineffective [76,77]. Evidence has demonstrated that less than 

2% of small-molecule drugs can cross the BBB, though these drugs possess a characteristic molecular 

weight below 400 Da [75] and are specifically surface-modified for the uptake [78]. Due to the inability 

to adequately deliver therapeutic agents across the BBB, current treatments for CNS diseases remain 

limited. 

Several QDs have been designed to modulate or bypass the BBB for the delivery of therapeutics 

(Table 2). Xu and coworkers used transferrin-bioconjugated quantum rods to pass through an in vitro 

model of the BBB with endothelial cells and pericytes [79] (Figure 4B). These two cellular populations 

were cultured on a semiporous membrane, and by laser scanning confocal microscopy where the 

authors measured an increase in the fluorescence intensity due to QDs in the lower medium, 

corresponding to a decrease in the fluorescence of the upper layer. In neuroinflammatory conditions, 

the disruption of the integrity of the BBB is mediated by metalloproteinases. In particular, the MMP-

9 causes the proteolytic degradation of the extracellular matrix, together with the activation of 

inflammatory leukocytes and the apoptosis of neurons. Conjugation of a short interfering RNA 

(siRNA) with QDs was used to reduce the expression of MMP-9 [80]. By this regulation, an increase 

in the synthesis of matrix proteins like collagen was observed. To measure the structural integrity of 

the BBB, the trans-endothelial electrical resistance (TEER) in endothelial cells treated with siRNA and 

with the nanoplex of QDs and siRNA was evaluated. An increase in the electrical resistance was 

measured for cells treated with siRNA-QDs. Wang and colleagues prepared GQDs of two different 

sizes (3 and 12 nm) by sonicating carbon fibers in H2SO4 and HNO3 [73]. Their study aimed to measure 

the permeability of GQDs on MDCK cells and their transcellular transport mechanism (Figure 4C). 

These particles were administered at different increasing concentrations up to 400 mg/L. Cell viability 

was kept under control for the duration of the experiment, and only a mild reduction was observed. 

The apparent permeability (Papp) was higher for smaller QDs. By inhibiting the formation of lipid raft 

via methyl-β-cyclodextrin, Wang found a reduction in GQDs’ permeability for both sizes of GQDs, 

thus pointing out the relevance of this transport pathway. In 2014, Hanada and colleagues measured 

in vitro BBB permeability to nanoparticles having different sizes and surface chemical composition 

[81]. They evaluated Papp of silica nanoparticles with different sizes, ranging from 30 up to 400 nm, 

on a blank membrane (i.e., without cells) and on a commercially available BBB model. A significant 

higher permeability was measured for 30 nm silica particles on the BBB model, while the blank 

membrane did not show permeability differences with respect to the size. To evaluate the 

dependence of membrane permeability to the surface chemical composition of the nanoparticles, 

Hanada and coworkers used QDs modified with anionic (-COOH), cationic (-NH2) and neutral (-

PEG) functional groups, having a size similar to silica particles (30 nm). They demonstrated that 

cationic QDs had a higher permeability capacity. NH2-QDs were transported onto the basolateral side 

through the BBB model with higher permeability than anionic or neutral QDs. This result was 

probably caused by surface charge; indeed as aminated particles interact with the cell surface, which 

is composed of anionic phospholipids, they could be transported through the BBB via the paracellular 

pathway, while the carboxyl particles are known to be mainly incorporated into cells by endocytosis. 

The evidence of Hanada were in accordance with the study of Zhang and Monteiro-Riviere [82], 

where cellular uptake of human keratinocytes for three different QDs with diverse surface 

chemistries (-NH2, -PEG and -COOH) was investigated. Uptake was measured only for COOH QDs 

indicating possible interactions between anionic QDs and cell membranes. By studying intracellular 

translocation pathways, authors discovered that QDs were internalized by endosomes in a 

microtubule-depending manner. In their proposed mechanism, the uptake of COOH QDs was 
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mediated by both lipid rafts/caveolae and G-protein coupled receptors/low-density lipoprotein 

receptors, thus explaining the lower diffusion of COOH QDs observed by Hanada and colleagues in 

their BBB model. Lu and coworkers used aminated carbon dots synthesized by hydrothermal method 

in the presence of polyethylenimine [83]. They tested their dots on an in vitro model of BBB made of 

primary rat microvascular endothelial cells and astrocytes in a transwell. They measured the 

fluorescence intensity in the lower chamber at different times, pointing out an increased translocation 

of aminated carbon dots which was concentration- and time-dependent. An in vivo study of the BBB, 

