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Abstract: Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder with various contributing
factors including genetics, epigenetics, environment and lifestyle such as diet. The hallmarks of
T2DM are insulin deficiency (also referred to as 3-cell dysfunction) and insulin resistance. Robust
evidence suggests that the major mechanism driving impaired 3-cell function and insulin signalling is
through the action of intracellular reactive oxygen species (ROS)-induced stress. Chronic high blood
glucose (hyperglycaemia) and hyperlipidaemia appear to be the primary activators of these pathways.
Reactive oxygen species can disrupt intracellular signalling pathways, thereby dysregulating the
expression of genes associated with insulin secretion and signalling. Plant-based diets, containing
phenolic compounds, have been shown to exhibit remedial benefits by ameliorating insulin secretion
and insulin resistance. The literature also provides evidence that polyphenol-rich diets can modulate
the expression of genes involved in insulin secretion, insulin signalling, and liver gluconeogenesis
pathways. However, whether various polyphenols and phenolic compounds can target specific cellular
signalling pathways involved in the pathogenesis of T2DM has not been elucidated. This review
aims to evaluate the modulating effects of various polyphenols and phenolic compounds on genes
involved in cellular signalling pathways (both in vitro and in vivo from human, animal and cell
models) leading to the pathogenesis of T2DM.
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1. Introduction

In 2017, an estimated 850 billion USD of global health expenditure attributed to treatment or
other health interventions for diabetes. Present estimates show that 452 million people worldwide
are affected by diabetes [1]. This number is expected to rise to 693 million by 2045, raising the cost to
958 billion USD [2]. Diabetes mellitus (DM) is a complex metabolic disorder characterised by insulin
deficiency (in type 1 diabetes, an autoimmune disease), and insulin resistance or insulin deficiency
attributable to other pathological pathways (in type 2 diabetes).

Type 2 diabetes mellitus (T2DM) is associated with several factors including hypertension, chronic
hyperglycaemia and hyperlipidaemia, resulting from insulin resistance or insulin deficiency [3].
These factors have been implicated with overproduction of reactive oxygen species (ROS) in the
mitochondrial matrixes that offset cellular redox balance and induce oxidative stress [4]. Excessive
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ROS-induced oxidative stress exerts significant damage to various cellular biomolecules including
lipids, proteins and DNA [5]. The resulting dysregulated expression in various genes leads to impaired
insulin secretion and impaired insulin signalling. This may induce advanced complications of T2DM
such as hypertension and cardiovascular diseases, collectively known as metabolic syndrome [6,7].
Plant-based products, containing polyphenols, have demonstrated remedial benefits by reversing
the metabolic processes of T2DM [8]. Dietary polyphenols and phenolic compounds (Figure 1)
including resveratrol, y-oryzanol, and epicatechins have been shown to regulate the expression
of genes involved in insulin secretion (e.g., Sirtuinl [Sirt1] and glucose transporter 2 [Glut2]) in
B-cells [9] and insulin signalling mechanisms (e.g., glucose transporter 4 [Glut4] and peroxisome
proliferator-activated receptor gamma [PPARY]) in adipocytes [10]. Various polyphenols have also
been shown to modulate the expression of insulin receptors substrate 1 (IRS-1), serine/threonine
protein kinase 1 (Akt 1) and phosphoenolpyruvate carboxykinase (PEPCK) in human hepatoma cells
(HEPG?2) [11]. The positive effects of polyphenols on these pathways are correlated with improved
(3-cell function, insulin sensitivity, reduced inflammation and lipotoxicity and reduced hepatic glucose
output, collectively accounting for normal glucose homeostatic function [12]. This review discusses the
impact of polyphenols on regulating gene expressions in major metabolic pathways associated with
the development of T2DM. Furthermore, the phenolic structures, the bioavailability and the potential
mechanisms employed by polyphenols to mitigate the pathogenesis of T2DM are also discussed.

2. Pathogenesis of Type 2 Diabetes Mellitus

Type 2 diabetes mellitus is a multifaceted disorder with various contributing factors including
genetics, epigenetics, environmental factors and lifestyle, particularly hypercaloric diets [13]. These
risk factors affect the expression of genes involved in insulin secretion in (3-cells and insulin
sensitivity across peripheral tissues. Hyperglycaemia, a hallmark of T2DM, and hyperlipidaemia
cause the overproduction of ROS and reactive nitrogen species (RNS), which then induce oxidative
stress [14]. Reactive oxygen species/RNS-induced oxidative stress affects normal cellular metabolism
of carbohydrates, proteins, fats and electrolytes, leading to genome and epigenome instability, cellular
damage, inflammation and impaired organ function [15]. In particular, pancreatic 3-cells are believed
to have low endogenous antioxidant capacity, making them highly susceptible to oxidative stress [16].
Therefore, excess ROS production in 3-cells leads to insufficient insulin secretion (3-cell dysfunction).
In hyperlipidaemia, triglyceride and fatty acid-induced ceramide synthesis, coupled with excess nitric
oxide (NO) production, initiates 3-cell apoptosis and impair insulin secretion [17].

