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Abstract: The age pathway is important for regulating flower bud initiation in flowering plants.
The major regulators in this pathway are miR156 and SPL transcription factors. To date, SPL genes
have been identified in many species of plants. Loquat, as a woody fruit tree of Rosaceae, is unique
in flowering time as it blooms in winter. However, the study of its SPL homologous genes on the
regulation mechanism of flowering time is still limited. In this study, four SPL homologs—EjSPL3,
EjSPL4, EjSPL5, and EjSPL9—are cloned from loquat, and phylogenetic analysis showed that they
share a high sequence similarity with the homologues from other plants, including a highly conserved
SQUAMOSA promoter binding protein (SBP)-box domain. EjSPL3, EjSPL4, EjSPL5 are localized in
the cytoplasm and nucleus, and EjSPL9 is localized only in the nucleus. EjSPL4, EjSPL5, and EjSPL9
can significantly activate the promoters of EjSOC1-1, EjLFY-1, and EjAP1-1; overexpression of EjSPL3,
EjSPL4, EjSPL5, and EjSPL9 in wild-type Arabidopsis thaliana can promote flowering obviously, and
downstream flowering genes expression were upregulated. Our work indicated that the EjSPL3,
EjSPL4, EjSPL5, and EjSPL9 transcription factors are speculated to likely participate in flower bud
differentiation and other developmental processes in loquat. These findings are helpful to analyze
the flowering regulation mechanism of loquat and provide reference for the study of the flowering
mechanism of other woody fruit trees.
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1. Introduction

Flowering is regulated by extensive factors, such as plant hormones, photoperiod, vernalization,
age, temperature, light quality, sucrose, etc. [1–6]. Genes regulating flowering time have been
characterized in many species, and they interact to form a complicated regulatory network [7–9].
FLOWERING LOCUS T (FT) is a crucial integrator in this network [10], and the flowering time regulating
gene SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1), the floral meristem identity genes
APETALA1 (AP1), LEAFY (LFY), and FRUITFULL (FUL) are located at downstream of the regulatory
network [11,12]. The aging pathway is reported to be a universal approach to control the transition
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from vegetative to reproductive stage, and it is primarily coordinated by microRNA156 (miR156)
and its target genes SQUAMOSA PROMOTER BINDING-LIKE (SPL) transcription factors [13,14].
MicroRNAs (miRNAs) are non-coding, small-molecule RNAs of about 16–29 nt in length, are ubiquitous
in organisms, and they could regulate gene expression by mediating targeted mRNA degradation or
translational repression [15,16]. The aging pathway mainly involves miR156 and miR172 [14]. The
targets of miR156 are the SPL transcription factors which were first discovered and confirmed in
Antirrhinum majus, and were named SQUAMOSA PROMOTER BINDING PROTEIN (SBP) because
they recognize and bind to the promoter region of MADS-box genes SQUAMOSA (SQUA) [17]. SBP
genes were also found in green plants and referred to as the SQUAMOSA PROMOTER BINDING-LIKE
(SPL) genes [18]. In recent decades, the SBP gene families were characterized in model plants, woods,
crops, and fruits, such as Arabidopsis thaliana [19], barley [20], green algae [21], moss [22], tomato [23],
salvia [24], rice [25], birch [26], light birch [27], cotton [28], grape [29], apple [30], corn [31], and so
on. All SPL genes contain a highly conserved DNA binding domain, which was called the SBP-box
domain, and it consists of approximately 80 amino acid residues including two zinc finger structures
and one nuclear localization signal [32].

