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Abstract: Background Estrogen receptor α (ERα) contributes to maintaining biological processes
preserving health during aging. DNA methylation changes of ERα gene (ESR1) were established
as playing a direct role in the regulation of ERα levels. In this study, we hypothesized decreased DNA
methylation of ESR1 associated with postmenopause, lower estradiol (E2) levels, and increased age
among healthy middle-aged and older women. Methods We assessed DNA methylation of ESR1
promoter region from dried blood spots (DBSs) and E2 from saliva samples in 130 healthy women aged
40–73 years. Results We found that postmenopause and lower E2 levels were associated with lower
DNA methylation of a distal regulatory region, but not with DNA methylation of proximal promoters.
Conclusion Our results indicate that decreased methylation of ESR1 cytosine-phosphate-guanine
island (CpGI) shore may be associated with conditions of lower E2 in older healthy women.
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1. Introduction

Human life expectancy has been growing at a rapid rate [1], but this prolongation of life has not
been accompanied by a proportional increase in the quality of life [2]. Indeed, along with life expectancy,
the incidence of age-related disabilities and comorbidities is also increasing [2]. Women are more
likely to survive into older ages than men and are therefore also exposed to a higher risk of age-related
disabilities [3]. As such, it is becoming increasingly important to identify factors which influence
the physical aging process and extend healthy aging, especially in women [4].

Levels of ovarian hormones have been proposed as important factors influencing health among
older women [5,6]. Estradiol (E2), the most potent form of estrogen, has important biological functions in
addition to those associated with reproduction. These include regulatory functions of the cardiovascular
system, central nervous system, skeletal homeostasis, and lipid and carbohydrate metabolism [7].
In premenopausal women, the ovaries are the principal source of E2 [8]. However, with the onset
of menopause, the ovaries’ production of E2 progressively ceases [9]. Therefore, E2 levels decrease
as women reach perimenopause, and enter into a low, steady level as women reach postmenopause [10].
Declining E2 levels during perimenopause and low E2 levels during postmenopause appear to
contribute to the increased incidence of diseases in older women, such as metabolic diseases [11,12],

Int. J. Mol. Sci. 2020, 21, 3654; doi:10.3390/ijms21103654 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0003-1169-096X
https://orcid.org/0000-0002-5807-0592
http://www.mdpi.com/1422-0067/21/10/3654?type=check_update&version=1
http://dx.doi.org/10.3390/ijms21103654
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2020, 21, 3654 2 of 14

cognitive decline [13], mental disorders [14,15], osteoporosis, and cardiovascular diseases [16,17].
However, evidence indicates that low levels of estrogen receptors (ERs) may also play a role in
the exacerbation of age-related diseases [18–21].

ERs mediate the effects of estrogen through genomic and non-genomic mechanisms across a wide
range of cells and tissues [22,23]. Genomic effects, which occur over several hours, are mediated by
ERα and ERβ, also known as classical ERs [23]. Following activation by estrogen binding, these ERs
translocate from the cell cytoplasm to the cell nucleus, where they contribute to the transcriptional
activity of an important number of downstream genes [24,25]. On the cell plasma membrane, ERα,
ERβ, and the more recently described G protein-coupled estrogen receptor (GPER) mediate rapid,
non-genomic estrogenic effects [26].

Studies from humans and rodent models indicate that, among the three ERs, ERα may be a key
player in preserving health in advanced age. Indeed, ERα contributes to maintain biological functions
such as cardiovascular, metabolic, cognitive, hypothalamic, and limbic functions, even under conditions
of low estrogen levels [27,28]. This might be due to the higher affinity of ERα with E2, compared
to the affinity with E2 of the other ER subtypes [29,30]. Moreover, studies on osteoporosis indicate
that ERα, but not ERβ, is essential in promoting bone-protective actions and bone formation [18,31].
Studies have also reported a greater role of ERα compared to ERβ in protecting cardiovascular
functions [18]. Furthermore, a decrease in the relative expression of ERα/ERβ, mainly due to a loss of
ERα, is associated with cognitive impairments and a loss of E2 responsiveness in advanced age [27,29].
Concerning GPER, its role as a plasma membrane-based ER is controversial, and there is still a lack of
evidence that this ER plays a significant role in mediating endogenous estrogen effects in vivo [30].