In insulin-responsive cell types, ROS-induced oxidative stress is one of the mechanisms that
disrupt insulin signalling and reduce insulin-stimulated glucose uptake in the targeted tissues such as
skeletal muscle, liver and adipose. This leads to the development of insulin resistance [18]. Reduction
of glucose uptake by insulin-responsive tissues leads to hyperglycaemia. In the liver, insulin resistance
activates glucose production referred to as hepatic gluconeogenesis [19]. Consequently, this leads to
excessive hyperglycaemia and elevated free fatty acid (FFA), furthering cellular oxidative stress-induced
damages and T2DM complications [20]. However, various polyphenols have been shown to have
antioxidant properties that may mitigate the adverse effects of hyperglycaemia in T2DM (Figure 2).

3. Polyphenol Classes and Their Structures

Polyphenols represent a diverse group of plant products widely found in vegetables, fruits, tea,
coffee, cereals, chocolate, oils and various cocoa products [21,22]. The main classes of polyphenols
comprise flavonoids (Figure 1) and non-flavonoids [23]. The major subclasses of flavonoids include
anthocyanins, flavanones, flavones, flavonols and isoflavonoids [24]. Based on their phenolic rings
and the structural elements binding the rings, dietary polyphenols are categorised into glycones
(the sugar-phenolic group) and aglycones (the non-sugar group) [25]. Apart from flavanols, which are
usually found as aglycones, most dietary polyphenols are glycones with the hydroxyl group conjugated
by one or more sugar residues.
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3.1. Flavonoids

Anthocyanins are glycosides characterised by aglycone connected to a sugar through a
glycosidic bond. These are classified into cyanidin, delphinidin, petunidin, peonidin, malvidin
and pelargonidin (Figure 1A). Recent investigations reported that red raspberries display a high content
of cyanidin-3-O-sophoroside, cyanidin-3-O-(2”-O-glucosyl) rutinoside, cyanidin-3-O-glucoside, and
cyanidin-3-O-rutinoside [26].

Flavanones are the most diverse flavonoid group characterised by the presence of a chiral centre at
C-2 and the absence of a C2-C3 double bond (Figure 1B). The naturally occurring flavanones in plants
include C-glycosyl, hydroxy, methoxy and methylenedioxy derivatives, with the C-ring attached to
the B-ring at C-2 position [27]. Flavanone glycosides comprise hesperidin, narirutin and naringin. In
addition to their aglycones (isosakuranetin, hesperetin, naringenin, and eriodictyol) these are found in
citrus fruits such as oranges, tangerines and tangelos [28].
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Figure 1. Common structures of flavonoid classes and their derivative compounds (Chemical structures

are drawn using ChemDraw software). (A) Anthocyanins; (B) Flavanones; (C) Flavones; (D) Flavonols;

(E) Flavanols; (F) Isoflavones.

Flavones contain a double bond between C2 and C3, with B-ring attached at C2, as well as O-
and C-glycosylation, O-methylation and hydroxylation. Except for the lack of oxygenation at C-3,
flavone structures resemble flavonols and are mainly found as C-7-O-glycosides [29]. These include
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chrysin, acacetin, hispidulin and tricin (Figure 1C), which are usually found in celery, parsley, and some
other herbs.

Flavonols are conjugated glucosides with sugar attachments at the 5, 7, 3’, 4’ and
5 positions (Figure 1D). They are structurally identified by a 2-phenylchromen-4-one
(2-phenyl-1-benzopyran-4-one) skeleton and represented by quercetin, kaempferol, myricetin and
isorhamnetin. Berry, broccoli, onion together with tea and red wine are significantly rich in
quercetin-4’-O-glucoside, quercetin-3, 4’-O-diglucoside and quercetin-3-O-rutinoside [30].

The most complex subclasses of flavonoids are flavan-3-ols, structurally ranging from simple
monomers to the oligomeric and the most condensed tannins. The monomeric flavan-3-ols, contain
two chiral centres at C2 and C3 (Figure 1E), produce four isomers representing each level of B ring
hydroxylation among which (+)-catechin and (—)-epicatechin are naturally widespread [31].

Isoflavones are distinguished by the presence of the B-ring connected at C-3 instead of C-2 position
(Figure 1F). The main compounds of isoflavones include daidzein, genistein and glycitein, which
are exclusively found in leguminous plants such as soybeans. They are structurally identified as
7-0-(6"-O-malonyl)glucosides, 7-O-(6"-O-acetyl)glucosides, 7-O-glucosides, or simple aglycones [32].

3.2. Non-Flavonoids

These include phenolic acids, stilbenes and lignans; where phenolic acids are the most common
group in human diets. Phenolic acids, derived from benzoic acid and hydroxycinnamic acid, are usually
conjugated with one or more OH in the aromatic ring. Phenolic acids formed by Cg carbon
skeleton are referred to as simple phenols (e.g., thymol and phenols cresol) while the non-simple
phenols may be formed by C¢-Cq carbon configuration such as gallic, syringic and vanillic acids.
Other structural formations may involve C4-C; (e.g., phenylacetic acids and acetophenones), Cg-Cs
(ferulic and caffeic acids) or aldehydes (e.g., vanillin) [27]. Stilbenes are phytoalexins compounds
identified by C4-C,-Cg carbon structure. These are extremely low in human diets, thus, resveratrol
(3,54 -trihdroxystilbene) is the main dietary compound identified (containing cis and trans isomers)
conjugated with trans-resveatrol-3-O-glucoside (trans-piceid) derivatives. These are found in red
wine, however, in very low concentrations [33]. It is argued that the major functions of phenolic
compounds, such as antioxidant properties, metabolic activities and interactions with cellular receptors
and enzymes, are governed by their chemical structures [34]. Additionally, the rate and extent to which
these molecules are absorbed in the intestine and their bioavailability are also determined by their
structural configurations [35].

