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Abstract: An increase in intracellular Ca2+ concentration ([Ca2+]i) plays a key role in controlling
endothelial functions; however, it is still unclear whether endothelial Ca2+ handling is altered by type
2 diabetes mellitus, which results in severe endothelial dysfunction. Herein, we analyzed for the
first time the Ca2+ response to the physiological autacoid ATP in native aortic endothelium of obese
Zucker diabetic fatty (OZDF) rats and their lean controls, which are termed LZDF rats. By loading the
endothelial monolayer with the Ca2+-sensitive fluorophore, Fura-2/AM, we found that the endothelial
Ca2+ response to 20 µM and 300 µM ATP exhibited a higher plateau, a larger area under the curve
and prolonged duration in OZDF rats. The “Ca2+ add-back” protocol revealed no difference in the
inositol-1,4,5-trisphosphate-releasable endoplasmic reticulum (ER) Ca2+ pool, while store-operated
Ca2+ entry was surprisingly down-regulated in OZDF aortae. Pharmacological manipulation
disclosed that sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) activity was down-regulated
by reactive oxygen species in native aortic endothelium of OZDF rats, thereby exaggerating the
Ca2+ response to high agonist concentrations. These findings shed new light on the mechanisms by
which type 2 diabetes mellitus may cause endothelial dysfunction by remodeling the intracellular
Ca2+ toolkit.

Keywords: Type 2 diabetes mellitus; intact endothelium; intracellular calcium; Fura-2;
sarco-endoplasmic reticulum Ca2+-ATPase; Na+-Ca2+ exchanger; plasma membrane Ca2+-ATPase

1. Introduction

Endothelial cells form a monolayer comprising the innermost lining of blood vessels and maintain
cardiovascular (CV) homeostasis by regulating vascular tone, permeability, coagulation, immune
response and by controlling vascular growth and repair [1,2]. Therefore, endothelial dysfunction is
regarded as a crucial driver of multiple life-threatening CV disorders, such as hypertension, coronary
artery disease, myocardial infarction, and stroke [3]. Type 2 diabetes mellitus is regarded as a health

Int. J. Mol. Sci. 2020, 21, 250; doi:10.3390/ijms21010250 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0003-4884-0925
https://orcid.org/0000-0001-5679-1671
https://orcid.org/0000-0003-0010-0098
http://www.mdpi.com/1422-0067/21/1/250?type=check_update&version=1
http://dx.doi.org/10.3390/ijms21010250
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2020, 21, 250 2 of 31

problem of epidemic proportions, with a prevalence of 2–5% in western countries, and is predicted
to rise due to the global changes in lifestyle and population aging [4,5]. CV disorders represent the
major responsible for the shorter longevity of diabetic patients, who are at about a 60% increased risk
of early mortality, and the adverse effects of diabetes are amplified by hypertension and obesity [6].
Endothelial dysfunction may precede the development and contribute to the vascular complications of
type 2 diabetes mellitus [4,5,7,8], including coronary artery disease, peripheral arterial disease, stroke
(macrovascular) and diabetic retinopathy, nephropathy and neuropathy (microvascular). For instance,
it has been shown that endothelium-dependent vasodilation is impaired in type 2 diabetes mellitus
due to the reduction in nitric oxide bioavailability and the increase in endothelin-1 production [4,5],
thereby resulting in hypertension and atherosclerosis. Moreover, sprouting angiogenesis, which drives
the formation of new capillaries from pre-existing microvessels, is exacerbated in the retina, thereby
resulting in retinopathy [9].

An increase in intracellular Ca2+ concentration ([Ca2+]i) is crucial to fine tune endothelial cell
functions [10–12]. For instance, endothelial Ca2+ signals drive the release of many vasodilators,
including nitric oxide, prostacyclin, arachidonic acid metabolites and hydrogen sulfide, and recruit
Ca2+-activated K+ channels to stimulate endothelium-dependent hyperpolarization [13–16]. In addition,
an increase in endothelial [Ca2+]i leads to the production of the vasoconstrictor prostanoids,
thromboxane A2, prostaglandin H2 and endothelin-1 [14,17,18]. Vasoactive agonists bind to specific
G-protein coupled receptors to engage phospholipase Cβ, a membrane-bound enzyme that cleaves
inositol-1,4,5-trisphosphate (InsP3) from its precursor phosphatidylinositol-4,5-bisphosphate [14,15].
The following Ca2+ response typically consists of an initial Ca2+ peak, which is mediated by
InsP3-induced Ca2+ release from the endoplasmic reticulum (ER), followed by a prolonged influx
of Ca2+, known as a plateau [19,20]. This plateau phase is mediated by store-operated Ca2+ entry
(SOCE), that represents one of the major Ca2+-entry pathways in endothelial cells and is activated
upon depletion of the InsP3-sensitive ER Ca2+ store [11,19,20]. The clearance of [Ca2+]i after agonist
stimulation is achieved by several Ca2+-transporting systems, such as plasma membrane Ca2+-ATPase
(PMCA), Na+/Ca2+ exchanger (NCX) and sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) [21–24].
In addition, InsP3-dependent ER Ca2+ release may be buffered by closely apposed mitochondria,
which could regulate local Ca2+ concentration at the mitochondria-associated ER membranes (MAMs),
thereby favoring [25] or inhibiting [26] InsP3-dependent Ca2+ events. Dysregulation of the endothelial
Ca2+ toolkit was observed in severe pathological conditions, including cancer [27,28], primary
myelofibrosis [29], and Alzheimer’s disease [30]. Furthermore, endothelial Ca2+ handling may be
compromised by the chronic exposure to CV risk factors, such as atherosclerosis [31], aging [32],
oxidative stress [33], and inflammation [34]. Nevertheless, no study has thoroughly investigated the
impairment of endothelial Ca2+ signaling in an animal model of type 2 diabetes mellitus.

Obese Zucker Diabetic Fatty (OZDF) rats have been widely employed as a type 2 diabetes
mellitus model, which arises when the animals are fed with a high-energy diet as a consequence
of a homozygous mutation (fa/fa) in the leptin hormone receptor [35]. OZDF rats develop obesity,
hyperlipidemia, hypertension, hyperglycemia and insulin resistance, and therefore provide a suitable
model to investigate how diabetes affects endothelial Ca2+ signaling in situ. The intact endothelium of
excised rat aortae provides an ideal preparation for investigating endothelial Ca2+ handling, as the
intracellular Ca2+ toolkit of native endothelium may differ from that described in cultured endothelial
cells [36–38]. In the present study, we evaluated for the first time whether type 2 diabetes affects
endothelial Ca2+ signaling in situ by exploiting rat aortas excised from OZDF rats and age-matched
lean Zucker Diabetic Fatty rats (LZDF). We demonstrated that agonist-induced increase in [Ca2+]i is
dramatically enhanced in association with the down-regulation of SERCA activity in native endothelium
of excised rat aorta of OZDF rats. These findings shed novel light on the mechanisms whereby diabetes
causes endothelial injury and hint at the endothelial Ca2+ toolkit as a novel target to prevent CV
complications in diabetic patients.
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2. Results

2.1. Somatic and Biochemical Characteristics of OZDF Rats

The somatic and biochemical parameters obtained from 2–3-month-old littermate LZDF and
OZDF rats are shown in Table 1. OZDF rats presented a 70% increase in body mass (weight) compared
with their control, i.e., LZDF rats. This increase in weight was not due to a larger size of OZDF rats,
since the measurements of the distance between the base of the tail and the tip of the nose (length)
did not show any significant difference between the two groups of animals (p < 0.05). Indeed, the
abdominal circumference and the body mass index (BMI) increased by 35% and 57%, respectively, in
OZDF rats. In addition, we found that the epididymal fat weight from OZDF rats was 4 times higher
than that obtained in LZDF rats. Taken together, these data prove the obese phenotype of the OZDF
rat group.

Table 1. Somatic and biochemical parameters of ZDF rats. The values represent the mean ± SE
(standard error). Data were compared using Student’s t-test with a minimum significance value of 0.05
(p value). The * represent the significant differences observed when compare the OZDF vs LZDF group.
Analysis of somatic parameters was performed with a n of 11 rats for the LZDF group and 14 rats
for the OZDF group. For the biochemical analysis, 5 rats of each group were used. BMI (body mass
index), HDL-C (high-density lipoprotein cholesterol), LDL-C (low-density lipoprotein cholesterol),
VLDL (very low-density lipoprotein).

Somatic Parameters LZDF (n = 11) OZDF (n = 14)

Weight (g) 309.6 ± 6.03 529 ± 8.16 *
Length (cm) 22.41 ± 0.29 23.5 ± 0.33

Abdominal circumference (cm) 13.21 ± 0.29 17.85 ± 0.36 *
BMI 0.59 ± 0.009 0.93 ± 0.016 *

Epididymal fat (g) 3.32 ± 0.12 15.71 ± 0.62 *

Biochemical Parameters LZDF (n = 5) OZDF (n = 5)

Total Cholesterol (mg/dL) 90.83 ± 12.22 133 ± 11.82 *
HDL-C (mg/dL) 61.6 ± 3.02 72.06 ± 8.22
LDL-C (mg/dL) 26.48 ± 12.09 35.64 ± 13.26
VLDL (mg/dL) 11.53 ± 3.62 34.53 ± 3.95 *

Triglycerides (mg/dL) 42 ± 10.35 186.1 ± 23.04 *

The biochemical results, reported in Table 1, confirm other characteristics of the OZDF rat model:
hyperlipidemia. Obese rats (OZDF) presented an increase of ≈46% in total cholesterol, ≈200% in
the very low-density lipoprotein (VLDL) and ≈340% in triglyceride levels compared to LZDF rats.
These results denote a clear alteration in the regulation of lipids in the obese-diabetic rat OZDF.
Non-significant statistical differences were found on high-density lipoprotein cholesterol (HDL) and
low-density lipoprotein cholesterol (LDL) blood levels in both experimental groups (p < 0.05).