Levels of ERα are regulated, at least in part, by mRNA expression [32]. DNA methylation is
a key epigenetic mechanism, which regulates mRNA expression through the binding of methyl groups
at cytosines in cytosine-guanine dinucleotides (CpGs) [33]. These DNA modifications are influenced
by various internal and external environmental factors and occur without altering the underlying
DNA sequence [34]. Generally, hypermethylation of transcriptional regulatory regions is associated
with gene silencing, while hypomethylation is associated with gene activation, resulting in increased
mRNA expression [35]. DNA methylation changes have been established as playing a direct role in
the transcriptional regulation of ERα gene (ESR1) [36].

Aging is associated with DNA methylation modifications. Jones et al. (2015) distinguished two
categories of age-dependent DNA methylation changes, illustrated by the concepts of “epigenetic
drift” and “epigenetic clock” [37]. “Epigenetic drift” refers to modifications that occur due to the loss
of regulatory control of DNA methylation mechanisms, and result in increased variability of DNA
methylation across aging individuals. By contrast, “epigenetic clock” refers to modifications leading
to common DNA methylation changes across aging individuals. Among the common methylation
modifications, some may constitute beneficial adaptive changes [37–40]. These adaptive changes
may be the product of natural selection [41,42]. However, associations between DNA methylation
and adaptive evolution have not been clearly elucidated. Indeed, DNA methylation marks contribute to
adaptive phenotypic variation, but, in mammals, they are erased during early development, following
fertilization [41]. Among other hypotheses, beneficial environmentally induced methylation profiles
(i.e., changes promoting reproductive functions and longevity) may be maintained across generations
through the selection of genomic mechanisms linked to these methylation profiles [41,42].

A recent epigenome-wide analysis may constitute an example of beneficial age-dependent
DNA methylation changes [39]. Indeed, age-associated DNA hypomethylation of distal regulatory
elements (enhancers) was related to the upregulation of genes essential for cell identity and function.
As a consequence, these DNA methylation changes promoted better β-cell function in older mice,
suggesting that adaptive responses through DNA methylation changes may occur during aging [39,40].
Regarding ESR1, recent evidence suggests that methylation of its promoter may be modifiable across
the life span, acting as a regulatory mechanism for ERα expression [32,43,44]. For instance, Ianov et al.
(2017) showed that altered methylation of specific CpGs of ESR1 promoter was associated with age,
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ovariectomy, and ERα expression in the hippocampus of female rats [32]. To the best of our knowledge,
no study has yet investigated potential ESR1 methylation patterns associated with women’s aging.
Changes of ESR1 promoter methylation may contribute to maintaining health among older women.
Therefore, in this study, we hypothesized that lower levels of methylation at three DNA regions of
the ESR1 promoter (proximal promoter A and B, and CpG island shore) would be associated with
postmenopause, lower E2 levels, and increased age among healthy women. Our results indicate
alterations of ESR1 cytosine-phosphate-guanine island (CpGI) shore methylation in aging women,
and may provide new insights for further investigations in the field of the female health span.

2. Results

2.1. Description of Demographic and Biological Measures

The final study population comprised 130 women aged 40–73 years. All women were Caucasian,
most were originally from Switzerland (89%) and the remaining part (11%) from the neighboring
German-speaking countries, Germany, Austria, and Liechtenstein. Of the total sample, 39.2% (n = 51)
were premenopausal, 12.3% (n = 16) perimenopausal, and 48.5% (n = 63) postmenopausal. The majority
of the women were married or living together with their partner (68.5%) and had a college/university
degree or vocational education (79.2%). Table 1 presents the descriptive statistics of all variables used
in this study, in the overall sample and according to menopausal groups.

Table 1. Demographic and biological measures.