3.3. Bioavailability of Polyphenols

Bioavailability has been referred to as the fraction of a substance, after which, when orally ingested,
is absorbed and becomes available for physiological function or storage [36]. Dietary polyphenols
are naturally occurring compounds found in plants and are usually consumed through foods. Before
their bioactivities can be realised, polyphenols must first be absorbed, metabolised and then made
available in human systems. The rate and the extent to which polyphenols are absorbed and further
metabolised are influenced by several factors including their chemical structures, metabolic processing
and the degree of conjugation [22]. During the course of absorption, aglycones (compounds not linked
to glucose moiety) such as catechins, flavanols and flavones are absorbed in the small intestine and
transported via the circulatory system into various tissues [29] where they elicit various biological
effects. However, polyphenols linked to a glucose or rhamnose moiety forming ester, glycosides or
polymers cannot be absorbed in their natural forms. They are usually transported to the colon and
hydrolysed by gut microflora and digestive enzymes such as lactase phloridzin hydrolase (LPH) and
rhamnosidases [37]. This results in the production and release of aglycones and various metabolites
with diverse physiological functions [38].

Due to the nature of structural variations, the plasma concentrations of polyphenols vary greatly
from one group or compound to another (Table 1). The protective properties of polyphenols depend
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on their bioavailability, thus evidence of their absorption may possibly relate to antioxidant activities
in the plasma after consumption of polyphenol-rich foods [34].

Table 1. Bioavailability of polyphenols in human plasma. EGCG—epigallocatechins Gallate;
EC—epicatechins; Conc.—concentration.

Polyphenols Plasma Conc. (Cpax) Half-Life (Ty/) Quantities Food Source Ref.
Quercetin 0.3-0.75 umol/L 0.6h 80-100 mg Onion [39]
EGCG and EC 0.1-0.7 umol/L 1h 90-150 mg Green tea [40]
Epichatechin 0.25-0.7 pmol/L 2h 70-165 mg Cocoa [41]
Catechin 0.09 umol/L 1h 35mg Red wine [42]
Hesperetin 1.3-2.2 umol/L 5-7h 130-220 mg Orange [43]
Naringenin 6 umol/L 5-7h 200 mg Grapefruit [44]
Anthocyanins 97.4 nmol/L 1.11h 110-200 mg Elderberry extracts [45]
Lignan 30 nmol/L 9-24h 25 mg Linseed [46]
Isoflavones 1.4-4 pmol/L 6-8h 50 mg Soy [47]

It has been shown that the highest concentrations measurable in plasma following the consumption
of dietary-rich polyphenols are in the nanomolar (nM) range, peaking at 2—4 h postprandially and
are then rapidly excreted [48]. Others argue this concentration may be too low to elicit a measurable
biological effect [49]. However, the efficacies of phenolic bioactivities may be influenced by temporal
factors such as their half-life in the circulation and other factors such as the bioactivity of their
metabolic degradation products. Although the exact half-lives of polyphenols have not been precisely
determined, some compounds such as anthocyanins and flavanols were shown to last 2-3 h in the
plasma [50]. Epigallocatechin gallate, however, is an exception as it is usually eliminated slowly due to
high levels of complexing with plasma proteins. When considering isoflavones and the lignan group,
longer half-lives of 6-8 and 9-24 h, respectively, were recorded (Table 1), perhaps contributing to their
potent diabetic mitigating properties. As this evidence (Table 1) suggests, maintaining physiological
concentrations of polyphenols in the plasma may require frequent consumption of polyphenol-rich
diets, especially for those compounds that are rapidly absorbed and excreted.

3.4. The Proposed Mechanisms of Phenolic Action

The diabetic mitigating properties of polyphenols have been linked to their antioxidant and
anti-inflammatory capabilities, thus, making them the central focus in the early herbal medicine
practices for curing diseases [51]. However, the exact mechanisms driving these properties and how
polyphenols can modulate cellular signalling pathways to reverse disease processes have not yet been
properly elucidated [52]. Nevertheless, some potential mechanisms have been proposed.

3.4.1. Interaction with Cell Membrane and Receptors

One of the important mechanisms by which polyphenols may elicit their biological effect is through
initiation of cell signalling responses and interactions with both extracellular and intracellular receptors.
Most polyphenols contain both hydrophilic and hydrophobic domains allowing their localisation and
interactions with membrane components at different levels thereby generating cellular responses [53].
The polyphenol-membrane interaction then can induce membrane-associated functional changes
such as modulation of signal transduction, ion metabolite flux, ligand-receptors interactions and
membrane-associated enzymes activity [54]. For example, epigallocatechin gallate (EGCG) has been
shown to regulate the activities of cell surface receptor tyrosine kinases (RTK), including insulin receptors
(InsR) and insulin-like growth factor receptor (IGFR), by inhibiting tyrosine phosphatases [55,56], which
in turn activates tyrosine phosphorylation and represses hepatic glucose output [57]. Furthermore,
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membrane localisation places polyphenols in close proximity with hydrosoluble and lipid-soluble
radicals and as such, execute radical scavenging mechanisms [58].

