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Abstract: To study the effects of maternal dietary fiber composition during gestation on offspring
antioxidant capacity, inflammation, and gut microbiota composition, we randomly assigned 64 gilts
to four treatments and administered diets with an insoluble/soluble fiber ratio of 3.89 (R1), 5.59 (R2),
9.12 (R3), and 12.81 (R4). Sow samples (blood and feces at gestation 110) and neonatal samples
(blood, liver, and colonic contents) were collected. The results showed that sows and piglets in R1
and R2 had higher antioxidant enzyme activity and lower pro-inflammatory factor levels than those
in R3 and R4. Moreover, piglets in R1 and R2 had higher liver mRNA expression of Nrf2 and HO-1
and lower NF-κB than piglets in R4. Interestingly, maternal fiber composition not only affected the
production of short-chain fatty acids (SCFAs) in sow feces but also influenced the concentrations of
SCFAs in the neonatal colon. Results of high-throughput sequencing showed that piglets as well as
sows in R1 and R2 had microbial community structures distinct from those in R3 and R4. Therefore,
the composition of dietary fiber in pregnancy diet had an important role in improving antioxidant
capacity and decreasing inflammatory response of mothers and their offspring through modulating
the composition of gut microbiota.
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1. Introduction

Reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, are constantly
generated from oxygen in all aerobic metabolism and pathogenic processes [1]. Oxidative stress occurs
when the balance between the generation of ROS and the antioxidant defense capacity of the body is
destroyed [2]. Oxidative stress can lead to a cascade of reactions that damage lipids, proteins and/or
DNA, and cause a number of human diseases [3]. During the neonatal period, ROS play an important
role in the onset of many diseases, such as periventricular leukomalacia, chronic lung disease, and
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bronchopulmonary dysplasia [4]. However, neonates are especially prone to oxidative stress, because
they are often exposed to high oxygen concentrations due to the rapid passage from the intrauterine to
the extrauterine environment, and they have limited antioxidant defense [4]. Therefore, improving
antioxidant capacity in newborns is crucial.

Maternal nutrition during pregnancy causes permanent adaptations in the offspring, which
probably occur because of epigenetic regulation and changes in metabolic programming [5].
The composition of diets in gestation has been reported to modulate maternal intestinal adaptations
to pregnancy, affect placental function, and impair fetal gut development and immune status [6,7].
Therefore, the antioxidant capacity of offspring can be improved by regulating maternal nutrition.
Increasing maternal fiber intake is an effective means to improve the antioxidant capacity of offspring [2].
Wang et al. [8] also reported that increasing maternal fiber intake during pregnancy enhances the
antioxidative capacity of mothers and their offspring through increasing the total superoxide dismutase
(SOD) and glutathione peroxidase (GSH-Px) activity and decreasing the serum malondialdehyde
(MDA) concentration. The gut microbiota plays an important role in regulating human health [9].
A previous study reported that diet dominates host genotype in influencing the gut microbiota [10], and
changes in dietary components can quickly lead to alterations in the composition of the microbiota [11].
The maternal gut microbiota drives early postnatal innate immune development [12]. Moreover,
maternal fiber intake during gestation alters the intestinal microbiota in offspring [13], and the gut
microbiota in vaginally delivered infants resembles that of their mothers [14]. Research has shown
that the gut microbiota inhibits the NF-κB pathway, thus leading to the production of inflammatory
cytokines and chemokines (tumor necrosis factor (TNF-α), interleukin-6 (IL-6), and MCP1), and
suppressing the inflammatory response [15]. The inflammatory response is often accompanied by
changes in oxidative stress, which are strongly linked to alterations in the gut microbiota [16,17].
HO-1, an important antioxidative enzyme regulating the ROS levels of cells, can be induced by enteric
microbiota [18,19]. However, whether dietary fiber in gestation can change the composition of the gut
microbiota and subsequently improve the antioxidative capacity and immune status of offspring by
altering the maternal gut microbiota has not been reported.

Generally, soluble fibers (SFs) are fermented more than insoluble fibers (ISFs), but both trigger
specific alterations in the composition and predicted functions of colonic bacterial communities [20].
Whether bacteria exist that specifically utilize SF and ISF, and how single or mixed types of dietary
fiber in gestation might influence enteric microbial functions, host health, and metabolism, still remain
unclear. In the present study, inulin (a typical fermentable SF) and natural cellulose (a typical ISF) [21],
were selected as supplementary dietary fibers in a pregnant sow model, which is usually used as an
animal model for humans to estimate diet–microbiota–health interactions [22].

2. Results

2.1. Changes in Antioxidant Parameters in Sow Plasma and Piglet Plasma and Liver

The effects of dietary fiber composition in pregnant sow diets on antioxidant parameters in sow
and piglet plasma are shown in Table 1. The activity of catalase (CAT) in sows was significantly higher
in R1 and R2 than in R3 and R4 (p < 0.05), and in R3 than in R4 (p < 0.05). The MDA concentrations in
sows were dramatically lower in R1 and R2 than in R3 and R4 (p < 0.05). The total antioxidant capacity
(T-AOC) in the plasma in piglets was significantly higher in R1 and R2 than in R4 (p < 0.05). Piglets in
R1 and R2 had the highest plasma activity of GSH-Px, at levels significantly higher than those in R3
and R4 (p < 0.05).

Moreover, the liver CAT activity in piglets (Table 2) was significantly higher in R1 and R2 than in
R4 (p < 0.05); the activity of GSH-Px in R1 was higher than that in R3 and R4 at birth (p < 0.05), and
newborn piglets showed higher GSH-Px activity in R2 than in R3 (p < 0.05).
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Table 1. Effects of dietary fiber composition in pregnant sow diets on antioxidant parameters in sow
and piglet plasma.