The aging pathway regulates flowering under uninduced conditions, and also, it can be integrated
with other pathways [9]. In young Arabidopsis thaliana, miR156 is in a higher expression level, which
negatively regulates the target SPLs; as the plant grows, the expression level of miR156 decreases,
and the target SPLs mRNA increases subsequently [13]. Among the SPLs, SPL9 and SPL15 positively
regulate miR172, which inhibits the expression of transcription factor APETELA2 (AP2); AP2 inhibits
the expression of FT and; therefore, delays flowering ultimately [33,34]. At the same time, SPL2,
SPL3, SPL4, SPL5, SPL9, SPL10, SPL11, SPL13, and SPL15 can directly promote the expression of AP1,
LFY, and FUL, and SPL3, SPL4, and SPL5 can also recruit FT-FD complex and bind to the promoter
regions of AP1, LFY and FUL and consequently initiate their transcription [13,35]. Furthermore, SPL2,
SPL9, SPL10, SPL11, SPL13, and SPL15 directly regulate SUPPRESSOR OF OVEREXPRESSION OF
CONSTANS 1 (SOC1), and then activate the expression of AP1, LFY, and FUL. SOC1 also negatively
regulates SPL3, SPL4, and SPL5 to form a feedback loop [13]. At present, the functions of SPL genes in
more and more species has been unearthed: Grape VpSBP11 can regulate floral transition and leaf
development [36]; BlSPLs in Betula luminifera interact with DELLA protein to participate gibberellin
regulation [27]. It is reported that, except flowering, SPL genes are vital in also other physiological
processes in plants, such as adventitious root development [13,37], fertility [38], fruit growth and
quality [39], floral organ and shoot development [40,41], plant hormone response [42], morphological
differentiation [43], and stresses response [44].

Loquat (Eriobotrya japonica Lindl.) is a subtropical evergreen fruit that belongs to Maloideae
subfamily of Rosaceae. Compared to its relative fruit trees like apple, pear, and peach, loquat has
unique habits, in that it blooms in winter and fruits mature in late spring or early summer [45]. To date,
some crucial flowering-related genes from loquat have been cloned. EjTFL1 and EjLFY were identified
earliest, and EjAP1 was characterized later which was found to promote flowering [46,47]. Depending
on the genome sequencing data of loquat (from our unpublished information), wild loquat flowering
related genes of EdFT, EdFD, EdCO, and EdGI were separated and were identified to be related to
flowering regulation [48,49]. Most recently, we found that EjSOC1s played a vital role in promoting
flowering in cultivated loquat [50]. However, the information of the upstream transcription factors
participating in loquat flowering regulation is still limited.

In this work, cultivated loquat was employed as research material. The SPL homologous genes
of EjSPL3, EjSPL4, EjSPL5, and EjSPL9 were isolated from “Jiefangzhong” (JFZ). The spatiotemporal
expression of the EjSPLs were analyzed, and their subcellular localization were observed in tobacco
leaves. In addition, the interactions between EjSPLs and other flowering proteins or the downstream
flowering gene promoters were detected. Finally, because of the transform system has not been
built in loquat, the genetic functions of the EjSPLs were verified in Arabidopsis thaliana. This work
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discovered the roles of EjSPL3, EjSPL4, EjSPL5, and EjSPL9 on flowering regulation, and provides further
understanding of the unknown transcription factors attending reproductive growth in cultivated loquat.