Figure 1 shows the results of oral glucose tolerance test (OGTT) (see Material and Methods), in
which the fasting glucose was 82.7 ± 7.05 mg/dL in LZDF rats and 96.57 ± 1.688 mg/dL in OZDF rats
(p < 0.05). After glucose loading, significant differences also were observed in the glucose tolerance in
the OZDF group at 30, 60, 90 and 120 min corresponding to increases of 52%, 70%, 107%, and 97%,
respectively (Figure 1A). Similarly, insulin concentration shows significant differences in OZDF rats,
in both fasting and later of the glucose load hyperinsulinemia was observed, that corresponding to
75%, 203%, 239%, 341, and 228% at 0, 30, 60, 90 and 120 min (Figure 1B). It is known that high insulin
levels lead to development to insulin resistance; thus, the homeostasis model assessment to evaluate
insulin resistance (HOMA-IR) was carried out. The results show an increase of 93% in OZDF rats
in relation to LZDF group (Figure 1C). The insulin resistance is linked to a low hormone tolerance.
Therefore, we performed an insulin tolerance test (ITT), in which we observed that the percentage of
the blood glucose presents significant changes between groups (Figure 1D). The LZDF rats showed
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a percentage decrease in the glucose that corresponded to 64%, 86%, 140%, and 167% at 15, 30, 60
and 90 min, respectively. Meanwhile, in the OZDF rats the glucose percentage increased by 20% at
15 min after insulin administration, while consecutive analysis times showed close values at 100%. This
finding indicates that no changes were observed in plasmatic glucose, which suggests a low response
to insulin or severe insulin resistance.
Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 4 of 31 

 

 

Figure 1. (A) Oral glucose tolerance test (OGTT). (B) Insulin concentration. (C) Homeostasis model 
assessment insulin resistance (HOMA-IR). (D) Insulin tolerance test (ITT). The values represent the 
mean ± SE (standard error). Data were compared using the Student’s t-test with a minimum 
significance value of 0.05 (p value). The asterisk indicates the significant differences observed when 
comparing the OZDF vs LZDF group. Analysis was performed with a n of 7 rats for the LZDF group 
and 7 rats for the OZDF group. 
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0.0013 , n = 1139 cells from 14 rats) p > 0.05 (Figure 2). 
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Ca2+ response to ATP was triggered by purinergic P2Y1 and P2Y12/13 receptors [36], which are coupled to 
phospholipase Cβ and InsP3-dependent Ca2+ release. The initial Ca2+ peak was followed by a sustained 
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due to SOCE activation [36,39]. Therefore, in order to assess whether type 2 diabetes mellitus impacts 
endothelial Ca2+ machinery, rat aortic rings from the same vessel were challenged with both low, i.e., 20 
µM, and high, i.e., 300 µM, doses of ATP. The rationale behind this approach was that remodeling of 
the intracellular Ca2+ machinery could be more evident when a larger amount of Ca2+ was introduced 
into the cytosol by a higher agonist concentration. For instance, a subtle change in ER Ca2+ concentration 
could be unmasked by massive stimulation of InsP3Rs at 300 µM ATP. Moreover, any alteration in the 
Ca2+ clearing system (e.g., slowing down of Ca2+ removal from the cytosol) could lead to a dramatic 
accumulation of cytosolic free Ca2+ at high ATP concentration, when it is more difficult for pumps and 
transporters to cope with the enhanced Ca2+ load [41,42]. 
  

Figure 1. (A) Oral glucose tolerance test (OGTT). (B) Insulin concentration. (C) Homeostasis model
assessment insulin resistance (HOMA-IR). (D) Insulin tolerance test (ITT). The values represent the
mean± SE (standard error). Data were compared using the Student’s t-test with a minimum significance
value of 0.05 (p value). The asterisk indicates the significant differences observed when comparing the
OZDF vs LZDF group. Analysis was performed with a n of 7 rats for the LZDF group and 7 rats for the
OZDF group.

2.2. The Ca2+ Response to Adenosine Triphosphate (ATP) is Enhanced in Native Aortic Endothelium of
Diabetic Rats

Preliminary recordings carried out by loading the native endothelium in situ in rat aorta with
the Ca2+-sensitive fluorophore, Fura-2/AM, revealed that basal Fura-2 fluorescence (Ratio F340/F380)
was not statistically different in OZDF (0.7023 ± 0.0011, n = 1189 cells from 14 rats) vs LZDF rats
(0.7018 ± 0.0013, n = 1139 cells from 14 rats) p > 0.05 (Figure 2).

The nucleotide adenosine triphosphate (ATP) has been widely employed to induce intracellular
Ca2+ signals in the intact endothelium of excised rat aorta [38–40]. We have previously shown that the
Ca2+ response to ATP was triggered by purinergic P2Y1 and P2Y12/13 receptors [36], which are coupled
to phospholipase Cβ and InsP3-dependent Ca2+ release. The initial Ca2+ peak was followed by a
sustained plateau phase that was larger at high (300 µM) than low (20 µM) ATP concentration, and was
mainly due to SOCE activation [36,39]. Therefore, in order to assess whether type 2 diabetes mellitus
impacts endothelial Ca2+ machinery, rat aortic rings from the same vessel were challenged with both
low, i.e., 20 µM, and high, i.e., 300 µM, doses of ATP. The rationale behind this approach was that
remodeling of the intracellular Ca2+ machinery could be more evident when a larger amount of Ca2+

was introduced into the cytosol by a higher agonist concentration. For instance, a subtle change in ER
Ca2+ concentration could be unmasked by massive stimulation of InsP3Rs at 300 µM ATP. Moreover,
any alteration in the Ca2+ clearing system (e.g., slowing down of Ca2+ removal from the cytosol) could
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lead to a dramatic accumulation of cytosolic free Ca2+ at high ATP concentration, when it is more
difficult for pumps and transporters to cope with the enhanced Ca2+ load [41,42].
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Figure 2. Resting [Ca2+]i is not altered in native aortic endothelium of obese Zucker diabetic fatty rats.
Ratiometric measurement (Ratio F340/F380) of resting Fura-2 fluorescence revealed that basal Ca2+

levels, expressed as mean ± SE, were not significantly different in OZDF as compared to LZDF rats.
A.U. (arbitrary units).

Figure 3A shows that, when the excised endothelium was stimulated with 20 µM ATP in the
presence of extracellular Ca2+, there was no difference in the amplitude of the initial Ca2+ peak and
of the following plateau phase (Figure 3B). However, the duration of the Ca2+ response at 60% and
30% of the initial Ca2+ response (Figure 3C) and the area under the curve (AUC) (Figure 3D) were
higher in OZDF rats as compared to LZDF rats. When the excised endothelium was stimulated with
300 µM ATP (Figure 3E), the amplitude of the plateau phase (Figure 3F, right) and the AUC (Figure 3H)
were significantly (p < 0.05) increased in OZDF as compared to LZDF rats. Moreover, a significant
increase was found in the times to 90 and 60% decay of the initial Ca2+ response in OZDF rats (p < 0.05)
(Figure 3G). Notably, the Ca2+ signal clearly decayed to 30% of the initial peak amplitude in ≈78% (413
out of 526 cells) of LZDF rats, while it failed to do so in ≈26% (176 of 680 cells) of OZDF rats. For this
reason, the late clearing rate of OZDF rats was not displayed (red arrow) and compared with LZDF
values in Figure 3G. These data, therefore, indicate that type 2 diabetes mellitus alters the endothelial
Ca2+ response evoked by both low, i.e., 20 µM and strong, i.e., 300 µM, stimulation by a physiological
agonist, such as ATP.
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Representative recordings of the Ca2+ response to 300 µM ATP in LZDF and OZDF rats. (F) Mean ± 
SE of the peak and plateau phase of the Ca2+ response to 300 µM ATP in LZDF and OZDF rats. The 
asterisk indicates p < 0.05. (G) Mean ± SE of the duration of the Ca2+ response to 300 µM ATP in LZDF 
and OZDF rats. The asterisk indicates p < 0.05. Red arrow indicates that the Ca2+ signal failed to reach 
the clearing rate to the 30% of the initial peak amplitude in OZDF rats. (H) Mean ± SE of the AUC of 
the Ca2+ response to 300 µM ATP in LZDF and OZDF rats. The asterisk indicates p < 0.05, Mann-
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ER Ca2+ content. Subsequently, extracellular Ca2+ was returned to the perfusate to activate SOCE. In 
both conditions, ATP was removed 250 s before re-addition of extracellular Ca2+ to prevent the 
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left, there was no difference in the amplitude of the intracellular Ca2+ peak to 20 or 300 µM ATP, 

Figure 3. The Ca2+ response to low and high doses of the physiological agonist, ATP, is increased in
native aortic endothelium of obese Zucker diabetic fatty rats. (A) Representative recordings of the
Ca2+ response to 20 µM ATP in LZDF (blue line) and OZDF rats (red line). (B) Mean ± SE of the
peak and plateau phase of the Ca2+ response to 20 µM ATP in LZDF and OZDF rats. (C) Mean ± SE
of the duration of the Ca2+ response to 20 µM ATP in LZDF and OZDF rats. The asterisk indicates
p < 0.05. (D) Mean ± SE of the AUC of the Ca2+ response to 20 µM ATP in LZDF and OZDF rats.
(E) Representative recordings of the Ca2+ response to 300 µM ATP in LZDF and OZDF rats. (F) Mean ±
SE of the peak and plateau phase of the Ca2+ response to 300 µM ATP in LZDF and OZDF rats. The
asterisk indicates p < 0.05. (G) Mean ± SE of the duration of the Ca2+ response to 300 µM ATP in LZDF
and OZDF rats. The asterisk indicates p < 0.05. Red arrow indicates that the Ca2+ signal failed to
reach the clearing rate to the 30% of the initial peak amplitude in OZDF rats. (H) Mean ± SE of the
AUC of the Ca2+ response to 300 µM ATP in LZDF and OZDF rats. The asterisk indicates p < 0.05,
Mann-Whitney test.
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2.3. The Rate of Decay of Intracellular Ca2+ Release Is Shortened and SOCE Amplitude Is Reduced in Native
Aortic Endothelium of OZDF Rats

To assess how type 2 diabetes mellitus enhances the Ca2+ response to ATP, we employed the
“Ca2+ add-back” protocol to discriminate between InsP3-induced ER Ca2+ release and SOCE [20,43].
The intact endothelium of excised rat aorta was first stimulated with 20 µM (Figure 4A) or 300 µM
ATP (Figure 4E), in the absence of extracellular Ca2+ (0Ca2+) to induce InsP3-dependent Ca2+ release
and deplete the ER Ca2+ content. Subsequently, extracellular Ca2+ was returned to the perfusate to
activate SOCE. In both conditions, ATP was removed 250 s before re-addition of extracellular Ca2+ to
prevent the activation of second messengers-operated channels or ionotropic P2X receptors. As shown
in Figure 4B,F left, there was no difference in the amplitude of the intracellular Ca2+ peak to 20 or
300 µM ATP, respectively. However, the amplitude of SOCE was significantly (p < 0.05) reduced in
OZDF as compared to LZDF rats, both in cells stimulated with 20 µM (Figure 4B, right) and in cells
stimulated with 300 µM (Figure 4F, right). Likewise, a reduction in the corresponding SOCE AUC was
also observed (Figure 4D,H, right). Notably, an increase in the AUC of ATP-evoked endogenous Ca2+

release (peak) was observed in OZDF rats at 300 µM (Figure 4H, right) and at 20 µM (Figure 4D, right).
As a consequence, the duration of ATP-induced endogenous Ca2+ release was significantly enhanced
in native endothelial cells from OZDF rats challenged with 300 µM ATP (Figure 4G). Also, the decay of
[Ca2+]i after the initial Ca2+ response (at 60% and 30%) to 20 µM ATP was significantly slowed down
in OZDF compared to LZDF rats (Figure 4C).