Parameters 2 Treatments 1
p-Value

R1 R2 R3 R4

Sow plasma
T-AOC, U/mL 1.16 ± 0.21 1.70 ± 0.14 1.90 ± 0.31 1.44 ± 0.30 0.202

CAT, U/mL 5.95 ± 0.37 a 5.70 ± 0.24 a 3.05 ± 0.19 b 2.22 ± 0.22 c <0.001
T-SOD, U/mL 0.94 ± 0.02 0.95 ± 0.05 0.83 ± 0.03 0.86 ± 0.02 0.052

GSH-Px, U/mL 1012.42 ± 51.68 941.36 ± 80.10 946.68 ± 47.26 966.66 ± 31.76 0.860
MDA, mmol/mL 3.19 ± 0.30 bc 2.57 ± 0.29 c 3.54 ± 0.25 ab 4.19 ± 0.24 a 0.004

Piglet plasma
T-AOC, U/mL 3.70 ± 0.15 a 4.06 ± 0.53 a 3.14 ± 0.52 ab 2.22 ± 0.49 b 0.035

CAT, U/mL 4.47 ± 0.35 5.47 ± 0.71 4.45 ± 0.12 3.55 ± 0.44 0.054
T-SOD, U/mL 0.27 ± 0.04 0.27 ± 0.05 0.25 ± 0.04 0.25 ± 0.04 0.977

GSH-Px, U/mL 266.16 ± 31.82 a 223.66 ± 21.67 a 112.25 ± 20.80 b 104.49 ± 22.64 b <0.001
MDA, mmol/mL 4.72 ± 0.23 5.16 ± 0.60 5.41 ± 0.41 6.08 ± 0.96 0.440

1 R1, R2, R3, and R4 were diets in which the ratios of insoluble to soluble fiber were 3.89, 5.59, 9.12, and 12.81, respectively.
2 T-AOC, total antioxidant capacity; CAT, catalase; T-SOD, total peroxide dismutase; MDA, malondialdehyde; GSH-Px,
glutathione peroxidase. Values are mean ± standard error (n = 8 for sows, n = 6 for piglets). a–c Means with different
superscripts within a row differ (p < 0.05).

Table 2. Effects of dietary fiber composition in pregnant sow diets on antioxidant parameters in
piglet livers.

Parameters 2 Treatments 1
p-Value

R1 R2 R3 R4

T-AOC, U/mL 2.38 ± 0.58 2.59 ± 0.52 2.16 ± 0.56 2.22 ± 0.30 0.924
CAT, U/mL 11.75 ± 0.94 a 11.00 ± 0.90 a 7.47 ± 1.03 ab 3.55 ± 0.69 b 0.041

T-SOD, U/mL 16.65 ± 2.18 17.64 ± 2.46 13.26 ± 1.64 10.35 ± 1.20 0.059
GSH-Px, U/mL 68.99 ± 12.39 a 50.68 ± 7.20 ab 14.21 ± 1.71 c 32.71 ± 5.56 bc 0.001

MDA, mmol/mL 1.22 ± 0.46 1.03 ± 0.19 1.76 ± 0.46 0.97 ± 0.22 0.404
1 R1, R2, R3, and R4 were diets in which the ratios of insoluble to soluble fiber were 3.89, 5.59, 9.12, and 12.81, respectively.
2 T-AOC, total antioxidant capacity; CAT, catalase; T-SOD, total peroxide dismutase; MDA, malondialdehyde; GSH-Px,
glutathione peroxidase. Values are mean ± standard error (n = 6). a–c Means with different superscripts within a row differ
(p < 0.05).

2.2. Changes in Inflammatory Factors in Sow and Piglet Plasma

As shown in Table 3, sows in R1 and R2 had significantly lower plasma interleukin-6 (IL-6) levels
than those in R3 and R4 (p < 0.05). In addition, the plasma tumor necrosis factor (TNF-α) levels in
piglets were significantly higher in R3 than in R1 and R2 (p < 0.05), and in R4 than R1 (p < 0.05).
The ISF/SF showed a trend toward affecting plasma interleukin-2 (IL-2) levels in neonatal piglets
(p < 0.10).

Table 3. Effects of dietary fiber composition in pregnant sow diets on inflammatory factors in sow and
piglet plasma.

Items 2 Treatments 1
p-Value

R1 R2 R3 R4

Sow plasma
IL-2, pg/mL 479.67 ± 39.03 527.00 ± 47.89 544.80 ± 34.18 458.03 ± 29.60 0.423
IL-6, ng/L 942.65 ± 51.78 b 919.20 ± 52.88 b 1152.62 ± 62.17 a 1128.28 ± 52.20 a 0.012
IL-10, ng/L 177.30 ± 10.13 191.15 ± 14.68 170.81 ± 9.18 198.84 ± 14.94 0.458

TNF-α, pg/mL 389.76 ± 34.64 435.95 ± 31.29 405.95 ± 40.61 350.33 ± 20.91 0.303
Piglet plasma
IL-2, pg/mL 542.91 ± 38.96 581.53 ± 34.17 493.44 ± 23.85 464.82 ± 18.47 0.068
IL-6, ng/L 968.27 ± 109.26 1013.16 ± 96.44 1087.09 ± 68.82 1030.72 ± 95.86 0.827
IL-10, ng/L 177.49 ± 11.23 185.24 ± 13.79 190.35 ± 14.62 195.09 ± 14.42 0.830

