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Abstract: High-fat diet (HFD) induces inflammation and microbial dysbiosis, which are components
of the metabolic syndrome. Nutritional strategies can be a valid tool to prevent metabolic and
inflammatory diseases. The aim of the present study was to evaluate if the chronic intake of pistachio
prevents obesity-associated inflammation and dysbiosis in HFD-fed mice. Three groups of male
mice (four weeks old; n = 8 per group) were fed for 16 weeks with a standard diet (STD), HFD,
or HFD supplemented with pistachios (HFD-P; 180 g/kg of HFD). Serum, hepatic and adipose tissue
inflammation markers were analyzed in HFD-P animals and compared to HFD and STD groups.
Measures of inflammation, obesity, and intestinal integrity were assessed. Fecal samples were
collected for gut microbiota analysis. Serum TNF-α and IL-1β levels were significantly reduced in
HFD-P compared to HFD. Number and area of adipocytes, crown-like structure density, IL-1β, TNF-α,
F4-80, and CCL-2 mRNA expression levels were significantly reduced in HFD-P subcutaneous and
visceral adipose tissues, compared to HFD. A significant reduction in the number of inflammatory foci
and IL-1β and CCL-2 gene expression was observed in the liver of HFD-P mice compared with HFD.
Firmicutes/Bacteroidetes ratio was reduced in HFD-P mice in comparison to the HFD group. A pistachio
diet significantly increased abundance of healthy bacteria genera such as Parabacteroides, Dorea,
Allobaculum, Turicibacter, Lactobacillus, and Anaeroplasma, and greatly reduced bacteria associated
with inflammation, such as Oscillospira, Desulfovibrio, Coprobacillus, and Bilophila. The intestinal
conductance was lower in HFD-P mice than in the HFD mice, suggesting an improvement in the
gut barrier function. The results of the present study showed that regular pistachio consumption
improved inflammation in obese mice. The positive effects could be related to positive modulation of
the microbiota composition.
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1. Introduction

Obesity and overweight in western societies and developing countries has become one of the
most important public health problems. These, in part, result from the consumption of unbalanced
hypercaloric diets that cause excessive visceral fat accumulation [1]. Obesity is associated with chronic
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low-grade inflammation, which can impair glucose and fatty acid metabolism, leading to insulin
resistance and metabolic syndrome [2]. Most studies have focused on adipocytes as the source of
inflammatory mediators in this pathology. Storage of excess of triacylglycerol induces hyperplasia and
hypertrophy of the adipocytes with altered release of adipokines and pro-inflammatory cytokines,
which in turn enhance the recruitment of immune cells, especially macrophages [3]. Therefore,
the macrophages in obese adipose tissues are considered to be a major source of pro-inflammatory
cytokines, such as TNF-α and IL-6, which are involved in abnormal metabolisms [4].

However, recent studies have suggested that changes in the composition of the gut microbiota
might be associated with the development of metabolic disorders related to obesity [5–7]. Indeed,
a diet that is rich in saturated fat and poor in fiber is responsible for weight gain, changes in gut
microbiota [8], and increased intestinal permeability [9]. The intestinal barrier dysfunction causes
an increased circulation of lipopolysaccharides (LPS) derived from gram-negative bacteria [10,11].
In turns, LPS spread participates in metabolic endotoxemia development, adipose tissue dysfunction,
and systemic inflammation, triggering obesity-related complications [12].

Nutritional strategies can represent a valid support to prevent metabolic and inflammatory
diseases. Increased consumption of fruit and vegetables could prevent chronic diseases such as
cardiovascular disease and could prevent body weight gain [13]. Additionally, plant-based foods
reduce metabolic syndrome risk [14]. Functional food, i.e., food that can modulate the richness and
biodiversity of the gut microbiota and consequently induce a healthier metabolic status, has received
increased attention from researchers worldwide [15,16]. It is widely accepted that the consumption of
nuts such as almonds, walnuts, and pistachios, as a part of the daily diet provides beneficial effects
on human health [17]. Among nuts, Pistachio (Pistacia vera L.) is the healthiest due to its fatty acid
composition and bioactive compound content (such as lutein and anthocyanin) [18,19]. In recent years,
the anti-inflammatory effects of pistachios and the anti-inflammatory activity of its components have
been the object of numerous studies. In particular, the anti-inflammatory effects have been reported in
both in vitro models [20,21] and in various animal models [22–24]. The antimicrobial properties of
polyphenolic fractions obtained from roasted pistachios have also been demonstrated [25,26].