Following membrane adsorption, it is claimed that polyphenols pass through membrane layers
and internalise in the cytoplasm. A study on human colon adenocarcinoma cells (HT-29) demonstrated
that after 15 min of incubation with a probed EGCG (0.5-20 uM), 75% of radioactively labelled
EGCG was found in the cytosolic compartment with some activities also observed on the membrane
fraction [59]. This indicates that polyphenols such as EGCG can directly bind to cell membrane
components (lipids and proteins) and passively transfuse into the inner membrane where they interact
with intracellular molecules and activate other pathways. However, other studies indicated that
different phenolic compounds such as resveratrol can enter the cell through active transport, suggesting
endocytosis via lipid raft [60]. This suggests that different phenolic compounds may have different
mechanisms of cellular interactions based on their structural configurations.

3.4.2. Metal Chelating Antioxidant Properties

The antioxidant characteristics of polyphenols have primarily been attributed to their ability
to regulate the production of free radicals such as RNS and ROS [61]. Some polyphenols including
flavonoids are known for their metal sequestration abilities, which prevent metal-catalysed free radical
formation [58]. This is due to the high affinity for metal ions of catechol moieties of the B-ring and
some structural elements, such as 6,7 hydroxyl and 4-carbonyl carbonyl groups, presented in various
phenolic compounds [62]. Through this binding, flavonoids can thermodynamically neutralise highly
oxidising species including superoxide, peroxyl and alkoxyl free radicals [63]. This reduces the adverse
effect of oxidative stress and restores cellular redox status. In addition to their free radical scavenging
properties, polyphenols have been shown to play an important role in modulating the expression of
genes associated with the development of type 2 diabetes.

4. Effects of Polyphenols on Gene Modulations in T2DM

4.1. Polyphenols and Gene Modulations on p-Cell Dysfunction

When considering insulin secretion pathways, the normal cellular processes leading to insulin
release are regulated under tight coupling between glucose metabolites (pyruvates, citrate, malate
and glutamate) and nucleotides (ATP, NADH and NADPH). Mitochondria play a focal role in linking
the proximal glycolytic and distal exocytosis events [64]. The proximal glycolytic process involves a
potential gradient entry of glucose molecules into the cytoplasm through glucose transporter 2 (Glut2).
Glucose is further phosphorylated to produce pyruvate, which is transported into mitochondria, leading
to the production of ATP [65]. During this process, ROS are produced by NADPH oxidase as by-products
following electron transfer from complex II to complex III [66]. Elevated ATP raises the ATP/ADP ratio
and the closure of the cellular Karp-channels, which in turn induces cell membrane depolarisation and
the opening of Ca?* channels [67]. Influx of Ca®* increases cytosolic Ca?* concentration, which then
activates insulin exocytosis [68].

Under hyperglycaemic conditions, however, excess glucose-derived pyruvate transferred to
tricarboxylic acid (TCA) cycle increases NADH/FADHj influx into the mitochondrial electron transport
chain and subsequently increases ROS production [69]. In hyperlipidaemia, elevated FFA levels lead
to both FFA and acetyl coenzyme A (CoA) oxidation in the TCA cycle. This increases NADH/FADH,
donation into the electron transport chain resulting in ROS overproduction and oxidative stress.
Increased levels of ROS can cause intracellular mitochondrial damage by inducing the opening of
mitochondrial permeability transition and depolarisation. As a result, endogenous antioxidants leak
out of mitochondria leading to mitochondrial depletion and apoptosis [70]. Mitochondrial damage
reduces the ATP/ADP ratio hindering membrane depolarisation and the opening of Ca?* channels.
Consequently, this leads to delayed and insufficient insulin secretion. However, various polyphenolic
compounds have been shown to neutralise oxidative stress by modulating the expression of genes
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along these pathways and thus improving insulin secretion and some of these extensively studied
polyphenols are discussed further below.

Resveratrol belongs to the stilbene polyphenol group (found in grapes, berries and red wine) and
possesses diverse diabetic mitigating properties. One of its major bioactivities has been implicated in
improving pancreatic 3-cell function and glucose homeostasis [71]. Treatment of rat insulinoma cells
(INS-1E) with resveratrol (25 uM) upregulated the expression of some key genes for 3-cell function
such as Glut2, mitochondrial transcription factor (Tfam), pancreatic and duodenal homebox 1 (Pdx1),
glucokinase (GK) and insulin 1 (Ins1) through the regulation of a master gene, Sirt1 [9]. These effects
potentiated a prominent glucose-stimulated insulin secretion (GSIS) response concomitantly with
increased glucose oxidation and ATP generation (Figure 2). In another study using both human (HP62)
and mouse (3-Min6) pancreatic 3-cells, supplementation with resveratrol (0.1 uM) and curcumin (1
ppm) was shown to inhibit the expression of phosphodiesterase genes (Pde3b, Pde8a and Pdel0a) by
activating the cAMP pathway, which then resulted in an increased insulin secretion and improved
-cell function [72]. However, data from human clinical studies have presented conflicting results.
While clear diabetic inhibiting effects have not been detected in a study by Boet et al. [73], the beneficial
activities of resveratrol in maintaining fasting blood glucose and reducing oxidative stress in diabetic
patients has been reported by others [74]. Variation in these results may be attributed to the fact that
these studies measured different parameters such as cholesterol level and other metabolic variables,
suggesting resveratrol may have some specific 3-cell activation properties.