TNF-α, pg/mL 310.51 ± 21.47 a 392.80 ± 35.92 ab 485.21 ± 10.60 c 448.17 ± 32.04 bc 0.002
1 R1, R2, R3, and R4 were diets in which the ratios of insoluble to soluble fiber were 3.89, 5.59, 9.12, and 12.81, respectively.
2 IL-2, interleukin-2; IL-6, interleukin-6; IL-10, interleukin-10; TNF-α, tumor necrosis factor-α. Values are mean ± standard
error (n = 8 for sows, n = 6 for piglets). a–c Means with different superscripts within a row differ (p < 0.05).
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2.3. Changes in Relative mRNA Expression in Piglet Liver

The effects of dietary fiber composition in pregnant sow diets on relative mRNA expression in the
piglet liver are shown in Figure 1. The relative liver Nrf2 mRNA expression in piglets was significantly
higher in R1 than in R3 and R4 (p < 0.05), and in R2 than in R4 (p < 0.05). Piglets in R1 and R2 had
significantly higher relative HO-1 mRNA expression in the liver than piglets in R4 (p < 0.05). Moreover,
the offspring of sows fed R1 and R2 diets showed significant downregulation of the relative liver NF-κB
mRNA expression (p < 0.05).
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Figure 1. Effects of dietary fiber composition in pregnant sow diets on the relative expression of mRNA.
(a) Nrf2; (b) HO-1; (c) NF-κB. R1, R2, R3, and R4 were diets in which the ratios of insoluble to soluble
fiber were 3.89, 5.59, 9.12, and 12.81, respectively. Values are mean ± standard error (n = 6). a–c Means
with different lowercase letters differ significantly among treatments (p < 0.05).

2.4. Changes in Microbial Metabolites SCFAs in Sow Feces and Piglet Colonic Contents

The effects of dietary fiber composition in pregnant sow diets on short-chain fatty acids (SCFAs)
production in piglet colonic contents are shown in Table 4. In sow feces, the acetate concentration of R1
was significantly higher than that in R3 and R4 (p < 0.05), and that in R2 was significantly higher than
that in R4 (p < 0.05); the propionate concentration in R1 and R2 was significantly higher than that in R4
(p < 0.05); the total SCFAs concentration in R1 and R2 was higher than that in R4 (p < 0.05). In the
piglet colonic contents, the acetate, butyrate, and total SCFAs concentrations in R1 and R2 were all
higher than those in R3 and R4 (p < 0.05); the butyrate concentration in R1 and R2 was significantly
higher than that in R4 (p < 0.05).

Table 4. Effects of dietary fiber composition in pregnant sow diets on the production of short-chain
fatty acids in sow feces and piglet colonic contents.

Parameters 2 Treatments 1
p-Value

R1 R2 R3 R4

Sow feces
Acetate 47.17 ± 2.73 a 42.56 ± 1.05 ab 36.12 ± 2.54 bc 31.97 ± 3.75 c 0.005

Propionate 18.34 ± 1.45 a 18.50 ± 1.22 a 17.09 ± 1.60 ab 12.87 ± 1.13 b 0.048
Butyrate 9.01 ± 0.65 7.52 ± 0.48 8.75 ± 2.19 6.09 ± 1.35 0.425

Total SCFAs 2 74.52 ± 4.66 a 68.59 ± 2.04 a 61.96 ± 2.10 ab 50.93 ± 6.59 b 0.008
Piglet colonic contents

Acetate 14.72 ± 1.62 a 12.78 ± 0.97 a 6.59 ± 1.09 b 4.14 ± 1.23 b 0.001
Propionate 0.62 ± 0.24 0.78 ± 0.20 0.30 ± 0.10 0.20 ± 0.02 0.082

Butyrate 1.76 ± 0.46 a 1.60 ± 0.32 a 0.59 ± 0.18 b 0.64 ± 0.26 b 0.031
Total SCFAs 2 17.10 ± 2.21 a 15.15 ± 0.87 a 7.47 ± 1.32 b 4.99 ± 1.51 b 0.001

1 R1, R2, R3, and R4 were diets in which the ratios of insoluble to soluble fiber were 3.89, 5.59, 9.12, and 12.81,
respectively. 2 SCFAs, short-chain fatty acids. Values are mean ± standard error (n = 8 for sows, n = 6 for piglets).
a–c Means with different superscripts within a row differ (p < 0.05).
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2.5. Changes in Microbial Composition and Diversity in Sow Feces

2.5.1. Changes in Fecal Microbial Diversity

Pairs comprising groups R2 and R4, and R1 and R4, shared fewer common operational taxonomic
units (OTUs) with each other (Figure 2a). The number of observed species in R4 was significantly lower
than that in the other treatments (p < 0.05) (Figure 2b). To assess fecal microbial community structure,
we used the Shannon index and Chao 1 index (Figure 2c,d). The Shannon index was significantly
higher in R1 than R4, and significantly higher in R2 than R3 and R4 (p < 0.05). Moreover, the Chao 1
index in R1, R2, and R3 was notably higher than that in R4 (p < 0.05).
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Figure 2. Comparison of the operational taxonomic units (OTUs) and alpha diversity analyses among
treatments on day 110 of gestation. The observed OTUs share ≥97% sequence similarity. (a) A Venn
diagram was generated to depict the common and unique OTUs among all treatments at day 110 of
pregnancy. (b) The observed species, (c) Shannon index, and (d) Chao 1 index were used to ascertain
differences in alpha diversity according to different diets. Sows were regarded as the experimental
units (n = 6 per treatment). R1, R2, R3, and R4 were diets in which the ratios of insoluble to soluble
fiber were 3.89, 5.59, 9.12, and 12.81, respectively. Values are mean ± standard error (n = 6). a–c Means
with different superscripts within a row differ (p < 0.05).