To assess how type 2 diabetes mellitus alters the endothelial Ca2+ machinery to rewire the Ca2+

response to ATP, we repeated the “Ca2+ add-back” protocol by stimulating the intact endothelium
of excised rat aorta with cyclopiazonic acid (CPA; 10 µM) [20,36,43]. CPA selectively inhibits SERCA
activity, thereby depleting the ER Ca2+ pool through yet to be identified ER leak channels and is a
widely employed tool to assess ER Ca2+ content and SOCE under pathological conditions [27,29,44].
To confirm ER Ca2+ pool depletion by CPA, 300 µM ATP was applied in the continuous presence
of CPA and in the absence of extracellular Ca2+. As observed with ATP, CPA-induced ER Ca2+

release was unaltered (Figure 5A–C left), while SOCE was significantly (p < 0.05) reduced in OZDF
as compared to LZDF rats (Figure 5A–C right). Taken together, these findings strongly suggest that
the plateau phase and AUC of the Ca2+ response to 20 µM and 300 µM ATP are not enhanced due
to an increase in SOCE amplitude. Moreover, it is unlikely that InsP3-induced ER Ca2+ release is
enhanced in OZDF rats. Accordingly, the magnitude of the initial Ca2+ response to ATP under 0Ca2+

conditions, which is driven by the efflux of intraluminal Ca2+ along the electrochemical gradient
across ER membrane, is unaltered. Moreover, the amplitude of CPA-induced Ca2+ release, which
truly reflects the concentration of releasable ER Ca2+, is unaffected in OZDF aortae. Endothelial Ca2+

signals are finely tuned by the balance between the amount of Ca2+ introduced into the cytosol by the
opening of Ca2+-permeable channels and the amount of Ca2+ removed by pumps and transporters on
intracellular organelles [21–24]. Therefore, in the following paragraphs, we seek to elucidate whether
and how SERCA, PMCA and NCX contribute to shape the enhanced the Ca2+ response induced by 20
and 300 µM ATP in OZDF rats.
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Figure 4. The “Ca2+ add-back” protocols reveal subtle alterations in endogenous Ca2+ release and SOCE
down-regulation in native aortic endothelium of obese Zucker Diabetic Fatty rats. (A) Representative
recordings of the “Ca2+ add-back” protocol obtained from native aortic endothelium of LZDF and OZDF
rats challenged with 20 µM ATP in absence of extracellular Ca2+ (0Ca2+). Subsequently, extracellular
Ca2+ was returned to the perfusate to activate SOCE. Before SOCE activation, ATP was removed to
avoid P2X receptor and second messengers-operated channel activation. (B) Mean ± SE of endogenous
Ca2+ release and SOCE amplitude recorded in native aortic endothelium of LZDF and OZDF rats
challenged with 20 µM ATP. The asterisk indicates p < 0.05. (C) Mean ± SE of the duration of the Ca2+

response to 20 µM ATP in LZDF and OZDF rats. The asterisk indicates p < 0.05. (D) Mean ± SE of the
AUC of the two distinct components (i.e., endogenous Ca2+ release and SOCE) of the Ca2+ response to
20 µM ATP in LZDF and OZDF rats. The asterisk indicates p < 0.05. (E) Representative recordings
of the “Ca2+ add-back” protocol obtained from native aortic endothelium of LZDF and OZDF rats
challenged with 300 µM ATP in absence of extracellular Ca2+ (0Ca2+). Subsequently, extracellular Ca2+

was returned to the perfusate to activate SOCE. (F) Mean ± SE of endogenous Ca2+ release and SOCE
amplitude recorded in native aortic endothelium of LZDF and OZDF rats challenged with 300 µM ATP.
The asterisk indicates p < 0.05. (G) Mean ± SE of the duration of the Ca2+ response to 300 µM ATP in
LZDF and OZDF rats. The asterisk indicates p < 0.05. (H) Mean ± SE of the AUC of the two distinct
components (i.e., endogenous Ca2+ release and SOCE) of the Ca2+ response to 300 µM ATP in LZDF
and OZDF rats. The asterisk indicates p < 0.05, Mann-Whitney test.
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Figure 5. CPA-induced SOCE, but not endogenous Ca2+ release, is reduced in native aortic endothelium
of obese Zucker diabetic fatty rats. (A) Representative recordings of the “Ca2+ add-back” protocol
obtained from native aortic endothelium of LZDF and OZDF rats challenged with 10 µM CPA. To
confirm ER Ca2+ pool depletion by CPA, 300 µM ATP was applied in the continuous presence of CPA
and in the absence of extracellular Ca2+ after recovery of CPA-induced intracellular Ca2+ mobilization.
(B) Mean ± SE of CPA-induced endogenous Ca2+ release and SOCE amplitude recorded in native aortic
endothelium of LZDF and OZDF rats challenged with 10 µM CPA. (C) Mean ± SE of the AUC of the
two distinct components (i.e., endogenous Ca2+ release and SOCE) of the Ca2+ response to 10 µM CPA
in LZDF and OZDF rats. The asterisk indicates p < 0.05, Mann-Whitney test.
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2.4. The Down-Regulation of SERCA Activity Enhances Plateau Amplitude and Prolongs the Duration of the
Ca2+ Response to High Doses of ATP in Native Aortic Endothelium of OZDF Rats

To assess whether SERCA affects the Ca2+ response to ATP in native aortic endothelium of
OZDF, we adopted a strategy previously designed to unravel how it shapes Ca2+ signals in rat cardiac
microvascular endothelial cells [23]. The Ca2+ response to ATP was measured in the absence and in
the presence of CPA (10 µM). To ensure that CPA inhibits SERCA activity without altering the ER Ca2+

pool, ATP was applied at the same time as CPA [22,23]. As discussed elsewhere [22,23], the CPA- and
ATP-sensitive ER Ca2+ stores overlap, as also shown in Figure 5A, so that the Ca2+ response to CPA
does not contaminate the Ca2+ response to ATP. The rationale for this experiment is that, if SERCA
equally regulates amplitude and kinetics of the plateau phase in OZDF and LZDF, then blocking its
activity should affect the Ca2+ signal to the same extent in native aortic endothelium of both animals.
As shown in Figure 6A, the Ca2+ response to 20 µM ATP was dramatically enhanced in the presence
of CPA in both LZDF and OZDF rats. The times to 90% and 60% decay of the initial Ca2+ peak were
significantly slower in the presence of CPA in both animal groups (Figure 6C). Furthermore, CPA
blocks SERCA activity to such an extent that the Ca2+ signal did not even decay to 30% of the initial
amplitude in ≈25% (97 of 389 cells) of LZDF rats and in ≈2% (7 of 386 cells) of OZDF rats (blue and red
arrows in Figure 6C), thereby increasing the amplitude of the plateau phase (Figure 6B, right) and
the AUC (Figure 6D) to the same extent in OZDF and LZDF rats. Conversely, the blockade of SERCA
activity did not alter the amplitude of the initial Ca2+ peak (Figure 6B, left).

To confirm this observation, we also exploited thapsigargin (TG) (1 µM), which is another
structurally unrelated SERCA inhibitor [23]. As observed with CPA, thapsigargin did not affect the
initial Ca2+ peak, but dramatically slowed down the early (90%) rate of decay of [Ca2+]i in both animal
groups (Figure 7A,C). In the presence of thapsigargin, the Ca2+ response to 20 µM ATP was maintained
at such a high plateau level (Figure 7B, right) that it was not possible to measure the intermediate (60%)
clearing rate in ≈19% (91 of 476 cells) of LZDF and ≈6% (20 of 346 cells) of OZDF rats and the late (30%)
clearing rate in ≈ 0% (none of 476 cells) of LZDF and ≈ 0% (none of 346 cells) of OZDF rats clearing
rates (Figure 7C, blue and red arrows). This led to a remarkable increase in the AUC (Figure 7D) in
both animal groups.

However, when the intact rat aorta was stimulated with 300 µM ATP, CPA (Figure 6E–H) and
thapsigargin (Figure 7E–H) did not remarkably alter the Ca2+ signal in OZDF rats. There was no
difference in the amplitude of the initial Ca2+ peak (Figure 6F or Figure 7F, left) or of the following
plateau (Figure 6F or Figure 7F, right), in the duration of the Ca2+ response at 90% of the peak Ca2+

amplitude (Figure 6G or Figure 7G), or in the AUC (Figure 6H or Figure 7H) in the absence or in
the presence of SERCA inhibition. We only observed an increase in the intermediate (60%) clearing
rate such that this value was not measurable in ≈61% (158 of 261 cells) of OZDF rats (Figure 6G or
Figure 7G). As expected from Figure 3G, the late (30%) clearing rate was not measurable in either
control (≈0.3%; 1 of 332 cells) or treated OZDF rats (0%; none of 261 cells) (Figure 6G or Figure 7G).
Conversely, CPA enhanced plateau amplitude (Figure 6F, right), slowed down the duration of the Ca2+

signal (Figure 6G), and increased the AUC (Figure 6H) in LZDF rats. Similar effects on LZDF rats were
achieved by thapsigargin (Figure 7E–H).