Some of the flavanol compounds with potent diabetic reducing effects are catechins, which are
mainly found in cocoa (Table 2). Previous studies have reported that catechins from cocoa-rich diets can
attenuate 3-cell mass loss and ameliorate 3-cell function, by preventing oxidative stress and apoptosis
in diabetic rats [75]. In a recent study using INS-1 832/13-derived (3-cells, treatment with monomeric
cocoa catechins (0.25 ug/mL) significantly increased insulin secretion by enhancing the expression of
genes responsible for mitochondrial complex biogenesis such as Nuclear factor erythroid 2-related
factor 2 (N7f2) and Nrfl, and GA binding protein transcription factor alpha subunit (GABPA) [76]. In the
same study, however, it was demonstrated that incubation of (3-cells, INS-1 832/13, with catechins did
not increase mitochondrial content or viability. This suggests that catechins-induced (3-cell insulin
secretion may not be due to mitochondrial population or increase in mitochondrial viability. As such,
further studies are warranted to elucidate this mechanism.

Table 2. Polyphenols and gene modulations on (3-cell function pathways.

Cells/Tissue

Polyphenols/Conc. Genes Affected Function Pathways Type Ref.
In vitro models
1 SIRT1, T Glut2, 1 1 Insulin
Resveratrol (25 um) GK, T Pdx-1, 7 biogenesi Mitochondrial Cells-INS-1E [9]
Hnf-1a, 1 Tfam OBenests
Resveratrol (0.1 uM) T cAMP 1 insulin CAMP, Tnsulin ~ Cells-B-Min,
and curcumin (1 L PDE | Pde3b, | i i HP62 [72]
PMOL/) PdeSa, | Pdel0a secretion secretion
Cocoa catchechins (25 T Hmox1, T Ngol, T Mitochondrial Electron Cells-INS-1 176]
ug/mL) Nrfl, T GABPA, electron transport chain 832/13
complexes
1 GRP78, | PERK, | .
Tyrosol (25,50 uM/mL) elFa, | CHOP| g_ilfloztf‘f' ; INK Cells-NIT-1, [77]
XBP-1, | p-JNK Cels surviy
. T Nfr2, | p22phox, |
Jojoba seed extracts Casp-3, 1 SOD & | ROS/OS Mitochondrial ~ Cells-RINm5f  [78]

(150 pg/mL)

CAT
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Table 2. Cont.

Polyphenols/Conc. Genes Affected Function Pathways Cel{;}{]}l lessue Ref.

) | Dnajb9, | Xbpls, | T B-cell
Y Oryzanoi\(](ﬂ)f or 2.0 Chop, | Casp3, | function, | ER ER Stress Cells-MIN6 [79]

Hg/ CAD stress
T B-cell
Epigallocatechin T Pdx-1, T FOXO1 T function, T
gallate (1-10 uM) pAkt insulin pAky/Pdx-1 Cells-RIN-m5F [80]
secretion
Centratherum 1 B-cell Insulin

anthelminticum seeds T Glut2, Cells-B3-TC6, [81]

(6.25-50 ug/mL) function secretion

In vivo model

| Dnajb9, | Xbpls, | T B-cell R
Y-Oryzanol (320 ug/g Chop, | Casp3, | function, | ER ER Stress Pancreat1c1sl'1ets— [79]
BW) C57BL/6] mice,
CAD stress

SIRT1—Sirtuin 1; Glut2—glucose transporter 2; GK—glucokinase; Pdx-1—pancreatic and duodenal homebox
1, Hnf-la—hepatocyte nuclear factor 1 alpha; Tfam—mitochondrial transcription factor A; cAMP—Cyclic
adenosine 3,5’ -monophosphate; PDE—Phosphodiesterase; Hmox1—hemeoxygenase 1; Nqol—NAD(P)H quinone
oxidoreductase 1; Nrfl/Nrf2—Nuclear respiratory factor 1 and 2; GABPA—GA binding protein transcription factor
alpha subunit; GRP78—78-kDa glucose-regulated protein; PERK—Protein kinase-like endoplasmic reticulum
kinase; elFx—Inositol-requiring kinase alpha; CHOP—C/EBP-homologous protein; XBP-1—X box binding
protein 1; p-J]NK—Phosphorylated c-Jun N-kinase; p22phox—Neutrophil cytochrome b 22 kDa polypeptide;
SOD—Super oxide dismutase; CAT—Catalase; Dnajp9—Dna] homolog subfamily B member 9; Casp-3—Caspase 3;
CAD—Caspase-activated DNase; FOXOl—Forkhead box O1; pAkt—Phosphorylated protein kinase A; T—increased
gene expression; |—decreased gene expression.

Tyrosol is a well-known phenolic compound found in olive oil and white wine. Previous studies
have reported a potent antioxidant activity by scavenging peroxynitrite and superoxide ions relieving
cellular stress [82]. In tunicamycin-induced endoplasmic reticulum (ER) stress mouse insulinoma cells
(NIT-1), treatment with tyrosol (25 and 50 pug/mL for 48 h) was shown to downregulate the expression
of stress-related genes [binding immunoglobulin protein (BIP), inositol-requiring kinase 2o (eIF2a),
C/EBP-homologous protein (CHOP) and protein kinase-like endoplasmic reticulum kinase (PERK)] by
inhibiting the phosphorylation of c-Jun N-kinase (JNK) pathway [77]. Thus, the ER stress inhibition
properties of tyrosol enhanced insulin production by improving 3-cell mass and survival.