As shown in Figure 3, there were different microbial community structures in fecal samples from
after four treatments on day 110 of pregnancy. Analysis of similarities (Anosim) (Table S1) showed that
R3 and R4 sows on day 110 of pregnancy had significantly different microbiota community structures
than that in R1 sows (p < 0.05), and significantly different microbiota community structures also were
found between R2 and R3 sows (p < 0.05).

2.5.2. Changes in Relative Abundance at the Phylum Level

The relative abundance at the phylum level of sow fecal microbiota (top ten; Table 5) suggested
that Firmicutes and Bacteroidetes were predominant. The relative abundance of bacteria from the phyla
Spirochaetes, Proteobacteria, Tenericutes, and Actinobacteria significantly differed among groups (p < 0.05).
The relative abundance of Spirochaetes in R2 and R3 was significantly higher than that in R4 (p < 0.05);
Proteobacteria in R1 and R3 were signally lower than those in R4 (p < 0.05); Actinobacteria in R3 and R4
were significantly lower than those in in R2 (p < 0.05). The relative abundance of Tenericutes in R1 was
significantly higher than that in R4 (p < 0.05).
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Table 5. Effects of dietary fiber composition in pregnant sow diets on the relative abundance of sow
fecal microbiota at the phylum level.

Taxonomy, % Treatments 1
p-Value

R1 R2 R3 R4

Firmicutes 52.57 ± 2.07 55.87 ± 1.77 55.48 ± 2.21 54.83 ± 2.79 0.663
Bacteroidetes 33.06 ± 1.79 28.94 ± 1.69 32.42 ± 2.53 32.89 ± 2.32 0.368
Spirochaetes 4.50 ± 0.89 ab 5.14 ± 0.65 a 4.93 ± 0.92 a 2.20 ± 0.63 b 0.020

Proteobacteria 2.63 ± 0.39 b 3.40 ± 0.46 ab 2.40 ± 0.26 b 4.48 ± 0.72 a 0.009
Tenericutes 2.17 ± 0.17 a 1.61 ± 0.13 ab 1.42 ± 0.25 ab 1.06 ± 0.23 b 0.013

Euryarchaeota 2.37 ± 0.33 1.45 ± 0.34 0.98 ± 0.38 1.70 ± 0.33 0.095
Actinobacteria 1.30 ± 0.23 ab 2.03 ± 0.66 a 0.97 ± 0.09 b 0.92 ± 0.08 b 0.018

Verrucomicrobia 0.96 ± 0.23 0.75 ± 0.11 0.72 ± 0.06 0.54 ± 0.09 0.133
Cyanobacteria 0.35 ± 0.12 0.19 ± 0.03 0.21 ± 0.04 0.47 ± 0.23 0.106
Planctomycetes 0.13 ± 0.03 0.23 ± 0.08 0.19 ± 0.12 0.27 ± 0.14 0.567

1 R1, R2, R3, and R4 were diets in which the ratios of insoluble to soluble fiber were 3.89, 5.59, 9.12, and 12.81,
respectively. Values are mean± standard error (n = 8 for sows, n = 6 for piglets). a–c Means with different superscripts
within a row differ (p < 0.05).

2.5.3. Changes in Relative Abundance at the Genus Level

The relative abundance at the genus level of sow fecal microbiota (top 35) is presented in Table S2
and shown in a heat map (Figure 4). Streptococcus and Clostridium_sensu_stricto_1 were the top two
genera. The relative abundance of Streptococcus in R3 and R4 was significantly higher than that in
R1 and R2 (p < 0.05). Treponema_2 in R2 and R3 were significantly higher than those in R4 (p < 0.05).
Ruminococcaceae_UCG-005 in R2, R3, and R4 were notably higher than those in R1 (p < 0.05). Prevotella_1
and Erysipelotrichaceae_UCG-002 in R3 and R4 were significantly lower than those in R1 (p < 0.05).
Bifidobacterium in R3 and R4 were significantly lower than those in R2 (p < 0.05). Ruminococcus_1 in R1
and R2 were significantly higher than those in R4 (p < 0.05). Ruminococcaceae_UCG-014 in R1, R2, and
R3 were significantly higher than those in R4 (p < 0.05). Bacteroides in R1 and R2 were clearly lower
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than those in R4 (p < 0.05). Levels of [Eubacterium]_coprostanoligenes_group and Campylobacter in R1
were significantly different from those in R4 (p < 0.05).
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Figure 4. Heat map of the relative abundance of genera in sow feces on day 110 of pregnancy.
Each vertical lane corresponds to one treatment. Different colors indicate the relative abundance of
genera. R1, R2, R3, and R4 were diets in which the ratios of insoluble to soluble fiber were 3.89, 5.59,
9.12, and 12.81, respectively. n = 6 for all treatments.