All PRE PERI POST

n 130 51 16 63
E2 (pmol/L) (mean/SD) 5.6/4.5 8.2/4.7 5.7/4.5 3.7/3.2

Age (y) (mean/median/range) 53.2/52.5/40–73 45.1/45/40–57 51.4/51/47–56 60.2/59/50–73
ESR1 CpGI shore methylation (%) (mean/SD) 76.7/12 79.3/8.4 78.1/9.2 74.4/14.7
ESR1 promoter B methylation (%) (mean/SD) 3.5/3.14 3.2/2 3.9/3.3 3.7/3.8
ESR1 promoter A methylation (%) (mean/SD) 3.9/3.3 3.7/2.5 5/4 3.7/3.7

Note: levels of E2 in pre- and perimenopausal women are measured during the early follicular phase. Abbreviations:
PRE = premenopausal; PERI = perimenopausal; POST = postmenopausal; E2 = estradiol; n = sample size,
ESR1 = estrogen receptor 1 gene, CpGI = CpG island, SD = standard deviation.

2.2. ESR1 Promoter Methylation and Menopausal Status

No statistically significant differences between menopausal groups were detected when analyzing
mean methylation of CpG island (CpGI) shore (F (2, 48.032) = 2.08, p = 0.137), mean methylation of
promoter B (F (2, 39.126) = 0.64, p = 0.535), and mean methylation of promoter A (F (2, 127) = 1.02,
p = 0.362). However, the examination of individual CpGs revealed that methylation at CpG9 of
CpGI shore differed significantly between the groups (F (2, 43.953) = 5.08, p = 0.010), Figure 1A.
Post-hoc analyses indicated significantly lower CpG9 methylation in postmenopausal women (71.1%
± 3.35 SE) compared to premenopausal women (83% ± 2.09 SE, p < 0.01). In addition, a significant
difference in methylation was detected between groups at CpG7 of promoter B (F (2, 61.065) = 4.58,
p = 0.014). Methylation at CpG7 was higher in postmenopausal women (3% ± 0.68 SE) than in
premenopausal women (1.33% ± 0.25 SE, p = 0.060) and perimenopausal women (0.77% ± 0.3 SE,
p = 0.010). The examination of methylation at individual CpGs of promoter A with respect to
menopausal groups did not reveal any statistically significant differences.
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Figure 1. (A) Cytosine-phosphate-guanine island (CpGI) shore methylation at CpG9 in menopausal
groups. Methylation levels are significantly lower in postmenopausal women compared to
premenopausal women. (B) The mean methylation of CpGI shore is significantly positively associated
with E2 levels (r = 0.224, p = 0.014). Robust regression was used to put less weight on extreme values.
* p < 0.05. Abbreviations: PRE = premenopausal; PERI = perimenopausal; POST = postmenopausal.

2.3. ESR1 Promoter Methylation, Estradiol Levels, and Age

The results indicated that E2 levels were significantly predictive of CpGI shore mean methylation
(β = 0.37, t (118) = 2.14, p = 0.034 Figure 1B), while age did not make any significant contribution
(β = −0.04, t (118) = −0.22, p = 0.830). The examination of individual CpGs indicated that E2 levels were
predictive of methylation at CpG3 (β = 0.54, t (118) = 2.39, p = 0.018) and CpG9 (β = 0.62, t (118) = 2.38,
p = 0.019). Table 2 presents the effects of E2 levels and age on methylation at individual CpGs.

Table 2. Effects of estradiol (E2) levels and age on estrogen receptor 1 gene (ESR1) CpGI shore
methylation at individual CpGs.

E2 β p Age β p

CpG 1 0.64 0.097 −0.25 0.599
CpG 2 0.12 0.733 −0.42 0.154
CpG 3 0.54 0.018 0.09 0.618
CpG 4 −0.01 0.978 −0.00 0.989
CpG 5 0.42 0.051 0.09 0.661
CpG 6 0.13 0.587 0.14 0.293
CpG 7 0.28 0.100 0.04 0.831
CpG 8 −0.06 0.797 −0.28 0.422
CpG 9 0.65 0.019 −0.33 0.419

Note: methylation at CpG 3 and CpG 9 present significant associations with E2 levels (in bold), while the same
association at CpG 1 and CpG 5 presents a trend toward significance. Abbreviations: CpG = cytosine-guanine
dinucleotide, E2 = estradiol.