conducted by Li and colleagues, reported no capability of biocompatible carbon dots to cross the 

barrier of a zebrafish [78]. However, by conjugation with transferrin, fluorescence intensity of the 

dots was measured inside CNS. In a recent work, Huang and colleagues performed in vitro and in 

vivo studies of uptake of PEGylated QDs functionalized with asparagine-glycine-arginine peptide, 

capable of recognizing CD13, an overexpressed receptor on the surface of glioma cells [84]. They 

tested this QD on two different in vitro models: a transwell-BBB model made of brain capillary 

endothelial cells (BCECs) and astrocytes, and a BTB (blood-tumor barrier) with BCECs and C6 glioma 

cells. They found a high increase in the fluorescence intensity in the BTB model treated with 

functionalized QD, while BCECs and astrocytes of their BBB did not show significant uptake of the 

nanoparticles. They also demonstrated that tumor-associated microvessels were labeled with the 

QDs, as well in the BTB. In vivo tests focused on the uptake and labeling capability of QDs across the 

BBB inside the induced tumor in mice (Figure 4D). 8 h after the injection, they measured a specific 

increase in the fluorescence intensity in the tumor region for the functionalized QDs, thus indicating 

their crossing and labeling ability. Thanks to their capability of crossing biological barriers, these QD-

related nanotechnologies could lead to a novel prospect for the bioimaging-based molecular 

diagnosis and neurosurgery, drug delivery and photothermal therapy applications on brain cancers 

and diseases in neuroscience. 

 

Figure 4. GQDs across the blood-brain barrier (BBB). (A) Structure of the BBB [75]; (B) In vitro 

permeability via transwell in a co-culture system. A and B were reprinted with permission [75]. 

Copyright 2008, American Chemical Society; (C) Transcellular transport mechanism across a 

biological barrier made of canine kidney MDCK cells with different sizes of GQDs. Scalebar 50 µm.  

* was for P < 0.05, ** was for P < 0.01, and *** was for p < 0.001 over control. Reproduced with 

permission from The Royal Society of Chemistry [73]; (D) Uptake of PEG-GQDs functionalized with 

a ligand of CD13, capable of recognizing glioma and tumor vessels. *** was for p < 0.001 over control. 

Adapted from [84]. Copyright 2017, permission from Elsevier. 
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Table 2. QDs designed to overcome the blood-brain barrier (BBB). 

Nanoparticle Functionalization BBB Model Cell Type Permeability Study Ref. 

Quantum rods 
Transferrin 

conjugation 
Transwell 

Endothelia

l cells; 

astrocytes 

Confocal fluorescence 

imaging 
Xu et al. [79] 

CdSe/ZnS QDs MMP-9-siRNA Single culture BMVEC - Bonoiu et al. [80] 

GQDs - Transwell MDCK 

Permeability 

coefficient  by 

fluorescence intensity 

Wang et al. [73] 

Silica; QDs NH2; COOH; PEG Transwell RBT-24H  

Permeability 

coefficient  by 

fluorescence intensity 

Hanada et al. [81] 

Carbon dots Nitrogen doping Transwell 

RBMEC; 

rat 

astrocytes 

Fluorescence intensity 

of the basolateral 

medium 

Lu et al. [83] 

CdSe/ZnS QDs PEG; NGR peptides Transwell 

BCECs; rat 

astrocytes; 

C6 

Penetration rate by 

fluorescence intensity 
Huang et al. [84] 

CdSe/ZnS QDs PEG; NGR peptides 

Sprague 

Dawley male 

rats 

- 

In vivo imaging; 

fluorescence intensity 

of minced tissue 

Huang et al. [84] 

Carbon Dots 
Transferrin 

conjugation 
Zebrafish - 

Confocal fluorescence 

imaging 
Li et al. [78] 

6. Bioimaging and Neuroimaging with GQDs 

Optical properties are one of the key features of GQDs [30]. To date, most of the fluorophores 

used for bioimaging are organic dyes. However, they suffer from photobleaching, not allowing long- 

term exposure to excitation sources. Therefore, GQDs can be considered as a new class of 

fluorophores [16]. A wide range of studies reported labeling capabilities of GQDs in vitro and in vivo. 