Taken together, these findings strongly suggest that SERCA activity is down-regulated in native
endothelium of rat aorta in situ in the presence of type 2 diabetes mellitus. As a consequence, SERCA
is not able to cope with the amount of Ca2+ introduced into the cytosol when the cells are massively,
i.e., at 300 µM, stimulated with ATP. This, in turn, causes the decay rate of [Ca2+]i to slow down and
increases the plateau phase, although SOCE amplitude is reduced in OZDF rats.
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Figure 6. The effect of CPA on the Ca2+ response to ATP is larger in native aortic endothelium of obese
Zucker diabetic fatty rats. (A) Representative recordings of the Ca2+ response to 20 µM ATP in the
absence or presence of 10 µM CPA in native aortic endothelium of LZDF and OZDF rats. In CPA
experiments, ATP and CPA were applied at the same time. (B) Mean ± SE of endogenous Ca2+ release
and SOCE amplitude recorded in native aortic endothelium of LZDF and OZDF rats challenged with
20 µM ATP in the absence or presence of 10 µM CPA. The asterisk indicates p < 0.05. (C) Mean ± SE
of the duration of the two distinct components (i.e., endogenous Ca2+ release and SOCE) of the Ca2+

response to 20 µM ATP recorded in native aortic endothelium LZDF and OZDF rats challenged with
20 µM ATP in the absence or presence of 10 µM CPA. The asterisk indicates p < 0.05. Blue and red arrows
indicate that the Ca2+ signal failed to reach the clearing rate to the 30% of the initial peak amplitude in
LZDF and OZDF rats respectively. (D) Mean ± SE of the AUC of the two distinct components (i.e.,
endogenous Ca2+ release and SOCE) of the Ca2+ response to 20 µM ATP recorded in native aortic
endothelium of LZDF and OZDF rats in the absence or presence of 10 µM CPA. The asterisk indicates
p < 0.05. (E) Representative recordings of the Ca2+ response to 300 µM ATP in the absence or presence
of 10 µM CPA in native aortic endothelium of LZDF and OZDF rats. In CPA experiments, ATP and
CPA were applied at the same time. (F) Mean ± SE of endogenous Ca2+ release and SOCE amplitude
recorded in native aortic endothelium of LZDF and OZDF rats challenged with 300 µM ATP in the
absence or presence of 10 µM CPA. The asterisk indicates p < 0.05. (G) Mean ± SE of the duration of
the two distinct components (i.e., endogenous Ca2+ release and SOCE) of the Ca2+ response to 300 µM
ATP in native aortic endothelium of LZDF and OZDF rats in the absence or presence of 10 µM CPA.
Blue and red arrows indicate that the Ca2+ signal failed to reach the clearing rate indicated in the graph
in LZDF and OZDF rats respectively. The asterisk indicates p < 0.05. (H) Mean ± SE of the AUC of the
two distinct components (i.e., endogenous Ca2+ release and SOCE) of the Ca2+ response to 300 µM
ATP in native aortic endothelium of LZDF and OZDF rats in the absence or presence of 10 µM CPA.
The asterisk indicates p < 0.05, Mann-Whitney test.
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Figure 7. The effect of thapsigargin on the Ca2+ response to ATP is larger in native aortic endothelium
of obese Zucker diabetic fatty rats. (A) Representative recordings of the Ca2+ response to 20 µM
ATP in the absence or presence of 1 µM thapsigargin (TG in the figure) in native aortic endothelium
of LZDF and OZDF rats. In thapsigargin experiments, ATP and thapsigargin were applied at the
same time. (B) Mean ± SE of endogenous Ca2+ release and SOCE amplitude recorded in native aortic
endothelium of LZDF and OZDF rats challenged with 20 µM ATP in the absence or presence of 1 µM
thapsigargin. The asterisk indicates p < 0.05. (C) Mean ± SE of the duration of the Ca2+ response to
20 µM ATP recorded in native aortic endothelium LZDF and OZDF rats in the absence or presence of 1
µM thapsigargin. The asterisk indicates p < 0.05. (D) Mean ± SE of the AUC of the Ca2+ response to
20 µM ATP recorded in native aortic endothelium of LZDF and OZDF rats in the absence or presence of
1 µM thapsigargin. The asterisk indicates p < 0.05. (E) Representative recordings of the Ca2+ response
to 300 µM ATP in the absence or presence of 1 µM thapsigargin in native aortic endothelium of LZDF
and OZDF rats. In thapsigargin experiments, ATP and thapsigargin were applied at the same time.
(F) Mean ± SE of endogenous Ca2+ release and SOCE amplitude recorded in native aortic endothelium
of LZDF and OZDF rats challenged with 300 µM ATP in the absence or presence of 1 µM thapsigargin.
The asterisk indicates p < 0.05. (G) Mean ± SE of the duration of the Ca2+ response to 300 µM ATP in
native aortic endothelium of LZDF and OZDF rats in the absence or presence of 1 µM thapsigargin.
Blue and red arrows indicate that the Ca2+ signal failed to reach the clearing rate indicated in the graph
in LZDF and OZDF rats respectively. The asterisk indicates p < 0.05. (H) Mean ± SE of the AUC of the
Ca2+ response to 300 µM ATP in native aortic endothelium of LZDF and OZDF rats in the absence or
presence of 1 µM thapsigargin. The asterisk indicates p < 0.05, Mann-Whitney test.
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2.5. PMCA Activity Is Not Altered in Native Aortic Endothelium of OZDF Rats

Next, we evaluated whether PMCA activity was impaired in native aortic endothelium of OZDF
rats. To address this issue, the Ca2+ response to 20 µM and 300 µM ATP was measured in the absence
and in the presence of carboxyeosin (CE, 20 µM), a selective PMCA blocker [23]. Carboxyeosin altered
the Ca2+ signal induced by 20 µM ATP to the same extent in OZDF and LZDF rats (Figure 8A–D): there
was no statistically relevant difference in the amplitude of the initial Ca2+ peak, while the subsequent
plateau phase (Figure 8B), the duration of the Ca2+ response at 30% of the transient decay (Figure 8C),
and the AUC (Figure 8D) increased in both animal groups. Carboxyeosin also exerted a dramatic
impact on the Ca2+ signal induced by 300 µM ATP in both OZDF and LZDF rats. A careful analysis
of the Ca2+ tracings shown in Figure 8E revealed that the [Ca2+]i remained high and did not recover
to the baseline in either type of rat, so that the late (30%) clearing rate could not be measured in as
many as ≈28% (107 of 380 cells) of LZDF rats, although plateau amplitude, late (60 and 30%) decay
time, and AUC were still higher in OZDF rats (Figure 8F–H). Taken together, these findings suggest
that: 1) PMCA is a major factor in shaping the decay phase and plateau amplitude in response to
20 µM and 300 µM, ATP; and 2) PMCA activity is not remarkably altered by type 2 diabetes mellitus,
as its inhibition similarly affects the Ca2+ response and maintains the differences in the amplitude and
kinetics of the plateau phase observed between OZDF and LZDF rats.

2.6. NCX Activity Is Not Altered in Native Aortic Endothelium of OZDF Rats

Finally, we assessed the role of NCX in native aortic endothelium of OZDF and LZDF rats by
first measuring the Ca2+ response to ATP in the presence and in the absence of KBR-79433 (KBR),
a selective inhibitor of NCX activity [21]. When the intact aorta was stimulated with 20 µM ATP
(Figure 9A), the peak and plateau amplitude (Figure 9B) were not statistically different in either LZDF
or OZDF rats. However, there was a significant (p < 0.05) reduction in the clearing rate at 90%, 60%
and 30% of the initial Ca2+ peak (Figure 9C) and in the AUC (Figure 9D) in LZDF rats. Conversely,
no statistically relevant difference was found in the early (90%) decay time (Figure 8C) and in the
AUC (Figure 9D) in OZDF rats. The effect of KBR (8 µM) was slightly different when rat aortae were
challenged with 300 µM ATP (Figure 9E–H). We only observed a significant (p < 0.05) reduction in the
90% decay times and an increase in the 30% clearing rate in both LZDF and OZDF rats (Figure 9G).
However, there was no significant change in the initial Ca2+ peak (Figure 9F), in the plateau amplitude
(Figure 9F), or in the AUC (Figure 9H). The same findings were obtained when the Ca2+ signal induced
by 300 µM ATP was measured in the presence of SEA0400 (SEA) (3 µM), which blocks both the forward
and reverse mode of NCX [45] (Figure 10). Overall, these results demonstrate that NCX negatively
regulates intracellular Ca2+ clearing when rat aortic endothelium is stimulated with low (i.e., 20 µM)
ATP concentration, although this effect significantly reduces the AUC only in LZDF rats. However,
NCX inhibition does not affect the AUC or the initial peak and plateau phase of the Ca2+ response at
high (e.g., 300 µM)-intensity ATP stimulation in either LZDF or OZDF rats.
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Figure 8. The effect of carboxyeosin on the Ca2+ response to ATP is unaltered in native aortic
endothelium of obese Zucker diabetic fatty rats. (A) Representative recordings of the Ca2+ response
to 20 µM ATP in the absence or presence of 20 µM carboxyeosin (CE) in native aortic endothelium of
LZDF and OZDF rats. Excised rat aorta was preincubated for 500 s with 20 µM CE before ATP addition.
(B) Mean ± SE of endogenous Ca2+ release and SOCE amplitude recorded in native aortic endothelium
of LZDF and OZDF rats challenged with 20 µM ATP in the absence or presence of 20 µM CE. (C) Mean
± SE of the duration of the Ca2+ response to 20 µM ATP recorded in native aortic endothelium of
LZDF and OZDF rats in the absence or presence of 20 µM CE. (D) Mean ± SE of the AUC of the two
distinct components (i.e., endogenous Ca2+ release and SOCE) of the Ca2+ response to 20 µM ATP
recorded in native aortic endothelium of LZDF and OZDF rats in the absence or presence of 20 µM
CE. (E) Representative recordings of the Ca2+ response to 300 µM ATP in the absence or presence of
20 µM CE in native aortic endothelium of LZDF and OZDF rats. (F) Mean ± SE of endogenous Ca2+

release and SOCE amplitude recorded in native aortic endothelium of LZDF and OZDF rats challenged
with 300 µM ATP in the absence or presence of 20 µM CE. The asterisk indicates p < 0.05. (G) Mean ±
SE of the duration of the two distinct components (i.e., endogenous Ca2+ release and SOCE) of the
Ca2+ response to 300 µM ATP in native aortic endothelium of LZDF and OZDF rats in the absence
or presence of 20 µM CE. The asterisk indicates p < 0.05. Blue and red arrows indicate that the Ca2+