Mean methylation of promoter B was not significantly predicted by E2 levels (β = −0.03,
t (121) = −1.05, p = 0.294) or by age (β = −0.04, t (121) = −1.58, p = 0.117). However, methylation at CpG
12 was significantly positively predicted by age (β = 0.05, t (121) = 2.65, p < 0.01).

Mean methylation of promoter A was not significantly predicted either by E2 levels (β = −0.04,
t (123) = −1.00, p = 0.318) or by age (β = 0.03, t (123) = 0.72, p = 0.471). Likewise, no significant difference
in methylation was observed when examining individual CpGs.

2.4. CpGI Shore Methylation and Estradiol Levels Among Menopausal Groups

The regression model predicting CpGI shore mean methylation and including the interaction
term between E2 and CpGI shore methylation was found to fit the data better than the model without
the interaction term (F (2, 115) = 11.22, p = 0.004). A significant positive association between methylation
and E2 was found in premenopausal (β = 0.56, t (113) = 2.71, p = 0.008) and in postmenopausal women
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(β = 0.55, t(113) = 2.04, p = 0.044), and no difference emerged between these two groups (p = 0.987). By
contrast, a significant negative association between methylation and E2 was detected in perimenopausal
women (β = −0.64, t (113) = −2.26, p = 0.026). The examination of individual CpGs indicated that
the differential association was stronger at CpG 1 (p < 0.001).

3. Discussion

In this study, we explored DNA methylation of key regulatory regions of ESR1 in association with
menopausal status, age, and E2 levels in healthy middle-aged and older women. Methylation levels
were low at promoters A and B, while intermediate methylation levels were found at CpGI shore.
Postmenopause and lower E2 levels were associated with lower methylation of CpGI shore, and the effect
of E2 levels was significant also after adjusting for menopausal status and age. This association was
stronger at CpG 3 (Illumina probe: cg07746998), CpG 9 (Illumina probe: cg17264271), and CpG 1
(not included among Illumina probes). CpGI shore methylation was positively associated with E2
levels in pre- and postmenopausal women, while this association was negative in perimenopausal
women. Postmenopause was associated with increased methylation of promoter B at CpG 7 (Illumina
probe: cg22839866), while age was positively associated with methylation of promoter B at CpG
12 (Illumina probe: cg13612689) after adjusting for E2 levels and menopausal status. Concerning
the methylation of promoter A, we did not observe an association with menopausal status, E2 levels,
or age.

Our findings on ESR1 methylation associated with E2 levels and age present similarities with
previous research. First, decreased methylation of CpGI shore at the same CpGs region targeted in
the present study was associated with increased age and ovariectomy in the hippocampus (region CA1)
of female rats, as well as with E2 deprivation in human breast cancer cells non-resistant to hormone
therapy [32,44]. Our results add to these findings and suggest similar associations in peripheral blood
cells of healthy women. Second, in the study by Tsuboi et al. (2017), decreased methylation of proximal
promoters was not found to be associated with E2 deprivation [44]. Similarly, in our study, decreased
methylation of promoter A and promoter B was not associated with menopausal status or E2 levels.
On the contrary, consistent with studies showing that methylation at proximal promoters increases
with aging [45,46], increased methylation of CpG 7 and CpG 12 in promoter B was associated with
postmenopause and increased age, respectively. Thus, contrary to CpGI shore, ESR1 promoters A and B
may not lose methylation in conditions of lower E2 levels, such as increased age and postmenopause.
As increased methylation of ESR1 promoter region (including CpGI shore) has been associated with
decreased levels of ERα and increased incidence of age-related diseases [45–49], hypomethylation of
CpGI shore in older age may represent a health-promoting mechanism.