2. Results

2.1. Identification of SPL3, SPL4, SPL5, and SPL9 Homologs from Loquat (Eriobotrya japonica Lindl.)

The genes of EjSPL3, EjSPL4, and EjSPL5 from the cultivated loquat “JFZ” were annotated within
the genome-wide scope of “JFZ” genome (from our unpublished data), and their coding sequences
were isolated. EjSPL3, EjSPL4, and EjSPL5 had 303, 570, and 576 nucleotides encoding 100, 189,
and 191 amino acids, respectively (Sequence S1). Clustering analysis between the predicted amino
acid sequences of the above EjSPLs and their homologous genes in other plants was conducted, the
phylogenetic tree showed that EjSPL3, EjSPL4, and EjSPL5 were clustered in different branches, and
the closest homologs to them were from apple or pear: EjSPL3 and MdSBPB, EjSPL4 and MdSPL1
are the closest, and EjSPL5 is closest to PbrSPL1a (Figure 1a). From the sequence alignment, there
was a conserved SBP-box domain in each of them, including two zinc finger structures and a nuclear
localization signal (Figure 1b). By blast alignment, EjSPL3 showed 40% and 53% identity compared
with AtSPL3 and MdSBPB; EjSPL4 had 51% and 94% identity compared to AtSPL4 and MdSPL1;
EjSPL5 had 48% and 96% identity with AtSPL5 and PbrSPL1a, respectively. In conclusion, it is shown
that the EjSPLs had higher similarity with those from apple and pear compared to other reported SPLs.
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Figure 1. Sequence analysis of SPL3, SPL4, and SPL5 from various species. (a) Phylogenetic trees
of SPL3, SPL4, and SPL5 in different species. Black triangles indicate loquat EjSPL3, EjSPL4, and
EjSPL5. (b) Amino acid sequence alignment of SPL3, SPL4, and SPL5. Amino acids with black
and gray represent 100% and 50% similarity, respectively; the underline indicates the SBP-box
domain. Identical and similar amino acid residues are represented by black and grey shadows,
respectively. The accession number of each gene is as follows: MdSBPA (Malus domestica, ADL36826.1),
MdSBP1 (Malus domestica, XP_008386198.1), PbrSPL1a (Pyrus × bretschneideri, XP_00 9340759.1),
PbrSPL1b (Pyrus × bretschneideri, XP_009356783.1), MdSPL1 (Malus domestic, XP_0083670 70.1), PpSPL3A
(Prunus persica, XP_007213489.1), PmSPL3 (Prunus mume, XP_008226482.1), PtSBP20 (Populus tomentosa,
AOF41322.1), AtSPL5 (AT3G15270), AtSPL4 (AT1G53160), AtSPL3 (AT2G33810), PpSPL3B (Prunus
persica, XP_007212177.1), MdSBPB (Malus domestica, ADL36825.1), MdSPL3 (Malus domestica, XP_0083837
04.1), MdSBP (Malus domestica, AHC08502.1).
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Except EjSPL3, EjSPL4 and EjSPL5 genes, an EjSPL9 gene was also isolated from cultivated loquat
“JFZ”, and it contained 1140 nucleotides encoding 379 amino acids. The phylogenetic tree showed that
EjSPL9 was closely related to SPL9 of pear and farthest from AtSPL9 and AtSPL15 (Figure 2a). From
the sequence alignment, the homology of SPL9 is much higher than that of SPL3, SPL4, and SPL5 in
woody plants, such as apple, pear, birch, etc., and the similarity is relatively low in herbaceous plants.
In addition, they had a highly conserved SBP-box domain also (Figure 2b). By blast alignment, EjSPL9
showed 44% and 96% similarity compared with AtSPL9 and PbrSPL9, respectively.
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Figure 2. Sequence analysis of SPL9 from various species. (a) Phylogenetic tree of SPL9s in
different species. Black triangle indicated EjSPL9. (b) Amino acid sequence alignment of SPL9s.
Amino acids with black and gray represent 100% and 50% similarity, respectively; the underline
indicated the SBP-box domain. Identical and similar amino acid residues are represented by
black and grey shadows, respectively. The accession number of each gene is as follows: PbrSPL9
(Pyrus × bretschneideri, XP_009369782.1), MdSPL (Malus domestica, ADL36823.1), MdSBP (Malus
domestica, AHC08503.1), PbrSPL14 (Pyrus × bretschneideri, XP_009376108.1), MdSPL9 (Malus domestica,
XP_008392088.1), PbrSBP (Pyrus × bretschneideri, AIS93133.1), PaSPL9a (Prunus avium, XP_021830661.1),
PaSPL9b (Prunus avium, XP_021825505.1), PpSPL9a (Prunus persica, XP_007203426.1), PmSPL9a (Prunus
mume, XP_008240953.1), PmSPL9b (Prunus mume, XP_008240879.1), PpSPL9b (Prunus persica, XP_0072053
41.1), FaSPL (Fragaria × ananassa, AEW23126.1), VvSPL9 (Vitis vinifera, NP_001267898.1), MnSPL15
(Morus notabilis, XP_010102560.1), AtSPL9 (AT2G42200), AtSPL15 (AT3G57920).