signal failed to reach the clearing rate indicated in the graph in LZDF and OZDF rats respectively.
(H) Mean ± SE of the AUC of the two distinct components (i.e., endogenous Ca2+ release and SOCE) of
the Ca2+ response to 300 µM ATP in native aortic endothelium of LZDF and OZDF rats in the absence
or presence of 20 µM CE. The asterisk indicates p < 0.05, Mann-Whitney test.
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Figure 9. The effect of KB-R7943R on the Ca2+ response to ATP is weakly altered in native aortic
endothelium of obese Zucker diabetic fatty rats. (A) Representative recordings of the Ca2+ response to
20 µM ATP in the absence or presence of 8 µM KB-R7943R (KBR) in native aortic endothelium of LZDF
and OZDF rats. In KBR experiments, endothelial cells were preincubated for 300 s with 8 µM KBR.
(B) Mean ± SE of endogenous Ca2+ release and SOCE amplitude recorded in native aortic endothelium
of LZDF and OZDF rats challenged with 20 µM ATP in the absence or presence of 8 µM KBR. (C) Mean
± SE of the duration of the Ca2+ response to 20 µM ATP recorded in native aortic endothelium of
LZDF and OZDF rats in the absence or presence of 8 µM KBR. (D) Mean ± SE of the AUC of the two
distinct components (i.e., endogenous Ca2+ release and SOCE) of the Ca2+ response to 20 µM ATP
recorded in native aortic endothelium of LZDF and OZDF rats in the absence or presence of 8 µM
KBR. (E) Representative recordings of the Ca2+ response to 300 µM ATP in the absence or presence of
8 µM KBR in native aortic endothelium of LZDF and OZDF rats. (F) Mean ± SE of endogenous Ca2+

release and SOCE amplitude recorded in native aortic endothelium of LZDF and OZDF rats challenged
with 300 µM ATP in the absence or presence of 8 µM KBR. The asterisk indicates p < 0.05. (G) Mean ±
SE of the duration of the two distinct components (i.e., endogenous Ca2+ release and SOCE) of the
Ca2+ response to 300 µM ATP in native aortic endothelium of LZDF and OZDF rats in the absence or
presence of 8 µM KBR. The asterisk indicates p < 0.05. Red arrows indicate that the Ca2+ signal failed
to reach the clearing rate indicated in the graph in OZDF rats. (H) Mean ± SE of the AUC of the two
distinct components (i.e., endogenous Ca2+ release and SOCE) of the Ca2+ response to 300 µM ATP
in native aortic endothelium of LZDF and OZDF rats in the absence or presence of 8 µM KBR. The
asterisk indicates p < 0.05, Mann-Whitney test.
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Figure 10. The effect of SEA0400 on the Ca2+ response to ATP is weakly altered in native aortic
endothelium of obese Zucker diabetic fatty rats. (A) Representative recordings of the Ca2+ response to
20 µM ATP in the absence or presence of 3 µM SEA0400 (SEA) in native aortic endothelium of LZDF
and OZDF rats. In SEA experiments, endothelial cells were preincubated for 600 s with 3 µM SEA.
(B) Mean ± SE of endogenous Ca2+ release and SOCE amplitude recorded in native aortic endothelium
of LZDF and OZDF rats challenged with 20 µM ATP in the absence or presence of 3 µM SEA. (C) Mean
± SE of the duration of the two distinct components (i.e., endogenous Ca2+ release and SOCE) of the
Ca2+ response to 20 µM ATP in native aortic endothelium of LZDF and OZDF rats in the absence or
presence of 3 µM SEA. Red arrows indicate that the Ca2+ signal failed to reach the clearing rate in
OZDF rats. (D) Mean ± SE of the AUC of the two distinct components (i.e., endogenous Ca2+ release
and SOCE) of the Ca2+ response to 20 µM ATP in native aortic endothelium of LZDF and OZDF rats in
the absence or presence of 3 µM SEA. (E) Representative recordings of the Ca2+ response to 300 µM
ATP in the absence or presence of 3 µM SEA0400 (SEA) in native aortic endothelium of LZDF and
OZDF rats. In SEA experiments, endothelial cells were preincubated for 600s with 3 µM SEA. (F) Mean
± SE of endogenous Ca2+ release and SOCE amplitude recorded in native aortic endothelium of LZDF
and OZDF rats challenged with 300 µM ATP in the absence or presence of 3 µM SEA. (G) Mean ±
SE of the duration of the two distinct components (i.e., endogenous Ca2+ release and SOCE) of the
Ca2+ response to 300 µM ATP in native aortic endothelium of LZDF and OZDF rats in the absence
or presence of 3 µM SEA. Red arrows indicate that the Ca2+ signal failed to reach the clearing rate in
OZDF rats. (H) Mean ± SE of the AUC of the two distinct components (i.e., endogenous Ca2+ release
and SOCE) of the Ca2+ response to 300 µM ATP in native aortic endothelium of LZDF and OZDF rats
in the absence or presence of 3 µM SEA. The asterisk indicates p < 0.05, Mann-Whitney test.
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2.7. SERCA2B Protein Is Up-Regulated in in Native Aortic Endothelium of OZDF Rats

The pharmacological manipulation of the Ca2+ response to low (i.e., 20 µM) and high (i.e., 300 µM)
doses of ATP strongly suggested that SERCA-dependent Ca2+ removal from the cytosol is compromised
in in situ aorta of OZDF rats. The inhibition of SERCA-dependent Ca2+ clearance could be due to
the down-regulation of SERCA2B, the main endothelial SERCA isoform [46], and/or to the slowing
down of its activity. Previous work has revealed that, while SERCA2 protein is up-regulated by type
2 diabetes mellitus, its clearing rate may be severely compromised. Accordingly, immunohistochemical
analysis carried out with a specific antibody revealed that the SERCA2 expression was significantly
(p < 0.05) enhanced in native aortic endothelium of OZDF as compared to LZDF rats (Figure 11).
As illustrated in Figure 11B,C and summarized in Figure 11A, the endothelial SERCA2B staining was
brighter in in situ rat aorta from OZDF rats. This finding therefore indicates that endothelial SERCA2B
activity is inhibited by type 2 diabetes mellitus.
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Figure 11. SERCA2B protein is upregulated in native aortic endothelium of obese Zucker rats.
Semiquantitative analysis (A) of immunofluorescent staining of the endothelial monolayer of rat
aorta revealed that SERC2B expression was up-regulated in OZDF (C) as compared to LZDF (B) rats
(SERCA2B: red; blue: cell nuclei). The asterisk indicates p < 0.05.

2.8. ROS Inhibition Rescues SERCA2B-Dependent Ca2+ Sequestration in Native Aortic Endothelium of
OZDF Rats

Several reports have demonstrated that SERCA activity could be inhibited by reactive oxygen
species (ROS) under hyperglycemic conditions [47] and in prediabetic Zucker rats [48]. Furthermore,
vascular ROS production is enhanced in OZDF rats [49]. We reasoned that, if SERCA2B inhibition
depends on enhanced oxidative stress, then the ROS scavenger N-acetyl-L-cysteine (NAC) should
reduce the duration and the plateau phase of the Ca2+ response to ATP in native aortic endothelium of
OZDF rats. As shown in Figure 12A, NAC (3 mM, 1 h incubation) also impacted on the Ca2+ signal
induced by 20 µM ATP. The amplitude of the Ca2+ peak and of the plateau phase (Figure 12B), the
duration (Figure 12C), and AUC (Figure 12D) were significantly reduced by pre-treating rat aortic rings
with NAC. As is evident from the Ca2+ traces shown in Figure 12A and from the statistical analysis of
each parameter (Figure 12B–D), there was no longer a difference between the Ca2+ signals induced
by 20 µM ATP in LZDF vs. OZDF rats. Furthermore, scavenging ROS with NAC eliminated the
differences in the amplitude and kinetics of the Ca2+ responses to 300 µM ATP (Figure 12E). Statistical
analysis revealed that following pre-treatment with NAC, there was no statistically relevant difference
in plateau amplitude (Figure 12F), duration (Figure 12G), or AUC (Figure 12H) between LZDF and
OZDF rats. These data, therefore, strongly suggest that the down-regulation of SERCA2B activity by
the enhanced oxidative stress imposed to OZDF rats is responsible for the dismantling of endothelial
Ca2+ dynamics in rat aorta.
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Figure 12. Scavenging ROS with NAC tempers the differences in the Ca2+ response to ATP in obese
Zucker diabetic fatty rats. (A) Representative recordings of the Ca2+ response to 20 µM ATP in the
absence or presence of 3 mM NAC in native aortic endothelium of LZDF and OZDF rats. Rat aortic
rings were preincubated for 1 h with 3 mM NAC. (B) Mean ± SE of endogenous Ca2+ release and SOCE
amplitude recorded in native aortic endothelium of LZDF and OZDF rats challenged with 20 µM ATP
in the absence or presence of 3 mM NAC. (C) Mean ± SE of the duration of the Ca2+ response to 20 µM
ATP recorded in native aortic endothelium of LZDF and OZDF rats in the absence or presence of 3 mM
NAC. (D) Mean ± SE of the AUC of the two distinct components (i.e., endogenous Ca2+ release and
SOCE) of the Ca2+ response to 20 µM ATP recorded in native aortic endothelium of LZDF and OZDF
rats in the absence or presence of 3 mM µM NAC. (E) Representative recordings of the Ca2+ response
to 300 µM ATP in the absence or presence of 3 mM NAC in native aortic endothelium of LZDF and
OZDF rats. (F) Mean ± SE of endogenous Ca2+ release and SOCE amplitude recorded in native aortic
endothelium of LZDF and OZDF rats challenged with 300 µM ATP in the absence or presence of 3 mM
NAC. The asterisk indicates p < 0.05. (G) Mean ± SE of the duration of the two distinct components (i.e.,
endogenous Ca2+ release and SOCE) of the Ca2+ response to 300 µM ATP in native aortic endothelium
of LZDF and OZDF rats in the absence or presence of 3 mM µM NAC. The asterisk indicates p < 0.05.
Red arrows indicated that the Ca2+ signal failed to reach the clearing rate indicated in the graph in
OZDF rats. (H) Mean ± SE of the AUC of the two distinct components (i.e., endogenous Ca2+ release
and SOCE) of the Ca2+ response to 300 µM ATP in native aortic endothelium of LZDF and OZDF rats
in the absence or presence of 3 mM NAC. The asterisk indicates p < 0.05, Mann-Whitney test.
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2.9. Evidence for the Contribution of K+ Channels in the Alteration of Intracellular Ca2+ Dynamics in Native
Aortic Endothelium of OZDF Rats