The CpGI shore of promoter C assessed in this study has been described as an enhancer
(enhancer ID GH06J151804) of targeted promoters, including promoter A [44,50]. Enhancers
are regulatory DNA regions that increase gene transcription by influencing the activity of their
target promoters [51]. DNA methylation has been shown to regulate the activity of enhancers,
with methylation loss contributing to their activation [52–54]. Methylation dynamics at enhancers,
marked by intermediate levels of methylation, has also been suggested as a mechanism by which the cell
responds to environmental influences, including endogenous changes related to aging [39,55]. We found
intermediate levels of methylation in the CpGI shore, suggesting enhancer activity of this sequence
in blood. Moreover, decreased methylation at enhancers has been found to correlate with better cell
function during aging [39]. These findings may further support the idea that decreased CpGI shore
methylation is associated with health during aging.

DNA methylation changes that reflect a programmed process are perhaps selected through
evolution [56]. There is increasing evidence indicating that the hypomethylation of enhancers may
be an example of these programmed DNA methylation changes [56]. For instance, hypomethylation
of enhancers has been implicated as a component of the mouse clock [56], and, as mentioned above,
has been shown to preserve cell-functions in mouse pancreatic β-cells during aging [39]. Hormonal
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changes related to menopause have been described as potential determinants of the epigenetic clock [57].
In this study, we described an association between E2 levels and ERα enhancer methylation that may
promote healthy aging. In an evolutionary context, this hormone-DNA methylation association would
have positive effects on fitness-related traits earlier in life, as the strength of natural selection decreases
with age [58].

In our sample, the positive association between CpGI shore methylation and E2 levels observed in
pre- and postmenopausal women was not verified in perimenopausal women. This observation may
be traced to the previously suggested idea that dysregulation of the estrogen signaling and epigenetic
alterations of ESR1 occur during perimenopause [59].

DNA methylation of the CpGI shore may influence mRNA expression by regulating the binding
of transcription factors sensitive to DNA methylation. For instance, binding sites for transcription
factors of the ETS family are identified in highly conserved regions of the CpGI shore, which include
CpG 1, CpG 2, CpG 4, CpG 5, CpG 7–9 [44,60]. Furthermore, a STAT5b binding site is found in
a region including CpG 3 [61]. Transcription factors of the ETS family and STAT5b are repressed
from binding by methylation within their binding sites in the CpGI shore, leading to decreased ESR1
expression [44,61,62]. This supports the assumption that DNA methylation differences of CpGI shore
found in the present study play a role in regulating CpGI shore transcription.

Finally, our results indicate that E2 was the unique predictor of CpGI shore methylation when
controlling for age and menopausal status. E2, through ER, has been shown to exert epigenetic influence
on various genes in different tissues, including the blood [63,64]. E2 levels may also contribute to
regulate ESR1 CpGI shore methylation. However, the mechanism underlying the potential regulation
of CpGI shore methylation by E2 has not yet been elucidated. As discussed by Ianov et al. (2017),
the complex E2-ERα may enhance transcription of repressors interacting with methyltransferases,
which in turn would add methyl groups at CpGs of CpGI shore [32]. Thus, a feedback mechanism
involving ERα, transcription repressors, and methyltransferases may underlie the association between
CpGI shore methylation and E2 levels.

Strengths and Limitations

This is the first study to explore associations between ESR1 promoter methylation and E2 levels
in the context of women healthy aging. In addition, during the participants’ recruitment process,
strict inclusion and exclusion health criteria were applied. Therefore, the results could not have been
biased by major illnesses.

Although there is evidence indicating that increased CpGI shore methylation is associated with
decreased ESR1 expression in various tissues [32,44,47,61], limitations of this study include the lack
of assessment of ESR1 expression. Furthermore, we assessed DNA methylation only in peripheral
blood. This prevents the generalization of results, as DNA methylation may be tissue-specific [65].
However, the blood DNA methylation as a proxy of physiological processes in other tissues has
been previously demonstrated [66]. In addition, an epigenome-wide analysis showed that DNA
methylation in blood was predictive of all-cause mortality in a sample of 9949 older adults aged 50–75
years [67]. Moreover, the ESR1 promoter methylation in blood has proved useful in the diagnosis
of lung and breast cancers [68–70]. Furthermore, it should be noted that methylation at ESR1 CpGI
shore in blood has been found to correlate with the ESR1 CpGI shore methylation in the brain,
especially in the superior temporal gyrus (Supplementary Figure S1) [65]. Nevertheless, for future
studies it would be important to explore the association between CpGI shore methylation, E2 levels,
and ESR1 expression in different cell types. Another limitation is the lack of a longitudinal study
design. Indeed, longitudinal data would allow the identification of changes of CpGI shore methylation
following the individual variations in E2 levels, age, and menopausal status. Moreover, the sample of
perimenopausal women was small (n = 16) compared to pre- (n = 51) and postmenopausal (n = 63)
women. Therefore, findings regarding the perimenopausal group must be interpreted with caution.
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At last, in this study, we did not assess data linked to women’s nutritional status, such as B12 and red
cell folate, which have been shown to regulate DNA methylation [71].