Extracts from jojoba seed, containing a wide range of phenolic compounds, demonstrated an
active free radical scavenging ability leading to improved (-cell protection [83]. A study using rat cells
(RINmb5f) demonstrated that jojoba seed crude extracts significantly reduced ROS levels by 69% when
compared to simmondsin, the major phenolic compound found in jojoba [78]. This pattern was also
reflected in caspase activation, antioxidant activity and pro-oxidant signalling pathways, where the
crude extracts significantly increased the expression of N#f2 while simmondsin displayed no effect.
When considering p22phox, however, it was the simmondsin extracts that inhibited the activity of
this gene. Nrf2 plays a key role in antioxidant defence, while p22phox activates NADPH oxidase,
generating excessive ROS [84,85]. The regulation of both genes by jojoba seed extracts preserved (3-cell
function demonstrated by increased insulin secretion [78].

v-Oryzanol (Orz) is another example for a structurally unique bioactive phenolic compound
(featuring a mixture of ferulic acid esters and phytosterols or triterpene alcohols) exclusively found in
brown rice [86]. In a similar manner to tyrosol, the diabetic healing effects of Orz have also been linked
to 3-cell protection against ER stress-induced apoptosis. Supplementation with Orz (0.2 or 2.0 pg/mL)
for 24 h reduced the expression of several ER stress signalling genes (ER resident DNAJ 4 (ERdj4
or Dnajb9), spliced form of X box binding protein 1 (Xbp1s) and CHOP) and apoptosis responsive
genes (caspase-3 (Casp3) and caspase-activated DNase [CAD]) in tunamycin-induced ER stress MIN6
cells [79]. This study also demonstrated that the same genes were downregulated in pancreatic islets of
HFD-fed mice (C57BL/6]) treated with Orz (320 ug/g body weight [BW]) for 13 weeks, which positively
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correlated with improved 3-cell glucose-stimulated insulin secretion (GSIS). Surprisingly, the same
study claimed that Orz did not influence some of the key genes [Pdx1, Mafa, Neorog-3 (Ngn3), Ins1
and cyclin-dependent kinase inhibitor 1A (Cdknla)] that regulate (3-cell survival and proliferation,
suggesting a specific anti-stress related mechanism for Orz. The different effects observed by tyrosol
and Orz on the same in vitro cell culture models suggest that each bioactive compound may act through
various cellular signalling pathways to regulate (3-cell function.

EGCG is the most abundant polyphenol in green tea and one of the most common flavanol
compounds with diverse diabetic relieving functions including improved insulin secretion via enhanced
(3-cell viability and glucose uptake via effective insulin signalling [80]. In rat pancreatic cells (RIN-m5F),
supplementation with EGCG (1-10 uM) for 2 h increased the expression of Pdx-1, Forkhead box O1
(FOXO1) and protein kinase B (Akt) phosphorylation, resulting in augmented 3-cell viability and
insulin secretion [80]. This suggests AKt/Pdx-1 pathway mechanism to maintain 3-cells function.
Furthermore, this study demonstrated that treatment with EGCG maintained the expression of Pdx-1
(controls mitochondrial biogenesis) for up to 72 h in high glucose (33 mM) concentrations. Since EGCG
is an aglycone molecule with maximum detectable plasma concentration only at 1 h (Table 1), gene
modulating activities lasting for up to 72 h may indicate that EGCG possibly uses a positive-feedback
mechanism to maintain protective effects long after its excretion.

Centratherum anthelminticum seeds are widely known for their hypoglycemic properties in treating
diabetes. In an in vitro study, treatment of 3-TC6 cells with (6.25-50 pg/mL) crude methanolic fraction
of C. anthelminticum seeds (CAMFs) dose-dependently increased insulin secretion by enhancing the
expression of Glut2, thereby improving {3-cells function [81]. Looking at the in vivo effect, the same
study reported that treatment of Sprague-Dawley rats with CAMFs (50 mg/kg body weight) reduced
blood glucose levels in both type 1 and type 2 diabetic subjects. When considering insulin secretion,
however, it was shown that CAMFs increased insulin secretion only in type 2 diabetic rats. These
findings suggest that CAMFs may offer diabetic mitigating effects only by upregulating 3-cells function
genes rather than (3-cell preservation.

4.2. Polyphenols and Gene Modulations on Insulin Signalling Pathways

The processes that govern insulin signalling (in insulin-responsive tissues) involves a series of
activation cascades initiated by insulin binding to its receptor resulting in tyrosine phosphorylation of
insulin receptor substrates (IRSs). This, in turn, activates phosphatidylinositol 3-kinase (PI3K) followed
by subsequent phosphorylation events leading to the activation of Akt and Ras-mitogen-activated
protein kinase (MAPK) in insulin responsive tissue types [87]. Activation of Akt/MAPK stimulates
transcription factors triggering the translocation of insulin-mediated Glut4 to the plasma membrane, of
muscle and adipose tissues, thereby allowing increased glucose transport into the cell [88]. However,
under hyperglycaemic and elevated FFA conditions, it is believed that overproduction of ROS activates
nuclear factor kappa light chain enhancer of activated B cells (NF-«B) and stress transduction pathways,
such as JNK [89]. This then initiates serine phosphorylation of IRS-1 (pIRS-1(5307), thereby inhibiting
Akt/PI3K activation and Glut4 translocation [90]. Consequently, this reduces insulin sensitivity and
disrupts cellular glucose uptake, leading to insulin resistance.

In addition to insulin secretion activities, the diabetic reducing properties of catechins have also
been related to improving insulin signalling mechanisms. In streptozocin-induced diabetic mice, three
weeks of treatment with catechin (50 mg/kg/day) significantly enhanced PI3K and the endothelial
nitric oxide synthase signalling system [91]. Consequently, this increased insulin sensitivity, improved
glucose uptake, lowered serum glucose levels and prevented vascular endothelial dysfunction [92].