Kumar and colleagues synthesized highly biocompatible green functionalized GQDs with a size 

distribution between 3 and 14 nm obtained through acidic treatment of graphite powder [85]. Ma and 

coworkers developed a method for the synthesis of doped and undoped GQDs, based on direct 

carbonization of organic precursors at solid-state [86]. In that study, they employed different 

precursors such as ethylene diamine tetraacetic acid (EDTA), glucose, sucrose, tartaric acid, arginine, 

lysine and adenosine 5′-triphosphate disodium salt (ATP), to obtain N-, S-, P- and O-doped GQDs. 

To show the effect of chemical doping, plain undoped GQDs synthesized from citric acid were used 

as a reference. The uptake of GQDs was observed from the strong fluorescence signal in cells in RAW 

264.7 (mouse leukemic monocyte macrophage cell line) cells. Most of the fluorescent signal was 

localized in the cytoplasm of the cells. Interestingly, most of the intracellular GQDs were not in the 

lysosome, indicating that the uptake was not related to the endocytic processes, but more likely to a 

breakage of cell membrane at regions of endocytosis [82,87]. Chemical-doped GQDs with S and N 

were synthesized by Qu and colleagues [88,89]. Using water as a solvent for the synthesis of GQDs, 

they created nanoparticles with a blue emission, while the polar aprotic solvent DMF allowed an 

increase of nitrogen units in the GQD framework and caused a red shift of the emission peak. Another 

strategy in this study was based on doping GQDs with sulfur and nitrogen, creating GQDs with three 

different absorption and emission peaks: the blue emission associated to a chromophore containing 

a C=O group, and red or green emission related to chromophores containing C=N or C=S groups, 

respectively. In both cases, A549 cells were successfully labeled with GQDs at a concentration of 100 

g/mL. Sulfur-doped GQDs with a broad absorption and great emission properties in HepG2 cells 

were synthesized by Sangam and colleagues [90]. HeLa cells were stained with small-sized red GQDs, 

containing a large number of sp2 regions, associated to high emission wavelengths [34,91]. N-GQDs 

synthesized using GO and DMF as starting materials were used to label a turbid intralipid tissue 

phantom with two-photon fluorescence as a potential alternative probe for noninvasive detecting 

imaging system in living biosystems [92]. 

Compared to other dyes, even with near-infrared femtosecond laser excitation (NIR), GQDs 

showed very little photobleaching. 
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From the above studies, it is evident that GQDs are excellent candidates for bioimaging 

applications, especially for CNS, given their BBB crossing ability (see the previous paragraph). 

Zhang [93] and Shang [94] labeled neural stem cells with GQDs with yellow emission, due to 

the presence of hydrazine groups on their surface. In this study, the uptake and biocompatibility of 

GQDs on three different kinds of stem cells, neurosphere cells, pancreas progenitor cells and cardiac 

progenitor cells was studied. The uptake on neurosphere stem cells was measured by confocal 

microscopy, showing a high fluorescence intensity on cell membranes and within the cytoplasm, but 

not in the nucleus (Figure 5A). Subsequently, Shang and coworkers measured the uptake of GQDs in 

human neural stem cells. By measuring the fluorescence intensity with increasing concentrations of 

GQDs, they found the saturation point for the uptake of GQDs at 200 µg/mL. Moreover, after lysing 

neural stem cells, they pointed out the time dependence of the uptake. They also measured the 

fluorescence intensity by confocal microscopy after 24 h of incubation in three different conditions: 

by depletion of ATP, by incubation at 37 °C or at 4 °C (Figure 5B). The incubation at 37 °C showed 

the highest fluorescence intensity, indicating that GQDs can label cells in physiological conditions. 

By confocal microscopy, they showed how long-time exposure to GQDs caused a decrease in the 

relative fluorescence signal, indicating that retention of GQDs decreased after 24 h of treatment. 

Lastly, they demonstrated the excellent biocompatibility of GQDs on neural stem cells by showing 

that they did not affect the expression of stem self-renewal ability and of the cell type-specific marker 

(nestin). During the differentiation process, cells differentiated into neurons and glia, which 

supported the activity of neurons. After two weeks of differentiation, no differences were visible in 

the growth between the control group and the GQDs treatment group (25 µg/mL). Wang and 

colleagues synthesized nitrogen-doped carbon dots to label U87 human glioblastoma cells [37]. Cells 

were incubated with carbon dots at 20 µg/mL for 2 h, and the fluorescence imaging performance was 

examined by confocal fluorescence microscopy (Figure 5C). Both cell membrane and cytoplasm were 

labeled without invading the nucleus, and the U87 cells became brightly illuminated. Importantly, 