4. Materials and Methods

4.1. Subjects

Women aged 40–75 years were recruited in the context of the Women 40+ Healthy Aging Study,
a larger cross-sectional investigation including healthy middle-aged and older women [72–74]. To be
included in the study, women had to report good, very good, or excellent health. Women were
excluded from the study if they met at least one of the following criteria: acute or chronic somatic
disease; acute or chronic mental disorder; psychotherapeutic treatment and use of psychotropic drugs
during the last six months; more than two standard units of alcoholic beverages per day; pregnancy
in the last six months; menopause due to surgical removal of the ovaries or the uterus; precocious
menopause; current use of oral contraceptives or use of hormone therapy; disease of the thyroid
gland, pancreas, adrenal gland or ovaries influencing the endocrine system; diabetes, polycystic
ovary syndrome (POCS), hirsutism, endometriosis, and hyper- or hypothyroidism. Subjects were
divided into three subgroups, with respect to their menopausal status according to the Stages of
Reproductive Aging Workshop +10 (STRAW) criteria: (1) premenopausal, if the menstrual cycle was
regular, (2) perimenopausal, if the cycle length was variable, with variability among cycles of at least
seven days, or if the interval between cycles was > 60 days, and (3) postmenopausal if no bleeding
had occurred in at least the last 12 months [75]. All subjects gave their informed consent for inclusion
before they participated in the study. The study (BASEC Nr 2016-01591) was conducted in accordance
with the Declaration of Helsinki, and approved on 2 December 2016 by the Cantonal Ethics Committee
of the canton of Zurich (KEK Zurich, Zurich, Switzerland).

4.2. Biological Sampling

Saliva and peripheral blood samples were collected at 8:00 am under standardized conditions.
In pre- and perimenopausal women, sampling was conducted in the early follicular phase, during
which E2 levels are low [76].

One or two drops of blood were collected from fingertips onto S&S 903 Whatman® paper cards
(GE Healthcare, Little Chalfont, Buckinghamshire, UK). Blood spots were dried at room temperature
for about 3 h and stored at −20 ◦C until subsequent DNA extraction. Participants were asked to collect
saliva into 2-ml SaliCaps (IBL International GmbH, Hamburg, Germany) using the passive drool
method. Saliva samples were stored at −20 ◦C until biochemical analysis.

4.3. Methylation Analysis

DNA isolation—We used the dried blood spot (DBS) technology as source of genomic DNA.
Regulation of ERα expression by E2 has been demonstrated in the blood [77]. Therefore, it is possible
that DNA methylation changes underlying the ERα regulation by E2 occur in the blood. The use of DBS
technology has practical implications in terms of tissue accessibility and storage and has previously
been successfully used for evaluating cytosine methylation [78,79]. Genomic DNA was extracted from
three punches of 3 mm diameter using theQIAamp DNA Investigator Kit (QIAGEN, Hilden, Germany),
following the manufacturer’s instructions, and eluted in a final volume of 30 µL of RNase-free water.
Qubit (Thermo Fischer Scientific, Waltham, MA, USA) was used to assess the DNA concentration.

Bisulfite conversion—Genomic DNA (41–168 ng) was bisulfite-treated using the EZ 96-DNA
methylation-Gold kit (Zymo Research, Irvine, CA, USA). The manufacturer’s instructions recommend
using samples containing 0.5–2000 ng of DNA. Bisulfite converted DNA was eluted in 20 µL of
RNase-free water and stored at −80 ◦C until subsequent analysis.