It has been demonstrated that type 2 diabetes mellitus may also effect the expression of intermediate-
and small-conductance Ca2+-dependent K+ (IKCa and SKCa, respectively) channels, which can be
recruited by an increase in [Ca2+]i, thereby increasing the driving force for extracellular Ca2+ entry [50].
As SOCE amplitude is down-regulated in native aortic endothelium of OZDF rats despite the fact that
endothelial hyperpolarization is likely to be increased, abrogating the electrochemical gradient of K+

across the plasma membrane should further decrease ATP-induced Ca2+ entry. If this hypothesis is
correct, then we should observe a reduction in the plateau phase that the slowing down of SERCA2B
activity might not be able to counteract. As expected, when rat aortae were challenged with 300 µM
ATP in the presence of high extracellular K+ (90 mM) (Figure 13A), the magnitude of the plateau phase
(Figure 13B), the duration of the Ca2+ signal (Figure 13C), and the AUC (Figure 13D) were significantly
(p < 0.05) reduced in both LZDF and OZDF rats. Of note, the amplitude and kinetics of the Ca2+ traces
were no longer different, as clearly shown in Figure 13A. This finding suggests that the further decrease
in extracellular Ca2+ entry in high-KCl extracellular solution, when associated with the slowing down
of SERCA2B-mediated Ca2+ removal from the cytosol in OZDF rats, results in a Ca2+ signal that is not
different from that recorded in lean animals.
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Figure 13. High extracellular KCl affects the Ca2+ response to ATP in obese Zucker diabetic fatty rats.
(A) Representative recordings of the Ca2+ response to 300µM ATP in the absence or presence of high-KCl
(90 mM) extracellular solution in native aortic endothelium of LZDF and OZDF rats. (B) Mean ± SE of
endogenous Ca2+ release and SOCE amplitude recorded in native aortic endothelium of LZDF and
OZDF rats challenged with 300 µM ATP in the absence or presence of high-KCl extracellular solution.
The asterisk indicates p < 0.05. (C) Mean ± SE of the duration of the two distinct components (i.e.,
endogenous Ca2+ release and SOCE) of the Ca2+ response to 300 µM ATP in native aortic endothelium
of LZDF and OZDF rats in the absence or presence of high-KCl extracellular solution. The asterisk
indicates p < 0.05. Red arrows indicated that the Ca2+ signal failed to reach the clearing rate indicated
in the graph in OZDF rats. (D) Mean ± SE of the AUC of the two distinct components (i.e., endogenous
Ca2+ release and SOCE) of the Ca2+ response to 300 µM ATP in native aortic endothelium of LZDF and
OZDF rats in the absence or presence of high-KCl extracellular solution. The asterisk indicates p < 0.05,
Mann-Whitney test.
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3. Discussion

The present investigation demonstrated for the first time that the Ca2+ handling machinery is
dramatically altered in native endothelium of excised aorta of OZDF rats, which represent a widespread
model of type 2 diabetes mellitus. Remodeling of the Ca2+ signaling toolkit was fully disclosed by
stimulating native endothelial cells with high doses, i.e., 300 µM, of ATP and consisted of a remarkable
increase in the duration of the Ca2+ signal and in plateau amplitude. Dysregulation of the endothelial
Ca2+ machinery was also detectable, although at a lower extent (i.e., duration of the Ca2+ signal), at low
ATP doses, i.e., 20 µM. These findings might shed new light on the molecular mechanisms by which
type 2 diabetes mellitus causes endothelial dysfunction, thereby severely affecting the cardiovascular
system and compromising patients’ health [4,5,7,8].

Earlier studies revealed that high glucose may enhance endothelial SOCE by up-regulating its
molecular components [51,52], namely Stim1 and Orai1, which serve as the ER Ca2+ sensor and
the pore-forming subunit of the Ca2+-permeable channel, respectively [19,53]. Furthermore, a more
recent investigation disclosed that SERCA activity is compromised in a rat model of type 1 diabetes
mellitus [54]. Nevertheless, no study has been devoted to investigating whether the Ca2+ handling
machinery is impaired in vascular endothelial cells in the presence of type 2 diabetes mellitus. Therefore,
we focused on intact aortic endothelium of OZDF rats, which enabled us to investigate intracellular
Ca2+ dynamics in a cellular model which reflects the physiological configuration of vascular endothelial
cells in type 2 diabetes mellitus. We provided the evidence that: (1) the mechanisms responsible for
clearing cytosolic Ca2+ in LZDF rats, which represent the lean age-matched control, slightly differ
depending on ATP concentration ([ATP]); (2) the Ca2+-transporting system is affected in intact aortic
endothelium of OZDF rats; and (3) this impairment is fully unmasked by stimulating the cells with the
highest ATP dose, i.e., 300 µM. Therefore, we will first describe how SERCA, PMCA and NCX interact
to remove cytosolic Ca2+ under physiological conditions, i.e., in native endothelium of excised aorta of
LZDF rats, and then discuss the remodeling of the Ca2+ handling machinery in OZDF rats.

3.1. Ca2+ Clearing in LZDF Rats: the Control Condition

ATP induces a biphasic Ca2+ response in native rat aortic endothelium which consists in an initial
Ca2+ peak, due to InsP3-dependent ER Ca2+ release, followed by SOCE activation [36,39]. Herein,
we first showed that ATP elicits a dose-dependent increase in the amplitude of the initial Ca2+ peak
and in SOCE amplitude, as depicted in Figure 3. We further demonstrated that SERCA is a major
mechanism responsible for clearing cytosolic Ca2+ in response to weak, i.e., 20 µM, and massive, i.e.,
300 µM, stimulation with ATP. This conclusion is supported by the observation that blocking SERCA
activity with CPA and thapsigargin prevents [Ca2+]i from declining to the baseline, thereby enhancing
the plateau phase and prolonging the duration of the Ca2+ response, which collectively lead to an
increase in the AUC. CPA is also known to stimulate ER Ca2+ release and activate SOCE in intact
aortic endothelium [36]. However, CPA was administered at the same time as ATP, a procedure which
enabled this drug to inhibit SERCA activity without altering the ER Ca2+ pool [22,23]. Moreover,
the InsP3-sensitive store targeted by ATP overlaps with the ER Ca2+ content, so that both stimuli
converge on the recruitment of the same SOCE pathway [24,36]. Therefore, the dramatic increase in
plateau amplitude observed in the presence of CPA is not due to further SOCE activation, but to the
impairment of Ca2+ sequestration into ER lumen, which results in Ca2+ accumulation within the cytosol.
It has been shown that ER Ca2+ refilling occurs at plasma membrane/ER nanojunctions [55,56], which
recruit SERCA upon massive ER Ca2+ depletion [57,58], in vascular endothelial cells. Accordingly,
InsP3-induced drop in ER Ca2+ concentration causes SERCA migration and co-localization with Stim1
and Orai1, thereby resulting in more efficient Ca2+ pumping into the ER [57,58]. Therefore, we
hypothesize that SERCA is heavily recruited to plasma membrane/ER nanojunctions following ATP
stimulation and SOCE activation.
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In addition to SERCA, PMCA intervenes to remove cytosolic Ca2+ in response to 20 µM and
300 µM ATP. Accordingly, blocking PMCA activity with carboxyeosin enhanced plateau amplitude and
slowed down the decay phase of the Ca2+ in response to both low, i.e., 20 µM, and high, i.e., 300 µM,
ATP doses. As a consequence, the AUC also underwent a remarkable increase. In agreement with
these observations, earlier work showed that endothelial SOCE is functionally associated with PMCA,
which is activated by incoming Ca2+ and supports SERCA activity during the decline of [Ca2+]i [59,60].

The contribution of NCX to the endothelial Ca2+ response to ATP is more puzzling to decipher.
The blockade of NCX activity with two structurally distinct drugs, i.e., KBR and SEA, decreased the
duration of the Ca2+ response to 20 µM ATP, thereby causing a significant reduction in the AUC. This
effect was detected in the absence of extracellular Ca2+ and cannot be ascribed to the inhibition of
the reverse-mode NCX activity and is unlikely to reflect off-target effects. It has, however, long been
known that NCX and SERCA compete for clearing Ca2+ during the decay phase of a Ca2+ transient and
that the clearing rate of SERCA activity may be remarkably faster as compared to NCX [61]. Therefore,
we posit that, upon NCX inhibition, SERCA is responsible for clearing most of the Ca2+ released by
20 µM ATP and for the subsequent acceleration of the decay phase. Notably, the blockade of NCX
activity exerts a weaker impact on the Ca2+ response to high, i.e., 300 µM, ATP doses, as the AUC is
not affected, and only the early (90%) clearing rate is shortened. This observation strongly suggests
that NCX plays a minor role in shaping the Ca2+ signal induced by massive ATP stimulation, which is
in agreement with the notion that higher SOCE activation is likely to result in SERCA recruitment to
ER/PM nanojunctions and PMCA up-regulation (see above). Conversely, NCX significantly cooperate
with SERCA to clear cytosolic Ca2+ in freshly isolated rabbit aortic endothelial cells [24] and cardiac
microvascular endothelial cells [11].

3.2. Evidence that SERCA2B Activity Is Slowed Down in Native Aortic Endothelium of LZDF Rats

The Ca2+ handling machinery that shapes the Ca2+ response to ATP is remodeled in the intact
endothelium of excised aorta of OZDF rats mainly due to the impairment of SERCA2B activity. The
following pieces of evidence support this hypothesis. First, SOCE evoked by ER Ca2+ depletion with
20 µM and 300 µM ATP and with CPA is lower in the native endothelium of excised rat aorta of OZDF
as compared to LZDF rat, while there is seemingly no difference in the InsP3-releasable ER Ca2+ pool.
Nevertheless, the plateau phase and duration of the Ca2+ signal induced by 20 µM and 300 µM ATP
are significantly higher in diabetic rats. Therefore, the larger Ca2+ signal observed in OZDF rats is
not due to the rewiring of Ca2+ entry/release channels. Second, the Ca2+ response to 20 µM ATP is
similarly affected by pharmacological blockade of SERCA2B activity with CPA or thapsigargin in
LZDF and OZDF rats: the decay rate was lengthened, while the plateau amplitude and AUC increased.
Nevertheless, a careful analysis revealed that the early (90%) and intermediate (60%) clearing rates were
significantly (p < 0.05) more slowed down in LZDF rather than OZDF rats. This observation suggests
that SERCA activity is slightly faster in the native aortic endothelium of LZDF rats. Coherently, the
effect of CPA and thapsigargin on the plateau amplitude, duration and AUC of the Ca2+ response to
300 µM ATP are larger in the intact aorta of LZDF rather than OZDF rats. This finding concurs with the
hypothesis that SERCA activity undergoes a partial inhibition in native aortic endothelium of OZDF
rats, which is fully unmasked at high ATP concentration ([ATP]) and dampens the inhibitory effect of
CPA and thapsigargin. Third, blocking PMCA activity with carboxyeosin exerted a similar impact on
the decay phase of the Ca2+ signal induced by 20 µM and 300 µM ATP in LZDF and OZDF rats (i.e.,
elongation of the decay phase, increase in the plateau amplitude and AUC). This observation indicates
that endothelial PMCA activity is not altered by type 2 diabetes mellitus. Fourth, NCX inhibition with
KBR or SEA only weakly affected the Ca2+ response to 20 µM ATP (i.e., no effect on the AUC, although
the clearing rate was slowed down) in OZDF rats, while it exerted a similar effect on the Ca2+ signal
evoked by 300 µM ATP (i.e., elongation of the decay phase) in LZDF and OZDF rats.