Yuan, Liu and colleagues synthesized three GQDs with diverse surface chemistries: aminated, 

carboxylated and functionalized with DMF [38]. They tested both labeling ability and cytotoxicity of 

these GQDs on C6 glioma cells. In comparison with the control cells, the fluorescence of the cells 

incubated with 50 µg/mL of GQDs for 12 h was brighter, which indicated the cell uptake of GQDs 

with different chemical groups. Most of the fluorescence intensity was raised from the cytoplasm, 

demonstrating that the three GQDs were not located in the nucleus. In the last years, the use of GQDs 

has moved to in vivo brain labeling. Qian and colleagues used GO nanoparticles of 40 nm, compatible 

to the size of GQDs [95]. In their study, they intravenously injected GO-PEG nanoparticles into mice, 

and observed their flow, distribution and clearance in the blood vessels, by utilizing two-photon 

imaging. They also microinjected the nanoparticles into the brain of mice expressing fluorescent 

oligodendrocytes, and the in vivo two-photon and three-photon luminescence imaging results 

showed that GO nanoparticles located at 300 mm depth could be distinguished (Figure 5D). Zheng 

and coworkers synthesized carbon dots from L-aspartic acid (Asp-CDs) to target CNS tumors in vivo 

[96]. In particular, tumor-bearing mice with C6 glioma were used. At first, they evaluated in vitro 

cytotoxicity and labeling ability of Asp-CDs. To verify the selectivity of carbon dots on glioma cells, 

C6 and mice fibroblasts were cultured and treated with the nanoparticles. Glioma cells demonstrated 

a higher fluorescence intensity compared to fibroblasts. To measure the ability of crossing the BBB 

and effectively reaching the orthotopic glioma, researchers compared Asp-CDs to CDs synthesized 

from L-glucose. Both nanoparticles effectively reached the mouse brain after intravenous injection. 

However, only Asp-CDs could specifically locate in the tumor region when compared to the other 

CDs, which distributed equally between brain and glioma. Ai, Ji and coworkers used carbon dots 

doped with manganese to perform both in vivo magnetic resonance and ex vivo optical imaging on 

mouse brain with tiny glioma [97]. As a result, they enhanced the contrast effect in magnetic 

resonance, showing their potential along with optical imaging for the detection and intra-operative 

location of tiny brain gliomas. Fan and colleagues [39] exploited the lower pH of solid tumors (6.4–

6.8) with respect to normal tissues (7.0–7.4) [98,99]. In their work, they prepared pH-responsive GQDs 

capable of switching their emission from green (pH < 6.8) to blue (pH > 6.8). They used their GQDs 
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to test whether they could distinguish the acidic environment of tumors in normal tissues. GQDs 

were subcutaneously injected into tumors and adjacent muscles in mice bearing different tumors, 

including glioblastoma multiforme. After 24 h, fluorescence microscopy images showed that tumors 

emitted green light, while muscles emitted blue light (Figure 5E). By intravenous injection, they tested 

the ability of GQDs to reach tumor regions and measured the fluorescence at different times. GQDs 

successfully crossed the BBB and reached the glioblastoma region. They demonstrated how GQDs 

have great potential to be used as a universal probe in clinic for fluorescence-guided cancer surgery 

and cancer diagnosis. The wavelengths reported in this review for bioimaging, phototherapy and 

drug delivery of neural cell lineages are summarized in Table 3 in the following paragraph. 

 

Figure 5. Neuroimaging with GQDs. (A) Confocal imaging of neurospheres with GQDs. Adapted 

with permission from The Royal Society of Chemistry [93]; (B) Confocal imaging of human neural 

stem cells with GQDs (green) and nuclear staining (blue). Adapted with permission from The Royal 

Society of Chemistry [94]; (C) Confocal imaging of U87 cells excited at 407 nm (blue) and 488 nm with 

N-doped carbon dots. Reprinted with permission [37]. Copyright 2014, American Chemical Society; 

(D) Deep tissue confocal imaging of GO nanoparticles inside mouse brain. Reproduced with 

permission [95]; (E) PH-responsive GQDs injected in mice bearing different tumors and adjacent 

muscles. Scale bar 40 µm. Adapted with permission from The Royal Society of Chemistry [39]. 

Table 3. Wavelengths reported in this review for bioimaging, phototherapy and drug delivery on 

neural cell lineages. 

λ (ex, nm) λ (em, nm) Nanoparticle Cell Line Ref. 