NGS Library preparation—We analyzed three DNA sequences located in the promoter region
of ESR1. Two sequences are located in two CpGI, one in proximal promoter A and one in proximal
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promoter B. The third sequence is a CpGI shore near promoter C, located approximately 2 kbp
upstream of promoter A (Figure 2) [44]. Increased methylation at these regulatory DNA sequences
has been shown to decrease ESR1 expression and to be associated with diseases [45–49]. The PCR
amplicon library preparation for next-generation bisulfite sequencing was based on the protocol
described by Chen et al. (2017) [80]. An initial polymerase chain reaction (PCR) was performed on
the bisulfite-treated DNA using the Kapa HIFI Uracil+ master mix (Kapa Biosystems, Wilmington,
MA, USA). Bisulfite primers were designed manually or using MethPrimers [81]. Primers contained
universal oligonucleotides CS1/CS2 (Fluidigm, San Francisco, CA, USA, Table 3), used for customized
NGS sequencing primers. PCR conditions were 95 ◦C for 3 min, then 40 cycles of 98 ◦C for 20 s,
54–60 ◦C for 15 s, 72 ◦C for 15 s, and a final step with 72 ◦C for 45 s. PCR amplicon products were
purified using E-gels 2% size selection (Thermo Fisher Scientific, Waltham, MA, USA). To verify that
primers were specifically amplifying bisulfite converted DNA, positive and negative controls (bisulfite
converted DNA and genomic DNA, respectively) were included in the PCR. Then, a second PCR
of 10 cycles (Tm 60 ◦C) was performed for adding the Illumina NGS library flowcell attachment
sites and customized single barcode for each individual (Fluidigm, San Francisco, CA, USA). A final
purification of the pooled amplicon libraries from each of the three DNA regions (promoter A, B,
and CpGI shore) was performed, and final products were quantified using the Agilent 2200 Tape
Station instrument and HS DNA 1000 reagents (Agilent Scientific Instruments, Santa Clara, CA, USA).
The three DNA sequences were pooled at a final molarity of 2 nM. To increase the diversity of base
calling during sequencing we added PhiX spike-in (12%) to the library. The final library was sequenced
on the Illumina MiSeq using the V3, 600 cycles kit (300 PE) (Illumina, San Diego, CA, USA).

Figure 2. (A) Schematic figure of ESR1 promoter region. (B) Assessed DNA sequence (−2179; −876) in
CpGI shore near promoter C, including nine CpGs. Methylation at CpGs 1–9 was associated with E2
deprivation in humans [44]. Altered methylation at these CpGs region was associated with ovariectomy
and age in the hippocampus of female rats [32]. (C) Assessed DNA sequence (−384; −143) in promoter
B, including 12 CpGs located in a CpGI. (D) Assessed DNA sequence in Promoter A (−34; +255),
including 27 CpGs located in a CpGI. Underlined sequences correspond to the primers position.

Interrogation of CpGs in the targeted amplicons—Adaptor sequences and low-quality bases
were removed using the default settings of trimmomatic v0.35 (licensed under GPL V3 and available
at http://www.usadellab.org/cms/index.php?page=trimmomatic) [83]. Only paired-end sequences

http://www.usadellab.org/cms/index.php?page=trimmomatic
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> 2 × 20 bp were kept, which were then aligned to the target regions, and counts were extracted
using Bismark program (v0.19.0). A customized R script was subsequently used to parse all counts.
In accordance with Chen et al. (2017) [80], a minimum threshold of 100× reads was set. The number of
total reads across the samples ranged from 119 to 31,598 (M = 6227, SD = 5240) for promoter A, from
202 to 63,844 (M = 3219, SD = 10,946) for promoter B, and from 148 to 48,993 (M = 19,512, SD = 13,972)
for CpGI shore. Finally, unconverted CpGs percentage was calculated for each CpG as the number
of unconverted reads divided by the total read count. Levels of methylation were consistent with
previous data in blood (retrieved from the GSE40279 dataset [84]). Methylation was low in promoters
A and B, while the CpGI shore had intermediate levels of methylation (Table 1). Methylation data are
openly available in “Dryad” at https://doi.org/10.5061/dryad.gmsbcc2jk.