2.2. Analysis of EjSPLs Expression Patterns in Different Tissues

In order to identify the role of the EjSPL3, EjSPL4, EjSPL5, and EjSPL9 in loquat flowering, we
analyzed their transcription levels in the samples including leaves, buds, and flowers in different
growing periods. Different tissues of the “JFZ” were sampled, including root, stem, mature leaf, leaf
bud, flower bud, flower, fruit, and seed. The results showed that all EjSPLs were highly expressed
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in leaves, buds (leaf buds and flower buds), and flowers compared to other tissues. The expression
level of EjSPL4, EjSPL5, and EjSPL9 in leaf buds was higher than that in flower buds, and EjSPL3 was
expressed relatively higher in flower buds. However, EjSPL5 and EjSPL9 were also expressed in stem,
and the transcription level of EjSPL9 was detectable in root and seed (Figure 3). The results suggested
that EjSPL3, EjSPL4, EjSPL5, and EjSPL9 may be involved in the development of leaves, buds, flowers,
stems, roots, and seeds.
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Figure 3. Relative expression levels of SPL genes in the different tissues of “JFZ”. The Y-axis represents
different tissues, and the X-axis represents the relative expression of the EjSPL gene of “JFZ”. R—root,
ST—stem, L—mature leaf (2017.4.28), LB—leaf bud (2017.04.28), FB—flower bud (2017.8.18), FL—flower
(2017.12.08), FR—fruit (2017.3.17), SE—seed. Ejβ-actin as an internal control. Error bars indicating SE
from three biological replicates.

2.3. Expression Pattern of EjSPLs during Growth and Development of Loquat

To further clarify the roles of EjSPLs in loquat, the leaves, buds, and flowers of different
developmental stages were sampled for detecting the EjSPLs expression levels. In our previous
observation of the flower bud paraffin of “JFZ” in Guangzhou [50] the loquat flower bud differentiation
happens during the period from 23 June to 7 July, and inflorescence is forming during the end of August
to the beginning of September. In the leaves of different periods, the expression of EjSPL3, EjSPL4, and
EjSPL5 were all in a quite low level at the beginning of the year, and followed by a significant increase
till the start of flower bud differentiation (the end of June). Furthermore, the expression level of EjSPL4
and EjSPL5 gradually decreased to a low level by the end of the year, similar as that in the beginning
of the year. The expression level of EjSPL9 came to a peak one month earlier than that of EjSPL4 and
EjSPL5, and was kept in a relatively high level during the whole period of flower development; it just
declined to a very low level after loquat finished flowering. The level of the EjSPL3 transcripts showed
the first peak at the beginning of March, which was even earlier than that of EjSPL9, and also it showed
another distinct peak during the early stage of flower bud development, and after that, decreased
obviously to a low level by the end of the year (Figure 4a).

The expression levels of the EjSPLs in the leaves of different developmental stages (Figure 4b)
showed that the expression levels of EjSPL3 and EjSPL4 were low in the young leaves and increased
to a higher level as the leaves developed; after that, they began to decline to a low level again when
leaves matured. EjSPL5 mRNA level was high in the young leaves and started decreasing from L3
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stage; EjSPL9 mRNA level was kept in a relatively high level in all the stages compared to other EjSPLs
(Figure 4c).
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AP1 is a flower meristem identity gene, located in downstream of the flowering regulation
network [11], and has a high expression only in shoot apical meristem [50]; so the expression level
of AP1 is generally employed as a marker gene of flowering, especially for confirming the period of
floral bud initiation and development. In this study, the expression level of EjAP1 showed a distinct
rise from the end of June, reached the highest level in mid-August, and then declined, which is highly
consistent with the period of flower bud differentiation and development in loquat (Figure 5a). In
the shoot apical meristem of different periods, the expression levels of EjSPL3, EjSPL4, and EjSPL5
all came to a relatively small peak during spring, and compared with them, EjSPL9 was abundantly
expressed at this period. During floral bud initiation, expression levels of all the EjSPLs started rising
rapidly from 9 or 23 June, got to an obvious peak, which is ten days earlier than that of EjAP1, and
then decreased immediately; therefore, it is speculated that they may be involved in the process of
loquat flower bud differentiation and are upstream of EjAP1.