360 535 GQDs hNSCs Shang et al. [94] 

360 405 N-GQDs U87 Wang et al. [37] 

360 488 N-GQDs U87 Wang et al. [37] 

405 540 GQDs NSCs Zhang et al. [93] 

405 Blue Carbon Dots C6 Zheng et al. [96] 

405 Not available N-B-GQDs SF-763 Wang et al. [100] 

405 525 GQDs U251 Dong et al. [101] 

470 530 GQDs U251 Markovic et al. [102] 

488 Green Carbon Dots C6 Zheng et al. [96] 

     

488 Not available N-B-GQDs SF-763 Wang et al. [100] 

546 Not available N-B-GQDs SF-763 Wang et al. [100] 

555 Red Carbon Dots C6 Zheng et al. [96] 

     

Independent 440 GQDs U87MG Fan et al. [39] 

Independent 480 GQDs U87MG Fan et al. [39] 
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7. Brain Tumor Phototherapy with GQDs 

Another advantage of photophysical properties of GQDs and, in particular, of their 

photostability, is that they can be used for cancer phototherapy. Therefore, they can be exploited for 

multiple applications in the theranostic field, allowing imaging and phototherapy at the same time, 

making them more suitable with respect to other common organic dyes for bioimaging applications 

[103,104]. This technique is based on two features of materials that, when exposed to light at a specific 

wavelength (photosensitizers), generate cytotoxic reactive oxygen species (ROS, photodynamic 

therapy, PDT) [105] or heat (photothermal therapy, PTT) [106], capable of killing cells by 

photoablation. Since photosensitizers are generally harmless without light, tumor treatment can be 

specifically targeted by selective illumination, limiting damage to surrounding healthy tissues. 

Furthermore, this therapy can be used to damage endothelial cells of tumor blood vessels. However, 

this emerging field lacks clinical applications, mainly due to the lack of specific photosensitizers 

capable of specifically targeting tumor regions [66,107]. GQDs have been used as PDT agents for the 

treatment of human glioma by Markovic and colleagues [102]. They tested in U251 human glioma 

cells, electrochemically derived GQDs capable of producing reactive oxygen species when excited 

with blue light. By excitation with blue light, GQDs caused both oxidative stress (Figure 6A), and an 

increase in early and late apoptotic cell populations, depending on the concentration and irradiation 

exposure time. The induction of apoptosis and autophagy in photosensitized cells is a common 

outcome of photodynamic therapy, to increase the clearance of oxidatively damaged organelles [108]. 

Markovic and coworkers found an increase in the expression of specific autophagy markers after 

continuous irradiation: GQDs induced oxidative stress after irradiation, and activated type I 

(apoptosis) and type II (autophagy) programmed cell death (Figure 6A). This feature could furtherly 

be exploited in PDT. Wang and colleagues produced boron and nitrogen-doped GQDs via one-pot 

process [100]. They used GQDs as second near-infrared window (NIR-II, with emission between 100 

and 1700 nm) and analyzed in vivo and ex vivo mice bearing C6 glioma (Figure 6B). GQDs were 

administered intravenously, and after 24 h, fluorescence images were acquired using an excitation 

wavelength of 808 nm, showing that the nanoparticles could label the tumor. They then assessed the 

PTT behavior of GQDs, by irradiating for 5 min a solution of water containing GQDs. The 

temperature of pure water increased by 3 °C, whereas the temperature of water containing GQDs at 

concentrations of 50, 100, and 200 µg/mL increased by 11.1, 19.2, and 26.6 °C, respectively. In vitro 

tests showed the capability of irradiated GQDs to kill tumor cells (Figure 6B). In vivo tumor growth 

was stopped completely in mice with GQDs irradiated by 808 nm excitation wavelength (Figure 6B). 

The photothermal property of these GQDs was due to the presence of nitrogen and boron which 

could induce significant local distortion of electron energy and create additional energy gaps, and to 

the presence of defects that could significantly red-shift their emission peak. Importantly, the use of 

photophysical properties of GQDs could be synergistically implemented with chemotherapeutic 

treatments, thus increasing the efficacy of the latter. Wang and coworkers used PEG-graphene 

nanosheets with lateral size comparable to QDs, for multifunctional targeted therapy of malignant 

glioma [109]. When irradiated by an 808 nm NIR laser (6 W/cm2), the solution temperature exceeded 

50 °C within 2 min. The photothermal heating exhibited a concentration and laser power intensity-

dependent manner. Importantly, they also conjugated a chemotherapeutic agent, doxorubicin, to the 

nanosheets (Figure 6C). When irradiated, the latter nanocomplex could selectively release the drug, 

indicating its potential use in a combined therapy. 
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Figure 6. Phototherapy with GQDs. (A) Photodynamic therapy by irradiating U251 cells with blue 

light (470 nm), with relative ROS production (top) and autophagic vacuole formation (bottom, TEM). 