It should also be pointed out that the amplitude, AUC and duration of the CPA-endogenous Ca2+

release are not different between LZFD and OZDF aortae. This finding indicates that: (1) the releasable
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ER Ca2+ content; and (2) NCX and PMCX activities, which are the major Ca2+-clearing mechanisms
acting under such conditions, are not heavily altered in the intact endothelium of OZDF rats. Taken
together, these observations strongly suggest that SERCA is the major Ca2+-transporting mechanism
to be affected in native endothelium of excised aorta from OZDF rats. When the cells are stimulated
with a low [ATP], i.e., 20 µM ATP, SERCA2B is still able to cope with the amount of Ca2+ introduced
into the cytosol by InsP3-induced Ca2+ release and SOCE in both LZDF and OZDF rats. However, its
impaired activity causes [Ca2+]i to decay slower to the baseline, thereby slightly enhancing the AUC
of the Ca2+ signal. When ATP concentration is increased up to 300 µM, the higher amount of Ca2+

delivered into the cytosol of OZDF aortae through InsP3 receptors and SOCE results in an excessive
influx of Ca2+ that cannot be entirely sequestered into ER lumen by the impaired SERCA2B and is
mainly extruded by PMCA.

The slowing down of endothelial SERCA2B activity in OZDF aortae could be due to the
down-regulation of SERCA2B expression and/or to the impairment of its cycling rate. SERCA2B activity
is impaired in both type 1 and type 2 diabetes mellitus [47]. Furthermore, while myocardial SERCA
2A expression increased in OZDF rats [62], SERCA2B levels were unchanged in cardiac endothelial
cells from a rat model of type 1 diabetes mellitus, although SERCA2B-mediated Ca2+ sequestration
was significantly dampened [54]. Immunohistochemistry revealed that SERCA2B expression was
up-, rather than down-, regulated in native aortic endothelium of OZDF rats. This finding, therefore,
strongly suggests that endothelial SERCA2B activity is compromised by type 2 diabetes mellitus.
Several mechanisms have been put forward to describe the impairment of SERCA2B-mediated ER Ca2+

sequestration into ER lumen in type 2 diabetes mellitus, including oxidative stress and Ca2+-ATPase
glycation [47]. For instance, a recent investigation disclosed that SERCA2B activity was inhibited by
irreversible oxidation of cysteine-647 in OZDF vascular smooth muscle cells. SERCA2B oxidation, in
turn, requires NADPH oxidase 4 (Nox4) up-regulation Nox4 by transforming growth factor-β1 [48].
Earlier reports indicated that vascular ROS production was exacerbated in OZDF rats, thereby impairing
endothelium-dependent NO release and vasodilation [49]. In addition, oxidative stress was also
increased in the endothelial glomerulal layer [63] and coronary microvascular endothelial cells [64] of
OZDF rats. Notably, the ROS scavenger NAC abolished the differences in the Ca2+ signal elicited by
ATP at both 20 µM and 300 µM. First, it should be noted that NAC erased the small plateau phase,
which followed 20 µM ATP-induced intracellular Ca2+ release, thereby turning a biphasic Ca2+ signal
into a transient Ca2+ increase. This finding suggests that ROS are also able to modulate SERCA2B
activity in the endothelial monolayer of lean animals, although their impact on intracellular Ca2+

homeostasis becomes more relevant in diabetic rats. Therefore, the low amplitude plateau phase
arising in response to low, i.e., 20 µM, doses of ATP depends on partial SERCA2B inhibition rather
than on SOCE activation in native endothelium of rat aorta [39]. Second, NAC pretreatment erased any
significant difference in the amplitude and kinetics of the Ca2+ response to 300 µM ATP between LZDF
and OZDF rats. The inhibitory effects on SOCE amplitude on the decay rate (which was accelerated)
and on the AUC were stronger in OZDF rats. These observations support the hypothesis that enhanced
ROS production dramatically inhibits SERCA2B-dependent Ca2+ clearance when the amount of Ca2+

introduced in the cytosol through InsP3Rs is increased by the stimulation with higher doses of the
agonist. It should, however, be recalled that the role of mitochondria in this context remains to be
elucidated. Recent investigations revealed that mitochondrial Ca2+ accumulation was compromised in
mouse hearts, while it was up-regulated in rat liver [65] in the presence of type 1 diabetes mellitus [66].
Assessing whether and how mitochondrial-dependent modulation of intracellular Ca2+ signaling is
altered in native aortic endothelium of OZDF rats will require the exploration of multiple aspects of
endothelial Ca2+ signaling. Previous work has indeed shown that, while mitochondria barely control
global InsP3-dependent ER Ca2+ release in vascular endothelial cells [23,43], they finely regulate local
InsP3-dependent Ca2+ signals [67], SOCE amplitude [68], and ER refilling [69].
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3.3. Preliminary Evidence that Ca2+-Dependent K+ Channels Contribute to the Enhanced Ca2+ Response
to ATP

The evidence reported so far clearly has demonstrated that ROS-dependent inhibition of
SERCA2B activity exacerbates the Ca2+ response to low and, more remarkably, to high doses
of ATP. Nevertheless, it has long been known that type 2 diabetes mellitus may also enhance
agonist-induced endothelial hyperpolarization by increasing the expression of IKCa and/or SKCa

channels [50]. For instance, acetylcholine-induced vasodilation was preserved in coronary arteries
despite reduced NO bioavailability because of IKCa and SKCa up-regulation [70]. Likewise, IKCa

was up-regulated and compensated for lower NO release OZDF mesenteric arteries stimulated with
acetylcholine [71]. As discussed elsewhere [72], endothelial hyperpolarization enhances the driving
force for agonist-induced extracellular Ca2+ entry in vascular endothelium. We reasoned that, if
agonist-induced endothelial hyperpolarization modulated extracellular Ca2+ entry, then abrogating K+

fluxes would exert a major effect in OZDF rats, where it is higher. In agreement with this hypothesis,
increasing the extracellular K+ concentration to prevent endothelial hyperpolarization had a stronger
impact in native aortic endothelium of OZDF rats (see Figure 13A). A careful inspection of the
Ca2+ tracings and statistical analysis revealed that the Ca2+ response to 300 µM ATP did not differ
in the presence of high KCl solution between LZDF and OZDF rats. As discussed above, SOCE,
which represents the major mechanism for ATP-induced Ca2+ influx in rat aortic endothelium, is
down-regulated in OZDF rats. Nevertheless, the ROS-dependent inhibition of SERCA2B results in an
enhancement of the Ca2+ response to ATP. However, a further decrease in extracellular Ca2+ entry
following reduction of the driving force for Ca2+ entry in the presence of high extracellular KCl,
may lead to a lower increase in [Ca2+]i. It is conceivable that, despite the ROS-dependent inhibition,
SERCA2B is able to cope with such decreased Ca2+ signal, thereby erasing the differences existing
between LZDF and OZDF animals. It remains to be assessed whether specific blockers of IKCa and/or
SKCa channels exert a similar impact of the Ca2+ response to 300 µM ATP. In addition, it will have to
be evaluated whether resting membrane potential, which is mainly controlled by inward rectifier K+

channels in rat aortic endothelial cells, is altered by type 2 diabetes mellitus.

3.4. How the Impairment of SERCA2B Activity Could Result in Endothelial Dysfunction in Type 2
Diabetes Mellitus

Earlier studies have demonstrated that the Ca2+ handling machinery is severely impaired in the
cardiovascular system of OZDF rats, but these studies were conducted on vascular smooth muscle
cells [73–75] and cardiomyocytes [62,76], rather than on vascular endothelial cells [70]. In this latter
study, the Ca2+ response to acetylcholine was greatly enhanced in coronary artery endothelial cells
of OZDF rats due to the up-regulation of small- and intermediate-conductance Ca2+-activated K+

channels [70]. However, the increased amplitude of the plateau phase could reflect the impairment of
SERCA activity, which does not fully sequester Ca2+ into ER lumen, thereby boosting the increase
in [Ca2+]i. These findings further support the notion that remodeling of the endothelial Ca2+ toolkit
described in in vitro endothelial cells cultured under high glucose conditions differs from that reported
in situ. For instance, SOCE was up-regulated in bovine aortic endothelial cells treated with high glucose
for 72 h [51], while it was down-regulated in native aortic endothelium (present study). The increase
in the Ca2+ response to supramaximal concentrations of physiological agonists, such as ATP, could
be involved in the impairment of endothelial signaling associated with type 2 diabetes mellitus [50].
For instance, exaggerated Ca2+ signals could further enhance NOX activation, thereby resulting
in a burst of anion superoxide (O2•−) production and worsening endothelial dysfunction [24,77].
Furthermore, an aberrant increase in [Ca2+]i causes the up-regulation of the Ca2+-dependent xanthine
oxidase and induces ROS overproduction in human umbilical vein endothelial cells [78]. Finally, a
recent study revealed that cytosolic Ca2+ overload leads to Ca2+ accumulation within the mitochondrial
matrix, thereby inducing O2•− production and endothelial dysfunction [79]. It should, however, be
pointed out that, in addition to type 2 diabetes mellitus, OZDF rats develop additional cardiovascular
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risk factors, including obesity and hyperlipidemia, that also have the potential to affect the Ca2+

signaling toolkit [80,81]. Future work will have to assess whether type 2 diabetes mellitus still impairs
the endothelial Ca2+ machinery in the absence of these comorbidities.

4. Materials and Methods

4.1. Animals

All the experimental procedures on animals were performed according to protocols approved by
the Animal Care and Use Committee of the Benemerita Universidad Autonoma de Puebla, identification
code: BERRSAL71, 18-05-2017. Every effort was made to minimize the number of animals used and to
ensure minimal pain and/or discomfort. Experiments were carried out in male Zucker Diabetic Fatty
(ZDF) rats (2–3 months old) from Charles River Laboratories, California, USA Throughout the text,
diabetic-obese ZDF rats (ZDF-Leprfa/fa) will be designated as OZDF rats, and lean controls, non-obese
non-diabetic ZDF (ZDF-Lepr+/+) as LZDF. The rats were kept at the University Animal Core Facilities
under controlled environmental temperature and, exposed to light-dark cycles of 12 h, with ad libitum
consumption of water and Purina 5008 chow.