In addition, flower samples were collected from macroscopic flower buds to the start of fruit
setting (Figure 5b). As one ABC developmental model gene, the expression level of EjAP1 was
continuously increased in almost all the stages except the end of October. Importantly, EjSPL3, EjSPL4,
and EjSPL5 mRNA levels showed similar trend as that of EjAP1, and they started decreasing from the
end of November or the beginning of December. However, EjSPL9 showed some different or even
opposite expression trends (Figure 5c). Based on these results, we speculated that EjSPL3, EjSPL4, and
EjSPL5 may be involved in the growing process from the initial floral bud differentiation to the end
of flowering, and EjSPL9 is hypothesized to be important for floral bud differentiation and the early
stages of flower organ development.
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In summary, these findings suggested that EjSPL3, EjSPL4, EjSPL5, and EjSPL9 genes were
possibly involved in the process of leaf development and flowering (from floral bud initiation to flower
development) in loquat.

2.4. Subcellular Localization of EjSPL3, EjSPL4, EjSPL5, and EjSPL9

In order to verify the localization of EjSPLs-encoded proteins in cells, we constructed an EjSPLs
fusion expression vector carrying 35S promoter and a green fluorescent protein (GFP)-tagged protein,
and introduced them into the epidermal cells of tobacco by Agrobacterium tumefaciens infection, and
then their fluorescence signals were observed. The results showed that EjSPL3, EjSPL4, and EjSPL5
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were localized in the cytoplasm and nucleus, and EjSPL9 was localized only in the nucleus (Figure 6),
which suggested that EjSPL3, EjSPL4, EjSPL5, and EjSPL9 may have different functions in loquat.
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2.5. The regulation of EjSPL3, EjSPL4, EjSPL5, and EjSPL9 on the expression of EjLFY, EjAP1, and EjSOC1

In the previous experiment, the expression level of EjSPLs in the apical buds showed the
possibility that they may regulate the expression of the downstream flowering genes. It has been
previously reported that some SPLs can directly bind to LFY, AP1, and SOC1 promoters to regulate their
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transcription in Arabidopsis, and the specific binding site sequence is GTAC [35,51]. Therefore, in order
to verify whether EjLFY, EjAP1, and EjSOC1 can be regulated by EjSPLs, we cloned the promoters of
EjLFYs, EjAP1s, and EjSOC1s from the genomic DNA of “JFZ” loquat, respectively. The lengths of
these six promoter regions are all about 2000 bp (upstream of each EjSPL genes initiation codon ATG).
We used the PlaceCARE website to perform cis-acting element prediction on the promoter regions of
these genes; some binding site sequences (GTAC) were found in their promoter regions (Sequence S2).

We constructed the reporter vectors, in which, CAMV35S drives renilla luciferase (REN), and the
EjLFY-1pro, EjLFY-2pro, EjSOC1-1pro, EjSOC1-2pro, EjAP1-1pro, and EjAP1-2pro drive firefly luciferase
(LUC). EjSPL3, EjSPL4, EjSPL5, and EjSPL9 were constructed into the effector vector driven by
CAMV35S (Figure 7a). The two vectors were co-transformed into tobacco by transient expression by
different combinations to analyze whether EjSPL3, EjSPL4, EjSPL5, and EjSPL9 could transcriptionally
activate the downstream genes promoters. From the luciferase signal, it was showed that EjSPL3,
EjSPL4, EjSPL5, and EjSPL9 obviously activated the expression of LUC, which was driven by the
promoters of EjLFY-1 and EjSOC1-1; and EjSPL4, EjSPL5, and EjSPL9 remarkably activated the
expression of LUC driven by the EjAP1-1 promoter compared to the control (Figure 7b).
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Figure 7. The activation of EjSPL3, EjSPL4, EjSPL5 and EjSPL9 on the expression of EjLFY, EjAP1,
and EjSOC1. The activation effect was detected using dual luciferase system. (a) Vectors construction.
(b) EjSPL3, EjSPL4, EjSPL5, and EjSPL9 activated the EjLFY, EjAP1, and EjSOC1 promoters. Error
bars indicating SE from at least six biological replicates. The asterisk indicates a significant difference
compared to the empty effector (Student’s t-test, * p < 0.01, ** p < 0.001, *** p < 0.0001, **** p < 0.00001).