Numerous studies have reported that sweet potato extracts (SPE) have a higher polyphenolic
content associated with important antioxidant functions [93]. Quantitative in vitro investigations
demonstrated that treatment of palmitate-induced insulin-resistant mouse myoblast cells (C2C12) with
extracts 500 ug/mL and 100 pg/mL of orange sweet potato tubers (OSPT) and leaves (OSPL), respectively,
improved glutathione (GSH) status, increased antioxidant capacity and enhanced antioxidant enzyme
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(Gpx and CAT) activities [94]. These effects were shown to directly upregulate the expression of some
key genes (Glut4, Nrfl and myocyte enhance factor 2A [Mef2a]) along the insulin signalling pathway.
Glut4 is the major insulin-sensitive transporter in both skeletal muscle and adipose tissues [95],
and its downregulation in glucolipotoxicity is associated with severe insulin resistance [96]. The two
transcription factors, Mef2a and Nrfl, regulate the expression of Glut4 and, ultimately, glucose uptake
metabolism [97]. In the same study, OSPT and OSPL also modulated the expression of carnitine
palmitoyl transferase 1 (CPT1) and acetyl CoA carboxylase 2 (ACC2) genes, which are involved in
the regulation of mitochondrial fatty acid oxidation and subsequently improve insulin sensitivity.
Such genetic modulatory effects of sweet potato extracts indicate a remedial potential to improve
insulin sensitivity in the targeted tissues.

The diabetic healing effects of plant-derived hormones (strigolactones) and stilbenoid polyphenol
(pinosylvin) may be related to their ability to stimulate the SIRT1 gene under diabetic conditions.
SIRT1 is a regulatory gene whose activation improves insulin sensitivity [98], mitochondrial biogenesis,
energy metabolism and decreases obesity-induced inflammation [99]. Treatment of Rat L6 myoblasts
with strigolactones and stilbenoid (60-100 uM) for 6 h enhanced glucose uptake (Table 3). Strigolactones
stimulated SIRT1, insulin receptor substrate 1 (IRS-1), phosphatidylinositol-3-kinase (PI3K), NRF1,
Glut4 and FOXO1 translocation, thereby increasing insulin signalling sensitivity and mitochondrial
biogenesis [100]. The effect of pinosylvin, in this study, was minimal at the transcription level but it
stimulated the phosphorylation of AMPK, suggesting energy metabolic pathway activities.

Table 3. Polyphenols and gene modulations on insulin signalling pathways.

Polyphenols/Conc. Gene Affected Function Pathways Cel!;}/::; 1essue Ref.
In vitro models
l
OSPT (500 pg/mL) and T Glut4, T Nrfl, 1 Hyperinsulinemia, Insulin y
OSPL (100 pg/mL) Mef2a, | Acc2. | Lipid sensitivity Cells-C2C12 - [94]
peroxidation
Strigolactone GR24 T SIRT1, T Glut4 7 T Insulin Cells-L6
and pinosylvin FOXO1 TIRS-17 sensitivity, T AKt2 mvoblast [100]
(60100 M) Ak2, Glucose uptake yoblasts
T Insulin
Hibiscus sabdariffa TIRS-1, T PI3K, | sensitivity, | Insulin receptor e
(Various dose) DPP4, | GLP-1R Starch activation (P3K)  CellsHK-2 - [101]
breakdown
C3G and PCA T PPARYy, T Glut4, 1 T Glucose
(10-100 pmol) Adiponectin uptake PPARy Cells-3T3-L1 [(10]
Rice bran extracts T PPARy, T T Insulin PPARYy/ A
(10 pg/mL and 50 ng)  Adiponectin | TNF- sensitivity adipogenesis Cells-3T3-L1 [102]
7T Insulin
Pigmented rice bran TINSR, 7T PI3K, T sensitivity, | T
extracts (50 ug/mL) Glut4, | DDP-4 Starch Akt2/PI3K Cells-3T3-L1 [103]
breakdown
T Cell viability,
Aspalathin (1 uM) T Glutd, 1 UCP2, | T Insulin pAMPK Cells-HO2  [104]

CPT1, 7 Bcl-1

sensitivity, T
Glucose uptake
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Table 3. Cont.

Polyphenols/Conc. Gene Affected Function Pathways Cell]sw)/; 1:sue Ref.
In vivo models
Polyphenol-rld} ethyl 7 Insr, 1 IRS1, 1 IRS2 1 Insulin Skeletal muscle-
acetate fraction 1 AKt2, 1 Glutd sensitivit IRS1/AKT Sprague- [105]
(200 mg/kg BW) ! y Dawley rats
Folium Mori Extract T IRS-1, T PI3Kp85a, 1 Glucose [RS-1/PI3K/Glut-4 g‘fleml fgusc}e' [106]
(2 g/kg BW) T Glut-4 uptake signalling prague-awiey

rats

Glut4—Glucose transporter 4; Nrfl—Nuclear respiratory factor 1; Mef2a—Myocyte enhance factor
2A; ACC2—Acetyl CoA carboxylase 2; SIRT1—Sirtuin 1, FOXOl—Forkhead box O1; IRS-1—Insulin
receptor substrate 1; Akt2—Protein kinase B; PI3K (p85x phosphorylated)—Phosphatidylinositol
3-kinase; DPP4—Dipeptidyl-peptidase-4; GLP-1R—Glucagon-like peptide 1 receptor; PPARy—peroxisome
proliferator-activated receptor gamma; TNF-«—Tumor necrosis factor alpha; INSR—insulin substrate receptor;
UCP2—uncoupling protein 2; CPT1—carnitine palmitoyltransferase-1; Bcl-1—B Cell Lymphoma 1; IRS1—insulin
receptor substrate 1; T—increased gene expression; |—decreased gene expression.