Moreover, we have already shown that the daily pistachio intake prevents and improves some
obesity-related metabolic dysfunctions such as dyslipidemia and hepatic steatosis in mice with
diet-induced obesity, through a positive modulation of lipid-metabolizing gene expression [27].
Nevertheless, no study has characterized the links between pistachio supplementation, adiposity-related
inflammation, and gut microbiota alterations. High-fat diet (HFD) mice are considered a good obese
model to characterize the beneficial potential of various treatments on obesity-related disorders since
they develop dyslipidemia, hyperglycemia [28,29], type 2 diabetes mellitus [30], hepatic steatosis [31],
atherosclerosis [32], and neurodegeneration [33].

Therefore, the purpose of the present study was to investigate whether chronic pistachio
consumption is able to prevent the associated visceral–obesity inflammation, the altered composition
of gut microbiota, and the intestinal barrier integrity in HFD-obese mice.

2. Results

2.1. Impact of Pistachio Consumption on Body Weight and Metabolic Parameters

As previously reported [27,31], after 16 weeks on HFD, mice showed a significant increase in
body weight, triglyceride, and cholesterol plasma concentration in comparison with the standard
diet (STD)-fed lean animals. In HFD supplemented with pistachio (HFD-P)-fed mice, triglyceride
and cholesterol concentrations were significantly reduced, in comparison with untreated obese mice,
whereas the body weight and food intake were similar (Table 1).
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Table 1. Effects of pistachio consumption on high-fat diet (HFD)-related dysmetabolisms.

Lean HFD HFD-P

Body weight (g) 32.3 ± 0.9 g 46.2 ± 1.1 g * 46 ± 1.2 g *
Food Intake (g) 4.05 ± 0.2 g 3.4 ± 0.08 g 3.3 ± 0.07 g

Triglycerides (mg/dL) 82 ± 4.5 mg/dL 119 ± 5.5 mg/dL * 93.1 ± 5.1 mg/dL #

Cholesterol (mg/dL) 100 ± 5 mg/dL 192 ± 4 mg/dL * 150 ± 4 mg/dL #

Body weight, food intake, triglyceride and cholesterol plasma concentrations of lean, HFD, and HFD supplemented
with pistachios (HFD-P) animals at the end of the experimental period. Data are expressed as mean ± SEM
(n = 8/group). * p < 0.05 compared with lean; # p < 0.05 compared with HFD.

2.2. Impact of Pistachio Consumption on TNF-α and IL-1β Expression

To examine whether pistachio consumption prevents the systemic inflammation induced by
HFD, the serum levels of the pro-inflammatory cytokines TNF-α and IL-1β were evaluated by ELISA.
As shown in Figure 1, intake of pistachios significantly decreased the HFD-induced high levels of
IL-1β and TNF-α.
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Figure 1. Effects of pistachio consumption on pro-inflammatory cytokines. Serum circulating levels of
IL-1β (A) and TNF-α (B) in the lean, HFD, and HFD-P groups. Data are expressed as mean ± SEM;
(n = 8/group). * p < 0.05 compared with lean; # p < 0.05 compared with HFD.

2.3. Impact of Pistachio Consumption on Adipocytes Hypertrophy

Adipocyte area (µm2) and adipocyte size distribution (%) were analyzed in visceral adipose tissues
(VAT) and subcutaneous adipose tissues (SAT). The adipocytes area in the HFD was significantly
higher than that in the lean group; however, the degree of increase was significantly suppressed
by HFD-P suggesting that pistachio chronic intake reduces the hypertrophy in both fat depots
examined (Figure 2A–C).