2.6. EjSPL3, EjSPL4, EjSPL5, and EjSPL9 Promote Flowering in Arabidopsis

To investigate the genetic functions of EjSPL3, EjSPL4, EjSPL5, and EjSPL9, overexpression vectors
containing full length coding sequences of the four EjSPL genes were constructed and transformed
into wild-type Arabidopsis thaliana (Col-0). The homozygous transgenic lines were screened out,
and the flowering time and the expression of downstream flowering genes were analyzed in these
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transgenic lines. All transgenic lines with different genes showed early flowering phenotype compared
to wild-type Col-0 (Figure 8a). Under the same growing condition, Col-0 had about 12 rosette leaves
when flowering, while the transgenic lines with 35S: EjSPL3 and 35S: EjSPL5 had only seven to eight
rosette leaves; 35S: EjSPL4 had nine to ten rosette leaves; 35S: EjSPL9 had 10 to 11 rosette leaves
(Figure 8b). The expression levels of the related flowering genes including AtAP1, AtLFY, and AtSOC1,
showed different degrees of improvement (Figure S1). There was no obvious different morphological
characteristic of the above transgenic lines observed compared to that of Col-0, such as flower organs,
leaf shapes, siliques, and cauline leaves. From the above results, EjSPL3, EjSPL4, EjSPL5, and EjSPL9
all have the function of promoting flowering in Arabidopsis.
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3. Discussion

To date, remarkable achievements have been made in the research of flowering regulation
mechanism in plants, including photoperiod pathway, gibberellin pathway, autonomous pathway,
aging pathway, vernalization pathway, ambient temperature pathway, and so on, which integrate
each other to form a huge and complex regulatory network [52]. Among the above pathways, SPL
transcription factors play a very important role in the control of flowering time. Our results show that
all members of the SPL gene family contain the SBP-box domain, which was conserved in a certain
degree in different species (Figures 1 and 2). In this study, it was suggested that EjSPL3, EjSPL4, EjSPL5,
and EjSPL9 are involved in the regulation of flowering time in loquat and are highly conserved with
their homologous genes. Differential expression levels and subcellular localization implied that they
may have different patterns in regulating loquat growth and development.

Functional verification of SPL3, SPL4, SPL5, and SPL9 homologous genes in other plants has also
been reported. For example, overexpression of SPL3 in Arabidopsis wild-type results in early flowering,
and knocking out SPL3, SPL4, SPL5, and SPL9 delays flowering time and produces more rosette
leaves [13]. MdSPL3 of apple encodes 189 amino acids and is localized in the nucleus; overexpressing
it in Arabidopsis wild-type turns into fewer trichomes and promotes morphological differentiation, the
MdSPL3 to be highly expressed in the rosette leaves and stem of transgenic Arabidopsis, and finally
significantly improves the expression of downstream genes (AtFT, AtSOC1, AtLFY, AtAP1, AtFUL) [53].
In citrus, overexpression of CiSPL5 removed the binding site of miR156 in the 3′UTR, to Arabidopsis
wild-type, leading to early flowering and fewer small rosette leaves [54]. PtSPL9 is expressed in various
organs, with the highest expression in stems, and showed a nuclear localization [55]. In grape, VpSBP11
(a homolog of AtSPL3/4/5) encoded 170 amino acids, contained a highly conserved SBP domain, and its
protein was localized in the nucleus with the transcriptional activity; overexpressing it (removed 3′

UTR, the binding site of miR156) into the Arabidopsis wild-type advanced flowering, and promoted
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the expression of FUL, AP1, LFY, and some other genes; and also, the phenotypic characteristics in
transgenic plants were transformed [36]. Combined with our results, it is shown that the SPL genes are
both functionally conserved and functionally differentiated during plant development.