2.6. Changes in Microbial Composition and Diversity in Piglet Colonic Contents

2.6.1. Changes in Colonic Microbial Diversity

R1 and R2 shared the most common OTUs (1039), whereas R3 and R4 had the fewest common
OTUs (411) (Figure 5a). The observed species (Figure 5b) and Shannon indexes (Figure 5c) in R1 and
R2 were all significantly higher than those in R4 (p < 0.05). No significant difference was observed in
the Chao 1 index (p > 0.05, Figure 5d).
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Figure 5. Comparison of the OTUs and alpha diversity analyses of piglet fecal microbiota among
treatments. The observed OTUs share ≥97% sequence similarity. (a) A Venn diagram was generated to
describe the common and unique OTUs among all treatments. (b) The observed species, (c) Shannon
index, and (d) Chao 1 index were used to ascertain differences in alpha diversity according to different
diets. Individual piglets were regarded as the experimental units (n = 6 per treatment). R1, R2, R3,
and R4 were diets in which the ratios of insoluble to soluble fiber were 3.89, 5.59, 9.12, and 12.81,
respectively. Values are mean ± standard error (n = 6). a–b Means with different superscripts within a
row differ (p < 0.05).

In addition, the PCoA profile for piglet colonic samples based on weighted Unifrac distance
(Figure 6) showed a clear separation between group R1 and R2 and group R3 and R4 pairs. Anosim
(Table S3) showed that R3 and R4 had significantly different microbiota community structures than
R1 and R2 (p < 0.05); the microbiota structure in R1 was similar to that in R2, whereas that in R3 was
similar to that in R4 (p > 0.05).Int. J. Mol. Sci. 2019, 20, x 9 of 18 
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2.6.2. Changes in Relative Abundance at the Phylum Level

The relative abundance at the phylum level in piglet colonic microbiota (top ten) is shown in
Figure 7. Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria were the most predominant
phyla. Among these predominant phyla, the relative abundance of Bacteroidetes in R1 and R2 was
significantly higher than in R3 and R4 (p < 0.05).
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Figure 7. Effects of dietary fiber composition in sow gestation diets on the relative abundance of piglet
colonic microbiota in phyla. (a) Circular diagram of the relative abundance of microbiota; (b) relative
abundance of Bacteroidetes in four treatments. R1, R2, R3, and R4 were diets in which the ratios of
insoluble to soluble fiber were 3.89, 5.59, 9.12, and 12.81, respectively. Values are mean ± standard error
(n = 6). a,b Means with different lowercase letters differ significantly among treatments (p < 0.05).

2.6.3. Changes in Relative Abundance at the Genus Level

The relative abundance at the genus level in piglet colonic microbiota (top 35) is shown
in Figure 8. Acinetobacter and Romboutsia were the top two genera. The relative abundance of
Romboutsia, Sediminibacterium, Bifidobacterium, unidentified_Lachnospiraceae, unidentified_Ruminococcaceae,
Subdoligranulum, Bacillus, Blautia, Bacteroides, and ParaBacteroides were all significantly higher in R1 and
R2 than in R4 (p < 0.05). In addition, the relative abundance of Sediminibacterium and Bifidobacterium
in R1 was notably higher than that in R3 (p < 0.05), and R2 showed a significantly higher relative
abundance of Bacillus than R3 (p < 0.05). The relative abundance of unidentified_Enterobacteriaceae was
significantly lower in R1 and R2 than in R4 (p < 0.05). Compared with R4, R1 had a significantly higher
abundance of Candidatus_Saccharimonas, Brevibacillus, Methyloversatilis, and Chryseobacterium (p < 0.05),
and a lower abundance of Acinetobacter, Vagococcus, and Streptococcus (p < 0.05).
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taxa. n = 6 for each treatment.
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3. Discussion

Newborns are vulnerable to free radical oxidative damage, thus resulting in oxidative stress [23],
because neonates (i) are often exposed to high oxygen concentrations, (ii) have diminished antioxidant
activity, and (iii) have infections or inflammation due to environmental microbiota. Oxidative stress
probably contributes to the severity of several newborn conditions to an extent that may cause organ
injury or even death [24]. Oxidative stress decreases the average daily feed intake, average daily gain,
and nutrient digestibility in a pig model [25]. Pregnant women usually show increased oxidative
damage during the third trimester of pregnancy [26]. Our previous study has indicated that maternal
oxidative stress status might be transmitted to offspring by affecting placental oxidative stress, and
improvements in maternal antioxidant capacity benefit fetal and neonatal development and health [27].
Thus, improving maternal oxidative stress status, which can be regulated by nutritional means,
provides a favorable means of enhancing the antioxidant capacity of offspring.

Dietary fiber is considered a key component in a healthful diet in pregnant women [28]. Pregnant
rats fed a high-fiber diet (oat bran and wheat bran, 1:1, w/w, 250 g/kg diet) showed a higher antioxidative
capacity than those fed a high-fat diet, and this response was also present in future generations, as
represented by higher liver total SOD, and Cu- and Zn-containing SOD activity [2]. A similar study
also shoed that a gestation diet supplemented with inulin enhances the serum activity of total SOD and
GSH-Px and decreases the concentration of MDA in mothers and their offspring [6]. Complex enzymatic
and nonenzymatic systems play vital roles in protecting organisms from oxidative damage [29]. In the
present study, sows fed R1 and R2 diets showed increased CAT activity in sow plasma, and the GSH-Px
activity increased in piglet plasma. SOD, CAT, and GSH-Px are three crucial endogenous antioxidant
enzymes that play important roles in preventing oxidative damage. SOD converts ROS into hydrogen
peroxide (H2O2), and then CAT and GSH-Px degrade the H2O2 to water and oxygen [30,31]. In addition,
sows fed R1 and R2 diets showed decreased plasma MDA concentrations, and the piglets showed
increased T-AOC in our study. T-AOC and MDA are two non-enzymatic indicators of antioxidant
status and cell damage, respectively. In detail, T-AOC is an important integrative index reflecting the
total antioxidant capacity of the body [32], whereas MDA is a secondary product of lipid oxidation
and is closely associated with cell damage, for which MDA has been widely considered an index to
monitor the degree of lipid peroxidation [33]. The liver, an important metabolic organ, plays a crucial
role in nutrient metabolism and transformation, and in the defense against the invasion of bacteria and
bacterial products [34]. We also found that the offspring of sows fed R1 and R2 diets showed increased
liver CAT and GSH-Px activity, and elevated mRNA expression of Nrf2 and HO-1 in the liver. Nrf2,
a key transcription factor, plays an essential role in regulating the activity of endogenous antioxidant
enzymes to resist oxidative stress [35]. A previous study in piglets also showed that the activity of
antioxidative enzymes is enhanced by increasing the mRNA expression level of Nrf2 [36]. Moreover,
Nrf2 regulates the activity of HO-1, an important antioxidative enzyme regulating the ROS levels of
cells [19] and serving as a sensitive and reliable indicator of cellular oxidative stress [37]. Therefore,
R1 and R2 diets enhanced the antioxidative capacity of offspring through upregulating Nrf2 and HO-1
mRNA expression and improving the antioxidant enzyme activity.