2.4. Impact of Pistachio Consumption on Adipose and Hepatic Tissue Inflammation

The presence of Crown Like Structures CLS as an index of macrophage infiltration was evaluated
and quantified in VAT and SAT. As shown in Figure 3, more crown-like structures were detected in HFD
mice, as compared to the lean animals. Interestingly, in HFD-P mice, the CLS density was significantly
lower in comparison to the HFD adipose tissues (Figure 3A,B). Furthermore, RT-PCR analysis revealed
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significantly higher levels of IL-1β, TNF-α, F4-80, and CCL2 mRNA in HFD mouse VAT and SAT than
in the lean mice. However, pistachio-diet reduced the increase of the pro-inflammatory cytokines and
the macrophage infiltration markers in both adipose tissue depots (Figure 3C).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 4 of 19 
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evaluated and quantified in VAT and SAT. As shown in Figure 3, more crown-like structures were 
detected in HFD mice, as compared to the lean animals. Interestingly, in HFD-P mice, the CLS density 
was significantly lower in comparison to the HFD adipose tissues (Figure 3A,B). Furthermore, RT-
PCR analysis revealed significantly higher levels of IL-1β, TNF-α, F4-80, and CCL2 mRNA in HFD 
mouse VAT and SAT than in the lean mice. However, pistachio-diet reduced the increase of the pro-

Figure 2. Effects of pistachio consumption on adipocyte morphology. (A) Adipocyte size distribution (%)
and (B) adipocyte mean area (µm2) of the epididymal visceral adipose tissues (VAT) and subcutaneous
adipose tissue (SAT) in lean, HFD, and HFD-P mice. (C) Adipose tissue staining (H&E staining,
magnification 10×) in the lean, HFD, and HFD-P mice. Data are expressed as mean± SEM; (n = 8/group).
Compared to the lean mice (** p < 0.01; *** p < 0.001); Compared to the HFD mice (### p < 0.001).

As previously reported [27], pistachio consumption counteracted the hepatic steatosis development
consequent to HFD (Figure 4A). HFD mice showed higher infiltration of inflammatory cells in the liver
compared to the STD animals. Nevertheless, infiltration was reduced in HFD-P livers in comparison to
the HFD ones (Figure 4A,B). Moreover, pistachio intake significantly prevented the increase in hepatic
mRNA levels of IL-1β and CCL2 observed in the HFD liver, as compared to the STD animals (Figure 4C).
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Figure 3. Effects of pistachio consumption on Crown Like Structures CLS density. (A) Representative
results of the density of MAC-2 positive CLS stained in epididymal visceral adipose tissue (VAT) and
subcutaneous adipose tissue (SAT) of the three groups of animals (CLS number/10.000 adipocytes).
(B) VAT and SAT immunohistochemistry (IHC) analysis for MAC-2 positive macrophages forming CLS
(arrows) in the lean, HFD, and HFD-P animals (magnification 10×). (C) Effect of Pistachio consumption
on IL-1β, TNF-α, F4-80, and CCL2 mRNA expression in VAT and SAT of the lean, HFD, and HFD-P
mice. Data are expressed as mean ± SEM; (n = 8/group). * p < 0.05 compared to the lean mice (* p < 0.05;
** p < 0.01; *** p < 0.001); # p < 0.05 compared to the HFD mice (# p < 0.05; ## p < 0.01; ### p < 0.001).
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Figure 4. Effect of pistachio consumption on liver inflammation. (A) Liver histology of the lean,
HFD, and HFD-P mice was examined by H&E staining. Arrows indicate the points of inflammatory
foci (magnification 10×). (B) Quantification of inflammatory foci per 5 random fields under 20×
magnification. (C) mRNA levels of IL-1β, TNF-α, F4-80, and CCL2 in the livers of the lean, HFD,
and HFD-P mice (B). Data are represented by the means ± SEM. (n = 8/group). * p < 0.05 compared to
the lean mice (** p < 0.01; *** p < 0.001); # p < 0.05 compared to the HFD mice (# p < 0.05; ## p < 0.01).

2.5. Impact of Pistachio Consumption on Gut Microbial Community

To examine the changes of the gut microbiota in response to the pistachio diet in obese HFD
mice, we analyzed the microbial composition in the feces of mice fed STD, HFD, and HFD-P, through
Next-Generation Sequencing (NGS) analysis. After 16 weeks of HFD feeding, a decrease in the phyla
Bacteroidetes and an increase in the phyla Firmicutes and Proteobacteria relative to STD were observed
both in the HFD group and in the HFD-P mice (Figure 5A). The ratio of Firmicutes to Bacteroidetes
was significantly higher in the HFD group than in the lean mice group, consistent with the microbial
changes of the two phyla in the mice with HFD-induced obesity. Although this value was also an
index of dysbiosis in the HFD-P group, it was significantly improved by pistachio intake (Figure 5B).
Interestingly, Tenericutes abundance of the HFD-P mice was significantly increased in comparison
with the HFD control mice; on the contrary, the pistachio diet significantly reduced the Proteobacteria
abundance (Figure 5A).