The regulatory network of SPL is extremely complicated, and to date, the model plant Arabidopsis
is the most thoroughly studied. Most of the SPL genes in Arabidopsis are targeted by miR156 and
miR157 [14,56,57], and positively regulate downstream flowering genes directly, such as SOC1, LFY,
AP1, FUL, and so on [35,51]. This regulation pattern has also been verified in other species [28,53,58,59].
In this study, we found some SPL binding sites (GTAC) in the promoter regions of EjLFY, EjSOC1,
and EjAP1 (Sequence S2); and the dual-luciferase reporter assays verified that EjSPLs activate their
expression, in which, EjSPL3, EjSPL4, EjSPL5, and EjSPL9 effectively activated EjLFY-1 and EjSOC1-1
expression; and EjSPL4, EjSPL5, and EjSPL9 significantly improve the expression of EjAP1-1 (Figure 7).
In addition, we found that the expression levels of the floral meristem identity genes AtAP1 and AtLFY
were significantly different among different transgenic lines (Figure S1). These results suggested that
the SPL genes in loquat may be coordinated with each other to act on different downstream genes to
jointly regulate flowering.

There are also some novel regulatory models found in other plants. SlSBP3 and SlSBP15 of tomato
are regulated by the activity of PROCERA/DELLA, which can activate the SINGLE FLOWER TRUSS
(SFT) gene in the leaves and the AP1/MC in the shoot apex to promote flowering [60]. In the Arabidopsis
thaliana, SODIUM POTASSUIM ROOT DEFECTIVE1 (NaKR1) was found to respond to the changes
in potassium, and it could regulate the expression of FT through the miR156-SPL3 module, which
also affected the transport of FT protein in the phloem [61]. The nuclear factor CmNF-YB8 is a direct
upstream gene of cmo-miR156, which can directly bind to its promoter region. Silencing this gene
led to down-regulation of cmo-miR156 and up-regulation of CmSPL3, CmSPL5, and CmSPL9 [58].
Interestingly, EjFT2 showed involvement in the process of flower bud differentiation in loquat [62].
In order to ascertain whether there is a similar pattern of flowering regulation in the EjSPL genes in
loquat, we need more in-depth research.

4. Materials and Methods

4.1. Plant Materials and Growth Conditions

Cultivated loquat (Eriobotrya japonica Lindl.) was used in this study. Adult loquat trees were
grown under natural conditions in the loquat germplasm resource preservation garden, South
China Agricultural University, Guangzhou, China. The wild-type of Arabidopsis, Arabidopsis thaliana
Columbia-0 (Col-0), was used for gene transformation. Nicotiana benthamiana was cultivated for the
assays of transient expression. The seeds of the Arabidopsis Col-0 and tobacco used in this study were
provided by Xingliang Hou. Both of Arabidopsis and tobacco were grown under long-day conditions
(16 h light/8 h dark) at 22 ◦C in a controlled environment room. Samples (loquat tissues and Arabidopsis
plants) for qRT-PCR were immediately frozen in liquid nitrogen and stored in an ultra-low temperature
refrigerator at −80 ◦C until use.

4.2. Gene Cloning and Sequence Analysis

The coding region of EjSPL3, EjSPL4, EjSPL5, and EjSPL9 were amplified through PCR using
PrimeSTAR® Max DNA Polymerase (TaKaRa, shiga, Japan) with specific primers (Table S1). The
PCR products were connected with pGEM-T vector (Promega, Wisconsin, USA). Then the cloned
products were sequenced and blasted with the other homologous sequences in the NCBI (https:
//www.ncbi.nlm.nih.gov/). DNAMAN 6.0, ClustalX 2.0.12, GeneDoc 2.7, and MEGA 6 software were
employed for the amino acid sequences alignment and the construction of the phylogenetic tree of SPL
proteins, respectively.