Oxidative stress is often associated with the inflammatory response. Cytokines have crucial
roles in the immune and inflammatory response [38,39]. In the present study, we found that sows
fed R1 and R2 had lower plasma IL-6, and piglets showed lower plasma TNF-α. TNF-α and IL-6 are
both pro-inflammatory cytokines. IL-6 is a pleiotropic cytokine participating in the physiology of
virtually every organ system, and it activates the hypothalamic-pituitary-adrenal axis and regulates
hepatic protein synthesis during the acute response [40]. In addition, IL-6 plays an important role in
regulating the balance between the IL-17-producing Th17 cells and regulatory T cells, which have
prominent roles in immune functions [41]. TNF-α is secreted by activated macrophages and has some
metabolic effects on lipid metabolism [42]. TNF-α signaling induces activation of the transcription
factor NF-κB and programmed cell death [43]. The NF-κB signaling pathway is considered a key
inducer of inflammation. Accordingly, lower mRNA expression levels of NF-κB were observed in the
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liver in R1 and R2 piglets. Similar research has shown that a maternal SF diet increases the plasma
concentrations of anti-inflammatory factors, such as interleukin 10 (IL-10) and transforming growth
factor β, in offspring [44]. Therefore, the R1 and R2 diets decreased the inflammatory response of
offspring through decreasing the plasma TNF-α level and liver NF-κB mRNA expression. Many
studies have shown that high dietary fiber intake is associated with decreased inflammation [45,46].
Accumulating evidence indicates that maternal inflammation also has long-term consequences for
offspring by affecting the intrauterine environment [47]. In our current study, R1 and R2 diets improved
the antioxidative capacity and decreased the plasma pro-inflammatory cytokine concentration in sows
and piglets. Continued oxidative stress leads to chronic inflammation [48] and detrimentally affects
growth performance [49]. Our previous study showed increased average daily gain of piglets during
lactation when the ISF/SF ratios in the pregnancy diet were 3.89 and 5.59 [50]. Therefore, the dietary
fiber composition in the maternal pregnancy diet has an important effect on the health of mothers and
offspring, and there is a threshold ratio of insoluble to soluble fiber to ensure that the dietary fiber
is effective.