At the genus level, a pistachio diet significantly altered the abundances of 10 genera in a positive
direction, as compared to the HFD animals. In particular, an abundance of Parabacteroides, Dorea,
Allobaculum, Turicibacter, Lactobacillus, and Anaeroplasma genera was observed, while Oscillospira,
Desulfovibrio, Coprobacillus, and Bilophila abundance was reduced in comparison to the HFD mice
(Figure 6).
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Figure 6. Genus level taxonomic distributions of the microbial communities in the feces of the lean,
HFD, and HFD-P mice. (A) Genera abundance (%) was significantly modified by the pistachio intake.
(B) Genera abundance (%) was not modified by the pistachio intake. Data are expressed as means
± SEM; (n = 8/group). (* p < 0.05; ** p < 0.01; *** p < 0.001); hash denotes significant difference compared
to the HFD group (# p < 0.05; ## p < 0.01; ### p < 0.001).
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2.6. Impact of Pistachio Consumptiom on the Intestinal Barrier

Barrier integrity in small intestine sections was evaluated in an Ussing chamber system through
conductance measurements of mucosal preparations from all experimental groups. Conductance
values in the duodenal sections from animals fed HFD were significantly higher than those from
the STD group (about 60% increase). Notably, the conductance values from the HFD-P group were
significantly lower than the HFD group and were very similar to the lean group (Figure 7).
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3. Discussion

The present study provided evidence that regular pistachio intake in HFD-fed obese mice
ameliorates systemic and metabolic tissue inflammation, positively modulates the gut microbial
composition, and increases the intestinal barrier function.

Previous in vitro and in vivo studies have examined the antioxidant, anti-inflammatory,
and anti-apoptotic potential of pistachio [21,34–38]. In particular, the pistachio properties were
tested on carrageenan or LPS-induced acute inflammatory response [39,40], inflammatory bowel
disease, colitis [24,41–43], cancer [44–46], and allergic inflammation in the asthmatic model [47]. To our
knowledge, the present study was the first to explore the anti-inflammatory effects of pistachios in
mice with HFD-induced obesity.

Obesity is characterized by a chronic low-degree inflammation. In fact, excessive calorie intake
increases fat accumulation and the lipotoxicity activates the production of cytokines and the cells
involved in innate immunity. This production promotes a chronic, low-grade inflammatory status,
induces recruitment, and activation of mature immune cells and other cells, such as macrophages and
adipocytes, respectively, which modify the tissue and reinforce the inflammatory response [12,48].

We previously reported that a pistachio-based diet exerts beneficial effects in HFD obese mice.
In fact, it reduces the dyslipidemia and hepatic steatosis, and is able to prevent and improve visceral
fat mass accumulation in HFD mice through a redistribution towards the subcutaneous fat depot,
which is indicative of a healthier profile [27]. The present work not only confirms that the pistachio
diet modifies fat depots, as suggested by the morphological analysis of visceral and subcutaneous
adipose tissue, but also reduces the obesity-linked inflammatory status.

First, we highlighted that a pistachio diet significantly prevents the increase of pro-inflammatory
cytokines, TNF-α, and IL-1β induced by HFD in the systemic circulation. Furthermore, we provided
evidence that visceral and subcutaneous adipose tissue and liver inflammation induced by obesity were
strongly prevented by pistachio intake. Various inflammatory mediators are involved in adipose tissue
and liver inflammation. In the adipose tissue, a paracrine loop linking fatty acids, TNF-α and CCL2
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establishes a vicious cycle between adipocytes and macrophages that aggravates inflammation [46].
In the liver, the increased influx of fatty acids induces lipotoxic injury and activation of inflammatory
response. Accordingly, an abundant expression of pro-inflammatory cytokines IL-1β and TNF-α is
often associated with Non-Alcoholic Fatty Liver Disease (NAFLD) [49].

We found that HFD-P mice exhibit lower levels of TNF-α, F4-80, and CCL2 as well as minor
macrophage infiltration, detected as CLS density in adipose tissues, in comparison to HFD animals.
Additionally, in the liver, we found a reduction of IL-1β and CCL2 mRNA levels and a decreased
number of inflammatory foci, in comparison to the HFD mice. These changes would favor an
anti-inflammatory microenvironment that is able to counteract the biochemical dysfunctions occurring
in adipose tissue or in the liver of HFD mice.