Adapted from [102]. Copyright 2012, permission from Elsevier; (B) NIR-II imaging (top) on xenograft 

C6 glioma mouse model and photothermal therapy (bottom), showing tumor growth reduction (in 

vivo) and loss in cell viability (in vitro). Adapted from [100]. Copyright 2019, permission from 

Elsevier; (C) Combination of PTT and chemotherapy with doxorubicin. GSPI = functionalized 

graphene sheets; GSPID = graphene sheets loaded with doxorubicin. Reprinted with permission [109]. 

Copyright 2013, American Chemical Society. Scale bar 75 µm. 

8. GQDs as Drug Delivery Systems 

A large amount of research has been done to optimize GQDs’-associated drug delivery systems 

[110–112]. Iannazzo and colleagues designed a new biocompatible and cell traceable drug delivery 

system, capable of releasing the therapeutic agent doxorubicin to cancer cells in a selective manner 

[113]. GQDs were covalently linked to biotin, in order to efficiently recognize biotin receptors 

overexpressed on cancer cells. The chemotherapeutic agent doxorubicin was loaded to the GQD 

surface, taking advantage of the excellent absorption properties of carbon nanomaterials by � − �∗ 

interaction. Moreover, doxorubicin inherent fluorescence allowed the drug release to be tracked. 

They measured, by confocal microscopy, an enhanced uptake of the chemotherapeutic agent over 

time in A549 cells, with a maximum after 6 h; then, it lowered because of increased mortality. Cells 

treated with doxorubicin-loaded nanoparticles had a delayed mortality with respect to cells treated 

with free drugs. This could be due to drug detachment from nanoparticles, induced by acid 

environment of endosomal compartment. In another work, Sui and colleagues used GQDs and 

cisplatin together to increase the intracellular uptake of the anticancer drug [114]. They experimented 

on different cell lines and found an increased killing capability for cisplatin coadministered with 

GQDs when compared to the antitumor alone. The toxicity mechanism of cisplatin is mediated by 

the cell cycle arrest in G2/M phase. After the treatment with GQDs and the chemotherapeutic, an 

increase in the population of cells arrested in G2/M was found. Furthermore, another toxicity 

mechanism of cisplatin at high concentrations involves the formation of apoptotic bodies, 

significantly increased with GQDs reducing the cisplatin concentration needed. No reduction in the 

interaction between cisplatin and DNA was measured. Since GQDs enter cells mainly via 

endocytosis, they could improve cisplatin cellular uptake if transported with GQDs. Indeed, increase 

of platinum inside cell and nucleus suggested that either GQDs/cisplatin together enter the cells, or 

GQDs improved the cell permeability at least partially. In our recent work, we tested biocompatible 

non-toxic GQDs on two neural lineages (U87 human glioblastoma cells and mouse primary cortical 

neurons) as sensitizing agents for doxorubicin. We used GQDs with three diverse surface chemistries: 

aminated, carboxylated and non-functionalized. After the treatment with GQDs, we removed the 

nanoparticles from the medium, and administered doxorubicin, to avoid potentially extracellular 

interactions between the chemotherapeutic agent and GQDs. Carboxylated and non-functionalized 
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GQDs sensitized U87 cells to doxorubicin, reducing significantly the cell viability. This effect was 

cell-specific, since it was not visible on neurons, and it was mediated by an increase in membrane 

permeability of U87 cells due to interactions between GQDs and cell membrane, which was related 

to the surface net charge of the nanoparticles. The increase in membrane permeability of U87 cells, 

consequently, increased the uptake of the antitumor drug inside cells with a synergistic mechanism. 

Wang and colleagues synthesized GQDs conjugated with folic acid to target specifically tumor cells 

[115]. This nanocomplex was furtherly conjugated with doxorubicin [113]. Release of doxorubicin 

inside HeLa cells, which overexpress the folic acid receptor was assessed. At first, no release was 

measured, as indicated by the colocalization of the green channel (GQDs) and the red channel 

(doxorubicin). Furthermore, to test the specificity of the nanoassembly, they measured cell viability 

on HeLa cells, A549 and HEK293A. Importantly, the last two cell lines do not express the folic acid 

receptor. They found a specific reduction in cell viability only for HeLa cells, indicating that 

GQDs/folic acid conjugated with doxorubicin could release specifically the antitumor drug inside 

cells overexpressing a folic acid receptor. 