Table 3. Primers used for assessing DNA methylation in the promoter regions of ESR1.

Target Forward Primer Reverse Primer GRC h37 (hg19) T (◦C)

CpGI shore ACACTGACGACATGGTTCTACA NNN
GTTTTTTGTGAGTAGATAGTAAGTT

TACGGTAGCAGAGACTTGGTCT NNN
AAACCTACCCTACTAAATCAAAAAC chr6: 152126660–152126963 58

Promoter B ACACTGACGACATGGTTCTACA NNN
GGGGAATTAAATAGAAAGAGAGATAAATAG

TACGGTAGCAGAGACTTGGTCT NNN
CCAAAAAACAACTTCCCTAAACTT chr6: 152128433–152128671 60

Promoter A ACACTGACGACATGGTTCTACA NNN
AGATTAGTATTTAAAGTTGGAGGTT

TACGGTAGCAGAGACTTGGTCT NNN
ATATAAAAAATCATAATCATAATCC chr6: 152128780–152129067 54

Note: forward primers include the universal Fluidigm primer sequence CS1 (ACACTGACGACATGGTTCTACA),
while reverse primers include the universal Fluidigm primer sequence CS2 (TACGGTAGCAGAGACTTGGTCT).
NNN between universal primers CS1/CS2 and bisulfite primers represent randomized nucleotides to molecular
diversity generation during sequencing [82]. Abbreviations: CpGI = cytosine-phosphate-guanine island.

4.4. Estradiol Measurement

E2 levels were determined using the 17beta-Estradiol Saliva Luminescence Immunoassay
(IBL International, Hamburg, Germany). Intra- and inter-assay coefficients were below 13.3% and 14.8%,
respectively, and the assay’s analytical sensitivity (limit of detection) was 1.1 pmol/L. According to
the manufacturer instructions, E2 values range between 2.9 and 28.2 pmol/L during the follicular
phase, while in postmenopausal women expected values are lower than 15.7 pmol/L (IBL International,
Hamburg, Germany, RE62141/RE62149). E2 levels were in the ranges suggest by IBL (Table 1). The use
of salivary E2 can be justified by the fact that salivary E2 strongly correlates with free serum E2 [85],
which is the portion available for estrogenic effects [64,86].

4.5. Procedure and Statistical Analyses

We first compared ESR1 methylation levels of the three targeted DNA regions among menopausal
groups, using analysis of variance (ANOVA). If Levene’s test was significant, the Welch statistics were
used, followed by the Games–Howell test for post-hoc comparisons. ANOVA was conducted using
SPSS (IBM statistic, version 24.0, Armonk, NY, USA: IBM Corp.).

Next, we assessed the predictive effect of E2 levels and age on ESR1 methylation using the robust
regression approach. This method allowed to put less weight on more extreme values, which did not
present compelling reasons justifying their exclusion (i.e., low sequencing coverage). Menopausal status
was also included as a covariate in the regression models. In a second step, we added the interaction
term between E2 and menopausal status for assessing possible differential associations between ESR1
methylation and E2 among menopausal groups. The comparison of the different associations was
performed using contrast analysis. Robust regression analyses were conducted using the R-Package
‘robustbase’ in R [87], version 3.5.0 [88].

All methylation analyses were performed using the mean methylation of the 27, 12, and 9 CpGs
in promoter A, promoter B, and CpGI shore, respectively, and methylation levels at individual CpGs.
For most analyses using individual CpGs, only significant results were reported.

One significant result, with an effect size < 0.04 was considered meaningless [89]. All statistical
tests were two-tailed and the significance level was set at p < 0.05.
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5. Conclusions

ERα plays an important role in maintaining health during aging. This report indicates that
decreased methylation of ESR1 CpGI shore may be associated with conditions of lower E2 in older
healthy women. This might have important clinical implications in the field of women healthy
aging. Future research on this topic may consider gene expression analysis, longitudinal cohorts,
and cell-specificity.
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