Obesity and metabolic disorders are complex processes that also involve crosstalk between
the gut microbiota and host metabolism [50]. The gut microbiota might induce inflammation in
visceral adipose tissue via the LPS and TLR4 signaling pathways with an increased macrophage
infiltration and release of a variety of pro-inflammatory mediators, which in turn recruit additional
macrophages to further propagate the chronic inflammatory status [51,52]. Therefore, in attempt
to elucidate an eventual contribution of the gut microbiota to the beneficial pistachio effects, we
investigated the profiling changes of the gut microbiota composition in mice, performing 16S rDNA
sequencing through NGS analyses. Indeed, pistachio consumption can modify human gut microbiota
composition by increasing the number of potentially beneficial butyrate-producing bacteria [53].
Our results demonstrated that the microbial communities were influenced by different type of diets.
Analysis at the phylum level indicated that the fecal microbiota was dominated by seven major phyla:
Firmicutes, Bacteroidetes, Proteobacteria, TM7, Deferribacteres, Actinobacteria, and Tenericutes. We observed
a dramatic reduction in Bacteroidetes abundance and a marked increase in Firmicutes, in the HFD
group, in accordance with the increased Firmicutes to Bacteroidetes ratio identified in obese humans
and mice [54,55]. However, although the pistachio diet failed to maintain the Firmicutes/Bacteroidetes
proportion observed in STD mice, the ratio value in HFD-P was significantly lower than the HFD
group, suggesting a pistachio protective effect against dysbiosis.

Interestingly, compared to the HFD control mice, we found a significant increase in the Tenericutes
abundance and a significant decrease in Proteobacteria abundance in the HFD-P mice. Bacteria from the
Tenericutes phylum have been found to be positively associated with the modulation of the immune
system induced by high-polyphenol content food such as cocoa [56], and lower counts of these bacteria
were found in the intestinal inflammation induced by dextran sodium sulfate [57]. Therefore, a more
relative abundance of Tenericutes induced by the pistachio diet could provide some beneficial effects in
the intestinal integrity. In addition, several reports have endorsed an abundance of Proteobacteria in
the gut microbiota as a potential marker for obesity-related metabolic disorders in both humans and
rodents [6,58]. Therefore, the lower level of Proteobacteria in the HFD-P-fed mice than the HFD mice
could be indicative of less severe health conditions.

At the genus level, Lactobacillus was significantly increased in the HFD-P, in comparison to the
other groups. The relative abundance of Lactobacillus caused by pistachio intake can be interpreted as a
positive effect because Lactobacillus is a well-known probiotic that has been associated with reduced
colitis in several models of inflammatory bowel diseases [59], and has been shown to have protective
effect in the intestinal barrier function and steatosis [60–62].

Interestingly, pistachio intake was found to improve the abundance of other genera that are
usually associated with a positive impact on host health, such as Parabacteroides, Dorea, Allobaculum,
Turicibacter, and Anaeroplasma. Parabacteroides is a genus predominantly found in the gut of healthy
individuals, which is negatively correlated with body weight gain, liver steatosis, and epididymal
fat accumulation [63]. The Allobaculum genus has been associated with a better mucus layer in the
colon [64], suggesting that its decrease reflects the alteration of the mucus layer in HFD. Thus, a pistachio
diet might prevent this alteration. Moreover, Allobaculum and Dorea are among the major producers of
butyrate, an important fuel for epithelial colonocytes that have been shown to help maintain normal
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differentiation. Thus, an increase in the amount of butyrate generated in the gut might be an indication
of improved health. Accordingly, butyrate-producing probiotics reduce NAFLD progression in rats [65]
and attenuate HFD-induced steatohepatitis in mice, by improving intestinal permeability [66–69].

The decreased Turicibacter abundance in HFD mice, which was prevented by pistachio intake,
fits well with previous data showing a depletion of Turicibacter in animal models of inflammatory
bowel disease and confirms the hypothesis that Turicibacter is an anti-inflammatory taxon [70–72].
Recent data report that Anaeroplasma abundance is significantly decreased in obese rats, while the
increased abundance is related to a reduction in fat accumulation and expression of inflammatory
factors in the liver [73].