The gut microbiota has an indispensable role in host health by promoting the development of the
immune system, decreasing inflammation, and competitively inhibiting pathogens [51]. Consumption
of dietary fiber is an effective strategy for modulating the microbiota [52]. The composition of the gut
microbiota is also affected by the types of dietary fiber [20]. In the current study, we found that sows
in R1 and R2 on day 110 of pregnancy had significantly different microbiota community structures
than those in R3 and R4, and R1 and R2 diets increased the α-diversity indexes of the sow fecal
microbiota, which also indicated a threshold ratio of insoluble to soluble fiber. Low microbial diversity
is often associated with metabolic syndrome and inflammation [53]. Moreover, the R1 and R2 diets
decreased the abundance of Streptococcus and increased the abundance of Bifidobacterium in sow feces.
A higher abundance of Streptococcus is related to numerous inflammatory responses [54], whereas
Bifidobacterium decreases inflammation through inhibiting the growth of pathogens via the production
of organic acids and releasing soluble factors that alleviate the secretion of pro-inflammatory cytokines
by immune cells [55,56]. The gut microbiota of individuals is dominated by different fiber-utilizing
bacteria, which ferment dietary fiber into SCFAs, including acetate, propionate, and butyrate, which
are important for human health. SCFAs, mainly butyrate, suppress the LPS- and cytokine-stimulated
production of pro-inflammatory mediators, including TNF-α and IL-6, via interaction with the orphan
G protein-coupled receptors GPR41 and GPR43 [57,58]. In the current study, sows in R1 and R2 had
higher fecal SCFA concentrations, which might have resulted from soluble fiber being more easily
fermented to produce SCFAs than ISF. In addition, SCFAs produced by the intestinal microbiota or
their specific GPR43 agonist have been reported to inhibit oxidative stress [59]. Interestingly, piglets
in R1 and R2 also showed increased SCFA concentrations in the colon. SCFAs, especially butyrate,
produced by microbial fermentation in the colon, were reported to raise Nrf2 in colonocytes [60]
and modulate the activity of the transcription factor NF-κB [61], which might be the reason for the
decreased inflammatory response and increased antioxidative capacity. Different SCFA concentrations
are related to the distinct compositions of the microbiota among the four treatments. The offspring of
sows fed R1 and R2 diets showed increased abundance of degrading bacteria, such as Bacteroidetes,
Romboutsia, Ruminococcaceae, and Parabacteroides, in the colonic contents. Recently, sequencing has
indicated that placenta and umbilical cord blood is not sterile, and the microbiota within the neonate’s
meconium shares significant similarity with that of the placenta, thus suggesting that maternal
transfer of microbiota is possible and might occur during gestation [62–64]. Furthermore, previous
research has also shown that vaginally delivered infants acquire bacterial communities resembling
their own mother’s vaginal microbiota [65]. Therefore, the maternal microbiota plays a vital role in
the composition of the intestinal flora of the offspring. Pregnancy-related changes in the maternal
microbiota are dependent on the mother’s periconceptional diet [66]. Therefore, diet composition
during pregnancy has important effects on the structure of the gut microbiota of offspring [67]. Paßlack
et al. [13] showed that the addition of inulin to a gestation diet modulates not only the intestinal
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microbiota in sows but also their offspring. In the current study, similar structures of microbiota were
also observed between mothers and their offspring: R1 resembled R2, and R3 resembled R4, and the
observed changes in the relative abundance of Streptococcus and Bifidobacterium in the offspring was
similar to that in the mother. Moreover, decreased abundance of Enterobacteriaceae was also observed
in the colonic contents of piglets in R1 and R2, in agreement with the results for inflammatory factors.
The capacity of Enterobacteriaceae to induce host inflammation through endotoxin production is well
known [68]. Increased Bifidobacterium inhibits the overgrowth of Enterobacteriaceae [69]. Moreover, the
relative abundance of Acinetobacter in the colonic contents of R1 was lower than that of R4, but not
significantly different from that of R2. Acinetobacter, a highly concerning pathogen belonging to the
gram-negative Coccobacillus, has become an increasingly common nosocomial problem [70]. Members
of the genus Acinetobacter have been implicated in a wide spectrum of infectious diseases [71] and have
a strong ability to acquire or upregulate antibiotic drug resistance determinants [72]. These findings
might also suggest that the offspring of sows in R1 and R2 had a strong ability to resist Acinetobacter
infection. The increased beneficial bacteria and decreased harmful bacteria might be another reason
for the lower inflammation and oxidative stress in R1 and R2 piglets.

Thus, the composition of dietary fiber in the pregnancy diet has an important role in improving
antioxidative capacity and decreasing the inflammatory response of mothers and their offspring
through modulating the composition of the gut microbiota. Not only the dietary fiber level but also the
ratio of insoluble dietary fiber to soluble dietary fiber should be considered in pregnancy diets.

4. Materials and Methods

4.1. Ethical Approval

The present experiment was conducted at the Research Farm of Animal Nutrition Institute,
Sichuan Agricultural University, Ya’an, China. The experimental protocol used in the present study
was approved by the Animal Care and Use Committee of Sichuan Agricultural University and
followed the current laws regarding animal protection (Ethics Approval Code: SCAUAC201408-3;
date: 15 August 2016).

4.2. Animals and Diets

A total of 64 Large White × Landrace crossbred gilts with similar body weight (BW) and backfat
(BF) thickness were used in this study. After artificial insemination, gilts were assigned randomly to 4
treatments (16 replicates per treatment) and fed diets with the same level of dietary fiber but different
ratios of ISF to SF of 3.89, 5.59, 9.12, and 12.81, denoted R1, R2, R3 and R4, respectively. All sows
were fed the same amount of feed during the entire gestation. In detail, sows were fed 2.37 kg/d of
corresponding diet from days 1 to 90 of gestation, 2.86 kg/d diet from days 91 to 112 of gestation, and
1.90 kg/d diet from day 113 to parturition. Sows were fed once per day at 9:00. Sows were moved
from gestation to farrowing rooms on day 110 of gestation and were kept in individual farrowing
crates thereafter. The ingredients and nutrient composition of the gestation diets are shown in Table S4.
All diets based on corn-soybean meal were formulated to meet or exceed the nutrient requirements of
gestating sows, as recommended by the NRC (2012), and to contain the same content of all nutrients
except SF and ISF, whose ratios were adjusted. The inulin used in the study was obtained from ZTH
Tech (Beijing, China), and cellulose was obtained from Guangxi Shangda Tech Co. (Guangxi, China).
The purity of inulin and cellulose was >90%.

4.3. Sampling Procedure

Fasting blood samples (10 mL) were collected from the ear veins of eight healthy sows on d 110 of
gestation in the morning. Blood samples were collected into two tubes containing heparin sodium
and allowed to stand at room temperature for 30 min, then centrifuged for 15 min at 3000× g at 4 ◦C.
Plasma samples were harvested and stored at −20 ◦C until analysis. Meanwhile, fresh fecal samples
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(about 2 g) from six healthy sows were collected from the rectum before feeding in the morning; the
samples were divided into two sterile tubes for the detection of SCFAs and analysis of microbiota, and
then stored at −80 ◦C immediately until analysis.

A total of 24 piglets (six per treatment: three males and three females) that had not eaten clostrum
from different sows, with BWs closest to the average, were slaughtered immediately after birth
for sampling after deep anesthesia with Zoletile 50 (Virbac, SA, Carros, France) administered by
intramuscular injection at a dose of 0.1 mg/kg of body weight. Approximately 10 mL of blood per pig
was drawn by venipuncture in the jugular vein. The plasma was obtained as described above. After
evisceration, the colon contents were collected on a clean bench, immediately placed in sterile bags
and stored at –80 ◦C for microbiological analysis. In addition, approximately 0.5 g liver samples from
the same location were obtained and stored at −80 ◦C until analysis.