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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4.3. Gene Expression Analysis with qRT-PCR

The total RNA of loquat and Arabidopsis was extracted by EASYspin Plus plant RNA extraction
kit (Aid lab, Beijing, China), and the cDNA was synthesized using PrimeScriptTM RT reagent Kit with
gDNA Eraser (TaKaRa, shiga, Japan). Quantitative real-time PCR (qPCR) was performed using iTaqTM

universal SYBR Green Supermix (Bio-Rad, Hercules, CA, USA) in the LightCycler 480 (Roche, Basel
Switzerland). Ejβ-actin [63] and TUB2 (AT5G62690) were amplified as the internal control genes for
normalization in loquat and Arabidopsis thaliana, respectively. Three technical and biological replicates
were applied and data were analyzed with previous methods [64]. Semi-quantitative RT-PCR was
employed for detecting the expression of exogenous gene in the overexpression lines of Arabidopsis.

4.4. Subcellular Localization Analysis

The full length coding sequences of EjSPL3, EjSPL4, EjSPL5, and EjSPL9 without stop codon were
separately cloned into the pGreen-35S-GFP vector [65]. These pGreen-35S-EjSPL-GFP or negative
control vectors were transformed into the Agrobacterium tumefaciens strain GV3101::psoup by heat
induction, and the transformed Agrobacterium cells were cultured and injected into epidermic cells
of tobacco (Nicotiana benthamiana) leaves for transient expression following the previously described
methods [66]. After about 48 h of injection, GFP signal was observed using the fluorescence microscope
(Observer.D1, Zeiss, Jena, Germany).

4.5. Arabidopsis Transformation

The full length coding sequences of EjSPL3, EjSPL4, EjSPL5, and EjSPL9 were alone cloned into
pGreen-35S-6HA vector [67] to generate the overexpressed EjSPLs. Then, these recombined vectors
were transformed into Arabidopsis Col-0 by the floral dip through Agrobacterium-mediated method [68].
Finally, T3 homozygous transgenic lines were screened using Basta.

4.6. Promoter Cloning and Analysis

The promoters of EjLFY, EjAP1 and EjSOC1 were cloned from the DNA of “JFZ” using PrimeSTAR®

Max DNA Polymerase (TaKaRa) with specific primers. Putative cis-acing elements in each promoter
region were found in the PlantCARE database (http://bioinformatics.psb.ugent.be/webtools/plantcare/

html/).

4.7. Dual-luciferase Reporter Assays

For the analysis of binding activity of EjSPL3, EjSPL4, EjSPL5, and EjSPL9 to the promoters of
EjLFY, EjAP1, and EjSOC1, the above promoters were cloned into pGreenII 0800-LUC double-reporter
vector, firefly luciferase (LUC), and Renilla luciferase (REN), and the full length coding sequences
of EjSPL3, EjSPL4, EjSPL5, and EjSPL9 without stop codon were cloned into pGreenII 62-SK effector
vector [69].

The recombined effectors and reporters were co-transformed into tobacco leaves with different
groups by Agrobacterium-mediated protocol, as described above. After about 48 h of transformation, we
quantified the activity of LUC and REN using the dual luciferase assay kit (Promega) with appropriate
modification [70] was quantified on the Luminoskan Ascent Microplate Luminometer (Thermo Fisher
Scientific). The binding activity was calculated by the LUC to REN ratio. Each assay was made by at
least six biological duplicates.

4.8. Data Analysis

All data analyses were performed by Excel and GraphPad Prism 6.01. Significance of differences
between data was evaluated by Student’s t test.

http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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5. Conclusions

In summary, the Eriobotrya japonica transcription factors EjSPL3, EjSPL4, EjSPL5, and EjSPL9 are
speculated to participate in flower bud differentiation and flower organ development by activating the
expression of EjSOC1, EjLFY, or EjAP1.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/1/248/s1.
Table S1; Sequence S1; Sequence S2; Figure S1.
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