4.2. Morphometric Parameters

On the day of the experiment, we proceeded to measure the body mass (weight), length (distance
from the tip of the nose to the base of the tail) and the abdominal circumference using a measuring
tape. The BMI was calculated using the following equation:

BMI =
Body mass (g)

Length2 (cm)2 (1)

4.3. Oral Glucose Tolerance Test and Insulin Response, Insulin Tolerance Test and Insulin Resistance

The oral glucose tolerance (OGTT) test was performed on rats that had been fasted 4 h, before
a glucose anhydrous solution (2 g/kg BW) was administered orally, glucose was measured from the
vein of the tail. Then, the glucose loading was administered, and glucose plasmatic concentration was
determined at 30, 60, 90 and 120 min from the vein of the tail. The glucose concentration was measured
by a commercial kit (Spinreact, Spain) and an automatized analyzer A-15 (BioSystem, Jalisco, Mexico).
At the same time (0, 30, 60, 90 and 120 min), plasmatic insulin was quantified by a commercial kit
(Diagnostica International Company, Jalisco, Mexico), with the resulting antibody-antigen complex
assessed at 415 nm in a Stat Fax 2600 plate reader (WinerLab Group, Rosário, Argentina). Insulin
concentrations were obtained from a standard curve ranging from 0 to 200 µUI/mL.

Five days after the oral glucose tolerance test. On rats that had been fasted 4 h, an insulin tolerance
test (ITT) was performed. The animals were intraperitoneally challenged with a dose of 0.75 U/kg BW
of human insulin (Humulin 70/30; Lilly, Indianapolis, IN, USA). This insulin is a combination of human
insulin isophane suspension and human insulin (rDNA), which combines intermediate-acting insulin
with the more rapid onset of action of regular human insulin. The pharmacologic effect begins at
approximately 50 min (range: 30 to 90 min); thus, it is ideal insulin for realizing an ITT. Blood samples
were drawn from the tail vein at different time points (0, 15, 30, 60 and 90 min), and glucose levels
were determined as described previously.

Finally, the insulin resistance was evaluated using the homeostasis model assessment insulin
resistance (HOMA-IR). The mathematical model was realized according to the report by [82].
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4.4. Dissection of the Aorta, Blood and Epididymal Fat Samples

ZDF rats, fasting for 6 h, were anesthetized with intraperitoneal ketamine-xylazine solution,
0.2 mL per 100 g of weight; subsequently they underwent to an anterior thoracotomy to expose the
aortic arch and the heart. A blood sample (5 mL) was obtained with 5 mL syringes through the inferior
vena cava to carry out the biochemical tests. Blood samples were transferred to vacutainer tubes
without anticoagulant, and clot formation was allowed for 10 min. Once the blood was coagulated, it
was centrifuged at 10,000 revolutions per minute (r/min) for 15 min at controlled room temperature
(22–23 ◦C). The serum was then extracted from the globular package with a micropipette and placed in
1 mL Eppendorf tubes, which were stored at 4 ◦C to be taken to a clinical analysis laboratory, where
total cholesterol, triglycerides, HDL-C, LDL-C and VLDL concentrations were quantified.

The thoracic and abdominal aorta were dissected out and perfused with physiological salt solution
(PSS). The vessel was placed in a Petri dish with PSS. Using a stereomicroscope (Nikon SMZ-2T,
Tokyo, Japan), the connective and fatty tissues surrounding the aorta were removed. Subsequently the
aorta was cut into ~5 mm wide rings, stored in physiological salt solution (PSS) at controlled room
temperature (22–23 ◦C), and used within 5 h.

Finally, all the epididymal fat surrounding both testes was accurately removed and weighed.

4.5. Solutions

PSS had the following composition (in mM): 150 NaCl, 6 KCl, 1.5 CaCl2, 1 MgCl2, 10 Glucose,
10 HEPES. In Ca2+-free solution (0Ca2+), Ca2+ was substituted with 2 mM NaCl, and 0.5 mM ethylene
glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA) was added. Solutions were titrated
to pH 7.4 with NaOH. Aortic rings were bathed in 0Ca2+ for no longer than 90 s. Control experiments
have demonstrated that such a short pre-incubation period is not able deplete intracellular Ca2+ stores
(Berra-Romani et al., 2008). For high K+-containing solution (KCl 90 mmol/L), osmolality was corrected
by equimolar reduction of NaCl.

4.6. Intracellular Ca2+ Concentration Measurements

This technique for evaluating changes in [Ca2+]i in intact endothelium has been previously
described [21,36,39,83]. Briefly, using a microdissection scissors, the aortic rings were carefully cut
to open them and obtain aortic strips with intact endothelium. The aortic strips were loaded with
16 µmol Fura-2/AM for 60 min at room temperature, washed and fixed (with the luminal face up) to
the bottom of a Petri dish covered by inert silicone (Silgard ® 184 Silicone Elastomer, Down Corning,
MI, USA) by using four 0.4 mm diameter pins. In situ endothelial cells were visualized by an upright
epifluorescence Axiolab microscope (Carl Zeiss, Oberkochen, Germany), equipped with a Zeiss × 40
Achroplan objective (water-immersion, 2.05 mm working distance, 1.0 numerical aperture). Endothelial
cells were excited alternately at 340 and 380 nm, and the emitted light was detected at 510 nm. The
exciting filters were mounted on a filter wheel (Lambda 10, Sutter Instrument, Novato, CA, USA).
Custom software, working in the LINUX environment, was used to drive the camera (Extended-ISIS
Camera, Photonic Science, Millham, UK) and the filter wheel, and to measure and plot on-line the
fluorescence from 52–126 “regions of interest” enclosing one single cell. [Ca2+]i was monitored by
measuring, for each regions of interest, the ratio of the mean fluorescence emitted at 510 nm when
exciting alternatively at 340 and 380 nm (termed Ratio (F340/F380)). An increase in [Ca2+]i causes
an increase in the Ratio (F340/F380). Ratio (F340/F380) measurements were performed and plotted
on-line every 3 s. Ratio (F340/F380) values are expressed as arbitrary units (A.U.). The experiments
were performed at controlled room temperature (22–23 ◦C) to limit time-dependent decreases in the
intensity of the fluorescence signal.
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4.7. Data Analysis

For each protocol, data were collected from at least three rats under each condition. The amplitude
of the peak Ca2+ response to ATP was measured as the difference between the ratio at the peak and the
mean ratio of 1 min baseline before the peak. The amplitude of the plateau phase was measured as the
difference between the ratio at 600 s after the application of ATP 20 µM and ATP 300 µM, respectively,
and the mean ratio of 1 min baseline before the peak. The duration of the Ca2+ response to ATP was
measured as the time it takes the Ca2+ signal to be reduced at 90% (early), 60% (intermediate) and
30% (late) of the initial Ca2+ peak amplitude. The area under the curve (AUC) was measured by
calculating the integral of each Ca2+ tracing from when the ATP is applied until it is removed. Data
are expressed as mean ± standard error (SE). Non-Gaussian data (identified using the D’Agostino
and Pearson omnibus normality test (p < 0.05)), were statistically analyzed using nonparametric
Mann-Whitney test. For normal data an unpaired Student’s t-test was used. A p value < 0.05 was
considered statistically significant.

4.8. Chemicals

Fura-2/AM was obtained from Molecular Probes (Molecular Probes Europe BV, Leiden, The
Netherlands). SEA0400 was obtained from Tocris Bioscience (Bristol, UK). All other chemicals were
purchased from Sigma (Sigma-Aldrich Quimica, Toluca, Estado de México, México).

4.9. Immunohistochemistry

To detect SERCA expression, aortic tissues were extracted from OZDF or LZDF rats and were fixed
in 4% paraformaldehyde solution, washed and incubated with PBS 0.25% Triton X-100 and blocked with
PBS 3% bovine serum albumin followed by incubation at 4 ◦C overnight with 2 mg/mL Anti-SERCA2
ATPase antibody (ab2861, Abcam); washed and incubated with 2 mg/mL Alexa Fluor488-conjugated
anti-mouse IgG antibody (6787, Abcam) for 1 h at room temperature. Additionally, the cell nuclei
were counter-stained with 0.001% Hoescht 33342 solution. The tissues were mounted in slides and
fluorescence was detected in 2 µm sections in a Zeiss Observed Z1 inverted microscope equipped with
an Axiocam MRm camera and an Apotome illumination system with a 63X oil immersion objective
(Carl Zeiss Microscopy, New York, United States).

5. Conclusions

In conclusion, this report demonstrated for the first time that the Ca2+ handling machinery is
altered in native endothelium of excised aorta from OZDF rats. The Ca2+ response to physiological
stimuli is remarkably enhanced when agonist concentration is elevated within the high micromolar
range. Rewiring of the endothelial Ca2+ toolkit involves the ROS-dependent down-regulation of
SERCA activity, which results in the increase of the amplitude of plateau phase, thereby prolonging
the duration of the Ca2+ signal. This remodeling of the endothelial Ca2+ machinery could contribute to
explaining how type 2 diabetes leads to endothelial dysfunction.
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Abbreviations

A.U. Arbitrary units
AUC Area under de curve
ATP Adenosine triphosphate
BMI Body mass index
HOMA-IR Homeostasis model assessment insulin resistance
ITT Insulin tolerance test
[Ca2+]i Intracellular Ca2+ concentration
CE Carboxyeosin
CPA Cyclopiazonic acid
CV Cardiovascular
ER Endoplasmic reticulum
HDL-C High-density lipoprotein cholesterol
InsP3 Inositol-1,4,5-trisphosphate
KBR KBR-79433
LDL-C Low-density lipoprotein cholesterol
LZDF Lean Zucker Diabetic Fatty rats
NCX Na+/Ca2+ exchanger
OGTT Oral glucose tolerance test
OZDF Obese Zucker Diabetic Fatty rats
PMCA Plasma membrane Ca2+-ATPase
PSS Physiological salt solution
SEA SEA0400
SERCA Sarco-endoplasmic reticulum Ca2+-ATPase
SOCE Store-operated Ca2+ entry
TG Thapsigargin
VLDL Very low-density lipoprotein
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