Another interesting effect of pistachio intake on gut microbiota concerns the decrease of
genera associated with inflammation, such as Desulfovibrio, Coprobacillus, Oscillosphira, and Bilophila.
Desulfovibrio is a genus responsible for 60% of the total hydrogen sulfide (H2S) production in
the colon. H2S inhibits the mitochondrial respiration of colonic epithelial cells [74], reducing the
diffusion of oxygen, and then subtracting energy that is useful to the beta-oxidation of butyrate [75].
Thus, it is likely that the reduction of H2S-producing bacteria by pistachio enhances the output of
short chain fatty acids (SCFAs), such as butyrate, improving intestinal health and inflammation [76].
Coprobacillus has been reported to be negatively correlated with most of the features of obesity in
obese rats [77,78]. An abundance of Oscillospira has been associated with systemic inflammation
and altered intestinal permeability [79,80] and diets rich in polyphenols improve HFD-induced
liver steatosis by reducing Oscillospira abundance [81,82]. Bilophila abundance seems to be related
with colon inflammation [82]. A recent work reports that the treatment with phenolic compounds
alleviate obesity-related inflammation in HFD-mice, by inhibiting the expansion of the Bilophila
bacteria genus [76].

The changes in microbiota composition might be due to the different components of the pistachios,
such as fatty acids, flavonoids, or fiber. Pistachios might exhibit prebiotic effects by enriching potentially
beneficial microbes, such as lactic acid bacteria.

Therefore, taken together, these results suggest that the gut microbial alterations observed in
HFD-P mice might be associated with pistachio metabolic and anti-inflammatory benefits.

It is interesting to note that an increased intestinal conductance was observed in the small intestine
of HFD mice, in comparison with lean or HFD-P mice, suggesting that HFD induces a decrease in
the intestinal epithelial integrity and an increased ability of ions and small molecules to permeate
through the paracellular pathway. According to our data, several studies report an increased gut
permeability in the HFD mice [83,84]. The intestinal conductance value in the HFD-P group was similar
to the lean group, suggesting that the pistachio diet is able to prevent an increase in permeability and,
thus, showing the protective action of the pistachio diet on the intestinal barrier functions. Cani and
collaborators [85] provided evidence that the development of metabolic endotoxemia and the linked
metabolic disorders induced by high-fat feeding are associated with an increased intestinal permeability.
Therefore, it is likely that the modulation of gut bacteria associated with increased intestinal barrier
functions are involved in the anti-inflammatory effects of pistachio diet.

4. Materials and Methods

4.1. Animals and Diets

The procedures were performed in accordance with the conventional guidelines for animal
experimentation (Italian D.L. No. 26/2014 and subsequent variations) and the recommendations
of the European Economic Community (2010/63/UE). The experimental protocols were approved
by the animal welfare committee of the Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”
(Palermo, Italy) and authorized by the Ministry of Health (Rome, Italy; Authorization Number
349/2016-PR date of approval: 1 April 2016)).
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Four-week-old male C57BL/6J (B6) mice, purchased from Harlan Laboratories (San Pietro al
Natisone Udine, Italy) were housed in a room with controlled temperature and dark–light cycles, with
free access to water and food. After acclimatization (1 week), the animals were weighed and divided
into three groups. (1) Lean group—control animals were fed the standard diet (STD; 4RF25 Mucedola,
Milan, Italy) for 16 weeks; (2) High-fat diet (HFD) group—obese animals fed HFD (PF4215, Mucedola,
Milan, Italy) for 16 weeks. (3) HFD-P group—obese animals fed HFD supplemented with pistachio
for 16 weeks. HFD-P was custom designed and prepared by Mucedola S.r.l (PF4215/C; R&S 34/16).
It was obtained by substituting 20% of the caloric intake from HFD with pistachio (180 g/kg of HFD).
The HFD and HFD-P were stored in vacuum containers at 4 ◦C. The energy densities of the diets are
shown in Table 2.

Table 2. Composition and energy densities of the STD, HFD, and HFD-P groups.

Ingredient (g/kg) STD HFD HFD-P

Total Energy, Kcal/g 3.5 6 6
Protein, % 20 20 20

Carbohydrate, % 70 20 20
Fat, % 10 60 60

STD—standard diet. HFD—high fat diet. HFD-P—HFD supplemented with pistachio.