Importantly, the ability of GQDs to cross the BBB makes them great candidates for specific drug 

delivery applications to CNS diseases. Li and Amat covalently attached doxorubicin on a delivery 

system developed from nontoxic carbon dots and transferrin to transport doxorubicin to pediatric 

brain tumor cells [116]. The target of transferrin receptors on the BBB enables the transport of 

chemotherapeutic agents across the BBB and into brain parenchyma. To examine the cellular uptake 

of the nanocomplex compared to doxorubicin alone, glioma cells were treated with 500 nM conjugate 

or doxorubicin for 18 h under serum-free conditions. A significant increase in doxorubicin 

fluorescence was observed by confocal microscopy in the nuclei (Figure 7A). They also tested cell 

viability on cells treated for 72 h with the nanocomplex compared to cells treated with only 

doxorubicin. At different concentrations, ranging from 1 to 100 nM, of the nanocomplex, a significant 

reduction in cell viability was measured. 

In another study, Dong and colleagues developed GQDs functionalized with arginine-glycine-

aspartic acid to specifically target tumor cells [101]. Doxorubicin was then loaded on the surface of 

functionalized GQDs and tested on U251 human glioma cells. Cell viability measurements were 

carried out and, as a result, GQDs conjugated with doxorubicin exhibited a significantly higher lethal 

effect compared with free doxorubicin (Figure 7B). Most of the released doxorubicin reached nuclei 

of cells within 8 h of treatment. 

Interestingly, GQDs have shown the ability to inhibit the progression of Alzheimer’s disease by 

reducing the aggregation of β-amyloid (Figure 7C). Liu and colleagues measured a significant 

reduction in the formation of β-amyloid aggregates caused by the interaction between the negative 

charges of GQDs and the positive charges of histidine residues on β-amyloid [117]. Subsequently, 

Xiao and colleagues tested GQDs conjugated with a neuroprotective peptide (glycine-proline-

glutamate) [118]. In vitro results showed a significant reduction in the formation of aggregates when 

β-amyloid were treated with functionalized GQDs (Figure 7C). In vivo studies were then carried out 

on transgenic mice. To observe β-amyloid associated microglial activation, plaques and activated 

microglia were labeled on brain slices using immunohistochemistry techniques. A significant 

reduction in the activation of microglia was pointed out, as well as a reduction in inflammatory 

factors (such as IL-1 and IL-6) and an increase in the anti-inflammatory factors (IL-4). Another 

important factor involved in Alzheimer progression is the decrease of dendritic spines, related to the 

decline of the synaptic plasticity and neuron impairment. Therefore, they measured the density of 

dendritic spines of neurons in the hippocampus by DiOlistic labeling. Based on the result, they 

deduced that the synapsis protection effect could come from the reduction of amyloid aggregation. 

Lastly, they tested neurogenesis by observing an increased number of neural progenitor cells and 

neurons in mice treated with GQDs, suggesting a possible direct or indirect stimulation of neural 

proliferation (Figure 7C). Taken together, these studies point out the crucial potential of GQDs as 

drug delivery systems for CNS pathologies. 
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Figure 7. Drug delivery with GQDs. (A) Carbon dots functionalized with transferrin and conjugated 

with doxorubicin. The nanocomplex was administered to SJGBM2 pediatric glioblastoma, resulting 

in a higher uptake of the chemotherapeutic agent. Adapted with permission from The Royal Society 

of Chemistry [116]; (B) U251 cell treated with GQDs functionalized with a targeting peptide and 

loaded with doxorubicin. Adapted from [101]. Copyright 2017, permission from Elsevier; (C) 

Neuroprotective activity of GQDs on Alzheimer’s disease, showing a reduction in the fibrillation 

(top), and the increase in neurogenesis in vivo (bottom, scalebar 60 µm). Reproduced with permission 

from The Royal Society of Chemistry [117]. Adapted from [118]. Copyright 2016, permission from 

Elsevier. 