4.4. Analysis of Oxidative and Antioxidative Parameters

The oxidative and antioxidative parameters in the blood and liver, including T-AOC, CAT, total
SOD, GSH-Px, and MDA, were measured with specific assay kits (Nanjing Jiancheng Bioengineering
Institute, Nanjing, China). All variables in the blood and liver samples were measured according to
the protocol from a previous study [6].

4.5. Analysis of Inflammatory Factors

Plasma IL-2, IL-6, IL-10, and TNF-α concentrations of sows and piglets were determined with
commercial ELISA kits (Feiya Biotechnology Co. Ltd., Yancheng, China).

4.6. Measurement of Gene Expression

A quantitative real-time polymerase chain reaction (PCR) detection system (Bio-Rad Laboratories,
CA, USA) was used to analyze mRNA expression levels of Nrf2, HO-1, and NF-κB in piglet liver
samples. Frozen liver tissue samples (50–100 mg) were ground to powder with a mortar while
liquid nitrogen was added continously. Total RNA was extracted with TRIzol reagent (Invitrogen,
Carlsbad, CA, USA), and this was followed by RNA quality determination. The absorbance of RNA
solution at wavelengths of 260 and 280 nm was detected with a scanning spectrophotometer (Beckman
DU-800, Beckman Coulter Inc., Brea, CA, USA), and RNA concentrations were confirmed with a
nucleic-acid/protein analyzer (Beckman DU-800, Beckman Coulter Inc., Brea, CA, USA). Then cDNA
was synthesized with a commercial reverse transcription (RT) kit (TaKaRa Biotechnology, Shiga, Japan)
according to the manufacturer’s instructions and stored at −20 ◦C for relative quantification by PCR.
Primer sequences (Table S5) used for real-time PCR were as described by Chen et al. [36]. cDNA was
amplified with an ABI 7900HT instrument (Applied Biosystems, Foster City, CA, USA). The mixture
(10 µL) contained 5 µL of SYBR Green Supermix (TaKaRa, Shiga, Japan), 1 µL of cDNA template, 0.4 µL
of each primer (10 mM), 0.2 µL of ROX Reference Dye, and 3 µL doubled-distilled water. The cycling
conditions were as follows: pre-denaturation at 95 ◦C for 30 s, followed by 40 cycles of denaturation at
95 ◦C for 10 s, and annealing at 60 ◦C for 25 s. After amplification, melting curve analysis (50–95 ◦C
with a heating rate of 0.1 ◦C/s and a continuous fluorescence measurement) was performed. β-actin,
as an internal control, was amplified in parallel with the target gene to allow for gene normalization
and quantification. All samples were measured in triplicate, and the product size was determined by
agarose gel electrophoresis. The relative mRNA abundance of the genes detected in the liver samples
was calculated with the 2−∆∆Ct method.

4.7. Detection of Fecal SCFAs

The SCFAs in sow feces and piglet colonic contents were measured through a gas chromatographic
method as previously described in Zhou et al. [73]. Briefly, 0.7 g fecal samples were suspended in
1.5 mL of distilled water and allowed to stand for 30 min, then centrifuged (15,000× g) at 4 ◦C for
15 min. Then 1 mL supernatant was transferred and mixed with 0.2 mL metaphosphoric acid (25%,
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w/v) and 23.3 µL crotonic acid (210 mmol/L, internal standard). After the samples were allowed to
stand at 4 ◦C for 30 min, they were centrifuged (15,000× g) at 4 ◦C for 10 min again. Then 0.3 mL
supernatant was transferred and mixed with 0.3 mL methanol. A small aliquot of the supernatant
(1 µL) was analyzed with a gas chromatograph (Varian CP-3800 GC, Palo Alto, CA, USA).

4.8. Microbial Analysis

Bacterial genomic DNA was extracted from frozen sow fecal samples and neonatal piglet colonic
contents with an E.Z.N.A. TM Stool DNA kit (Omega Bio-Tek, Norcross, GA, USA). Sequencing and
data analysis were subsequently performed on the Illumina HiSeq PE250 platform by Novogene
(Beijing, China), as previously described in Zhou et al. [73]. Sequences were clustered into the same
OTUs at 97% sequence similarity. The alpha diversity and beta diversity were calculated for comparison
of taxonomic data. The observed species, Chao 1 index, and Shannon index were used to determine
differences in alpha diversity according to different diets. Unifrac weighted distance matrices were
calculated, and analysis of similarities (Anosim) was used to access differences among the microbial
communities. All analyses from clustering to alpha and beta diversity were performed in QIIME
(V1.7.0) and displayed in R software (V2.15.3).

4.9. Statistical Analysis

Individual sow or piglet data were used to evaluate variables in PROC GLM of SAS (9.0 Inst.
Inc., Cary, NC, USA). Variations among the four treatments were compared with Duncan’s multiple
comparisons test. Statistical analyses for the relative abundance of the phyla and genera and the
diversity indices and estimators were performed with one-way ANOVA in SAS (9.0 Inst. Inc., Cary,
NC, USA). The normality of the data was assessed with the Shapiro–Wilk statistic (w > 0.05). If the
data did not follow a normal distribution, transformation was used to achieve normality. Values are
expressed as mean ± SEM in tables and figures. Statistical significance was set at p < 0.05.
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Table S5: Primer sequences used for quantitative real-time PCR.
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