Pistachio nuts belong to Pistacia vera L. species and were purchased by Pistachio Valle del Platani
Association and Pistacchio di Raffadali (Agrigento-AG, Sicily, Italy). As previously described [31],
during the 16 weeks of the experiment, changes in body weight and food-intake were measured
weekly and results from the different groups of animals were compared. At the end, the animals
were sacrificed by cervical dislocation; the blood was collected immediately by intracardiac puncture,
and the plasma was isolated by centrifugation at 3000 rpm at 4 ◦C for 15 min and stored at −80 ◦C, until
analysis. The liver, adipose tissue, and small intestine were rapidly removed; a part of each tissue was
fixed in 4% neutral formalin solution for histological analysis and another part was stored at −80 ◦C
for biomolecular analysis. Five-centimeter segments of the small intestine were taken for the Ussing
chamber assays.

4.2. Plasma Biomarker Analysis

IL-1β and TNF-α were quantified by a commercial ELISA Kit (Cloud-Clone Corp, Wuhan, Hubei),
based on the manufacturer’s instructions. The levels of triglyceride and total cholesterol in the serum
were evaluated by using the automatic biochemical analyzer (ILab 600, Instrumentation Laboratory,
Milano, Italy).

4.3. Liver and Adipose Tissues Histology and Immunohistochemistry

Hepatic, visceral (epididymal), and subcutaneous white adipose tissues (WAT) were fixed with
4% formaldehyde solution for 24 h and embedded in paraffin. Then, 5 µm sections were prepared
and stained with hematoxylin and eosin (H&E) for morphological examination. The number of liver
inflammatory foci was calculated by counting the inflammatory cell aggregates in the hepatic lobules,
per 5 random fields at a magnification of 20×. Hepatic inflammatory foci were defined as aggregates
of inflammatory cells that accumulate in the liver during chronic inflammation [86,87]. The number
of adipocytes per microscopical field (density) was determined at a magnification of 20×. The mean
surface area of the adipocytes (µm2) was calculated using the image analyzer software (Visilog 6,
Courtaboeuf, France). Each adipocyte was manually delineated and 700–1000 adipocytes per condition
were assessed.

Images of the H&E liver and WAT sections were captured using an optical microscope (Leica
DMLB, Meyer instruments, Houston, Texas) equipped with a DS-Fi1 camera (Nikon, Florence, Italy),
and were analyzed at 10× and 20×magnification.
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For the immunohistochemistry, deparaffinized sections were treated with 3% hydrogen peroxide
to inactivate the endogenous peroxidase followed by a rinse in PBS for 5 min. Subsequently, the sections
were incubated with the primary antibody Mac-2 at 4 ◦C overnight (1:2800, Cedarlane, Ontario, Canada
CL8942AP). After PBS washing, the sections were incubated with the biotinylated secondary antibody
(Anti-Mouse IgG/Rabbit IgG) (1:400, Vector Laboratories, BA-4001) for 30 min. Histochemical reactions
were performed using the Vector’s Vectastain ABC Kit (Vector Laboratories, Burlingame, CA, USA)
and diaminobenzidine as a substrate (Sigma, Milano, Italia). Crown-like structures (CLS) were counted
as a measure of adipose tissue inflammation and were expressed as number of CLS/10,000 adipocytes.

4.4. Reverse Transcription Polymerase Chain Reaction (RT-PCR)

RNA was extracted from liver, epididymal, and subcutaneous adipose tissue, using the RNeasy
plus Mini Kit (Qiagen, Valencia, CA, USA), according to the manufacturer’s protocol. The extraction
from adipose tissues was performed after a preliminary step of lysis using Triazol. Two nanograms
of the total RNA were used for cDNA synthesis with High Capacity cDNA Reverse Transcription
(Applied Biosystems, Waltham, MA, USA). The target cDNA was amplified using genetic-specific
primers, as listed in Table 3. The amplification cycles included denaturation at 95 ◦C for 45 s, annealing
at 52 ◦C for 45 s, and elongation at 72 ◦C for 45 s. After 40 cycles, the PCR products were separated by
electrophoresis on a 1.8% agarose gel for 45 min at 85 V. The gels were stained with 1 mg/mL ethidium
bromide and visualized with ultraviolet (UV) light, using E-Gel GelCapture (Thermo Fisher Scientific,
Monza, Italy). The expression levels of the gene targets, normalized to the endogenous reference
(β-actin), were analyzed using the E-Gel GelQuant Express Analysis Software (Thermo Fisher Scientific,
Monza, Italy).