9. Conclusions 

In this review, the current state of the art of GQDs in biomedicine is discussed, with a focus on 

the neuroscientific field. GQDs are widely expressing their potential in the biomedical world, 

becoming great candidates for bioimaging and neuroimaging, theranostic and drug delivery 

applications, especially to the brain, thanks to their ability to cross the BBB. As bioimaging markers, 

GQDs are currently being employed both in vitro and in vivo, thanks to their great optical properties 

as well as good biocompatibility. In vitro studies showed that GQDs could easily label different cell 

lines with high throughput including neurons and neural stem cells. Moreover, some research groups 

focused on the doping and functionalization of GQDs with different chemical groups. Nitrogen-

doped carbon dots were used to label U87 human glioblastoma cells [37], while carboxylated, 

aminated and DMF-functionalized GQDs labeled C6 glioma cells, resulting only in a low cytotoxicity 

for DMF-GQDs at relatively high concentrations [38]. Among the in vivo neuroimaging applications 

described, carbon dots derived from L-aspartic acid and pH-responsive carbon dots were used to 

selectively label gliomas in tumor-bearing mice [39,96]. GQDs were, and are, also currently being 

employed for photodynamic and photothermal therapy. U251 human glioma cells were treated with 

GQDs capable of inducing oxidative stress [102]. As a result, both autophagy and apoptosis pathways 

were activated, resulting in programmed cell death. Photothermal therapy was applied on nitrogen- 

and boron-doped GQDs, which were used as in vivo NIR-II imaging probes. Both in vitro and in vivo 

studies confirmed the photothermal features of doped GQDs, by killing C6 glioma cells and stopping 

tumor growth [100]. Photothermal therapy was also employed in graphene nanosheets combined 

with the delivery of doxorubicin [109]. When irradiated, the nanocomplex could selectively release 

the antitumor drug, indicating its potential in combined therapy. Moreover, as drug delivery systems, 

some groups used carbon dots conjugated with transferrin and doxorubicin, to efficiently cross the 

BBB [116]. 

The capability of interacting with fibrillar proteins of GQDs was exploited to treat Alzheimer’s 

disease [117,118]. Taken together, these studies unravel the strong potential of GQDs in neuroscience 
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and biomedicine, both in vitro and in vivo, in various techniques involving therapeutic, diagnostic 

and theranostic applications. To date, GQDs have not undergone clinical trials and clinical 

translation. Before that, some important challenges must be overcome. First of all, when it comes to 

administering nanoparticles, spontaneous formation of the biomolecular corona, a non-specific 

interaction with the proteins in the bloodstream, is inevitable [20].  

Much effort has been done to control corona formation for graphene-based materials, by surface 

functionalization with PEG in order to avoid non-specific interactions [27]. A second important 

challenge relies on the synthesis methods that do not easily allow large scale production of GQD with 

a reliable and repeatable yield [46]. Biodistribution studies have been performed on in vivo models 

[67]. However, their limited faithfulness to a human model must be considered before clinical 

translation. All the effort that has been done on GQDs research has opened to further in vivo 

applications, in particular for combined therapies involving most of their photophysical features. 

Even if their properties have been exploited separately, GQDs can serve as optical biomarkers, drug 

delivery carriers and, along with these features, as photothermal/photodynamic sensors all at once, 

thus unleashing their full potential, contributing to deepening our knowledge and technology against 

brain diseases. 
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Abbreviations 

AFM Atomic Force Microscopy 

Asp-CDs Carbon Dots From L-Aspartic Acid 

ATP Adenosine 5′-triphosphate Disodium Salt 

BBB Blood-Brain Barrier 

C60 Fullerene 

CA Citric Acid 

CCK-8 Cell Counting Kit-8 

CNS Central Nervous System 

DAPI 4′,6-Diamidino-2-Phenylindole 

DMF Dimethylformamide 

EDTA Ethylene Diamine Tetraacetic Acid 

ELISA Enzyme-Linked Immunosorbent Assay 

FITC Fluorescein Isthiocyanate 

GO Graphene Oxide 

GQDs Graphene Quantum Dots 

HOMO Highest Occupied Molecular Orbital 

IL Interleukin 

LDH Lactate Dehydrogenase 

LUMO Lowest Unoccupied Molecular Orbital 

MPP+ 1-Methyl-4-phenyl-pyridinium ion 

MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

NADPH Nicotinamide adenine dinucleotide phosphate 

NIR Near-Infrared Femtosecond Laser Excitation 

NIR-II Second Near-Infrared Window Laser Excitation 

Papp Apparent Permeability Coefficient 

PDT Photodynamic Therapy 

PEG Polyethylene Glycol 

PL Photoluminescence 

PTT Photothermal Therapy 

QDs Quantum Dots 

ROS Reactive Oxygen Species 

SiRNA Short-interfering RNA 

TABT 1,3,5-Tri-amino-2,4,6-trinitrobenzene 

TEER Trans-Endothelial Electrical Resistance 
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WST-1 Water Soluble Tetrazolium Salt-1 

XTT 2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide 
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