Table 3. Oligonucleotide sequence of primers for RT-PCR.

Gene Forward Primer Reverse Primer Size (bp)

IL-1β 5′-CAGGATGAGGACATGAGCACC-3′ 5′-CTCTGCAGACTCAAACTCCAC-3′ 450
TNF-α 5′-AGCCCACGTCGTAGCAAACCA-3′ 5′-GCAGGGGCTCTTGACGGCAG-3′ 260
F4-80 5′-GCCACGGGGCTATGGGATGC-3′ 5′-TCCCGTACCTGACGGTTGAGCA-3′ 360
CCL2 5′-TCTGTGCTGACCCCAAGAAGG-3′ 5′-TGGTTGTGGAAAAGGTAGTGGAT-3′ 183
β-actin 5′-GGATCCCCGCCCTAGGCACCAGGGT-3′ 5′-GGAATTCGGCTGGGGTGTTGAAGGTCTCAAA-3′ 289

4.5. Gut Microbiota Composition

Six hours before the sacrifice, the mice were kept individually in a clean cage without food and the
stool samples were collected from each mouse for gut microbiota analysis, using an autoclaved tube.
Bacteria DNA was extracted from stool samples (200 mg per mouse) using the QIAamp DNA Stool
Handbook kit (QIAGEN, Milan-Italy), following the manufacturer’s protocol. The extracted DNA was
used for the metagenomic study carried out by the BMR Genomics company s.r.l. (Padova, Italy).

For the NGS sequencing, the V3–V5 regions of the 16S rRNA gene were amplified. After confirming
that all V3–V5 amplicons had good levels of concentration, purity, and integrity, a massive sequencing
was carried out utilizing the Illumina MiSeq platform (San Diego, CA, USA). Reference-based UCLUST
algorithm (Qiime1.9.1) was used to pick the OTUs at 97% of similarity against Greengenes v13.8
database. OTUs were collected in the biom file and filtered at 0.005% abundance to eliminate spurious
OTUs that were present at a low frequency.

4.6. Ussing Chamber Measurements

Intestinal barrier integrity was evaluated in an Ussing chamber system. A segment of small
intestine was excised from freshly sacrificed mice and transferred to an ice-cold oxygenated Krebs
solution containing (mM) NaCl 119, KCl 4.5, MgSO4 2.5, NaHCO3 25, KH2PO4 1.2, CaCl2 2.5,
and glucose 11.1. The segment was cut longitudinally along the mesenteric border and mounted
in an Ussing chamber. The Ussing chambers contained a hydrated mixture of 5% CO2/95%
O2 (v/v). The Ussing chamber system were filled with 10 mL Krebs solution, maintained at 37 ◦C,
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and continuously bubbled with the short-current (Isc), i.e., the current generated by the ionic transport
through the epithelium. The transepithelial potential difference was continuously monitored under
open circuit conditions, using a DVC 1000 amplifier (DVC 1000, World Precision Instruments, Sarasota,
FL, USA) and was recorded through filled agar electrodes. The conductance was calculated according
to Ohm’s law, using the potential difference and current (Isc) values. Tissues whose conductance
increased during the course of the experiment (calculated every 15 min) were considered damaged
and were excluded from the data analysis.

4.7. Statistical Analyses

Results are shown as means ± the standard error of the mean (SEM). The letter ‘n’ indicates the
number of animals. Statistical analyses were performed using the Prism Version 6.0 Software (Graph
Pad Software, Inc., San Diego, CA, USA). The comparison between the groups was performed by
Analysis of Variance (ANOVA), followed by Bonferroni’s post-test. A p-value ≤ 0.05 was considered
statistically significant.

5. Conclusions

The present study demonstrated that chronic intake of pistachio exerts beneficial effects in obese
mice by alleviating inflammation in adipose tissues and liver, and impacting the gut microbiome
composition. In particular, it enhances the abundance of beneficial bacteria genera, such as Lactobacillus,
Dorea, Allobaculum, and inhibited the growth of bacteria associated with obesity-related comorbidities
and inflammation, such as Desulfovibrio and Bilophila.
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