Another medicinal plant, Hibiscus sabdariffa L. calyx, has been known for its glucose-lowering
ability. A study using human hepatocytes (HK-2) demonstrated that treatment with Hibiscus
sabdariffa polyphenol extracts (up to 1 mg/mL) reduced pIRS-1 (5307) phosphorylation and inhibited
dipeptidyl-peptidase-4 (DPP-4) by upregulating pPI3K [101]. DPP-4 is one of the gut enzymes
responsible for breaking starch down to glucose during digestion, raising glucose levels [107]. Inhibition
of this enzyme suppresses postprandial hyperglycaemia, and upregulation of pPI3K improves insulin
signalling mechanisms, thus alleviating insulin resistance.

Anthocyanins (ACNs) are a group of flavonoids and the most widely consumed polyphenols
(with a daily intake of 180-250 mg/day) found in fruits and berries [21]. Numerous investigations
have reported diabetic reducing activities of ACN derivatives (cyanidin-3-O--glucoside (C3G) and
protocatechuic acid (PCA)) by increasing insulin sensitivity and glucose uptake [108]. In both human
and murine (3T3-L1) adipocytes, treatment with C3G and PCA (10-100 pmol/L) was shown to exhibit
insulin-like properties by enabling Glut4 membrane translocation as well as upregulating PPARy and
the adiponectin gene [10]. PPARY is a nuclear receptor that controls protein transcription in glucose and
fatty acid uptake, whereas adiponectin, a hormone produced in adipocytes, has been referred to as an
insulin sensitiser with both proteins involved in glucose and lipid metabolism [109]. Their expression,
in this study, correlated with improved insulin resistance and lower blood glucose. However, inhibition
of the PPARY encoding gene counteracted the upregulation of Glut4 and adiponectin by anthocyanins,
suggesting a direct PPARy regulatory mechanisms of these genes by C3G and PCA. Although C3G
demonstrated better modulatory activities, both compounds displayed similar patterns of genetic
regulation in both human and murine adipocytes, more effectively at 18 h incubation period.

Rice brans (RB), derived from the rice milling process, contain phenolic compounds including
ferulic acid, sinapic acid and protocatechuic acid [110]. Pigmented rice brans are considerably
rich in anthocyanins and proanthocyanidins such as cyanidin 3-glucoside (C3G) and peonidin
3-glucoside [111]. With diverse antioxidant and glucose homeostatic capabilities, diabetic reducing
effects of rice bran are well documented [112,113]. Fermented RB (FRB) extracts have been associated
with antioxidant and hypoglycaemic effects in T2DM [114]. Treatment of adipocytes (3T3-L1) with
FRB extracts (10 pg/mL and 50 pg/mL) for 12 h significantly increased the expression of PPARy
and adiponectin by neutralising free radicals formed by high glucose (25 mM)-induced oxidative
stress [103]. The same study also demonstrated that FRB extracts inhibited the expression of tumour
necrosis factor-alpha (TNF-«), resulting in an increased insulin sensitivity, reduced insulin resistance
and hyperglycaemia. The expression of Glut4 in this study, however, was not changed by the treatment
of FRB extracts, suggesting that glucose-lowering effects of FRB extracts may not be via direct activation
of Glut4 translocation.
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In contrast, pigmented rice bran extracts have demonstrated insulin-like activities both in vitro
and in vivo [115]. Treatment of 3T3-L1 with (50 pg/mL) rice bran extracts from red and purple rice
(Oryza sativa L.) for 8 and 12 h increased the expression of Glut4, Glutl, INSR, ISR1, Akt2 and PI3K,
the key components in the insulin-signalling pathway [103]. This, consequentially, increased both
insulin sensitivity and glucose uptake (Figure 2). Boue and colleagues demonstrated that pigmented
rice bran extracts also inhibited the activities of key digestive enzymes (PPD-4, a-amylase and
a-glucosidase), and this has been associated with suppressed postprandial hyperglycaemia [116].
Data from Boue and co-workers indicated that following an 8 h incubation, both red and purple rice
bran extracts increased Akt2 expression 4.59-fold and 2.29-fold, respectively. After 12 h, however,
this expression slightly reduced to 4.1-fold and 1.1-fold, respectively. Apart from the Akt2 gene, the
modulating effects of red bran extract were optimally exhibited after a 12 h incubation. With the
exception of Akt2 and the glucose transporters, however, purple rice bran extract was observed to be
more effective at 8 h incubation. When considering the bioavailability of anthocyanins (Table 1), it has
been shown that these compounds may only stay in circulation for up to 1.11 h [45]. Based on this,
the extended time response (12 h) reported by Boue and colleagues [103] suggest that other bioactive
molecules may be responsible for the modulatory effects observed.

Aspalathin (ASP) derived from Aspalathus linearis is a dietary flavonoid with potent antioxidant
capability and diverse diabetic inhibiting mechanisms. ASP exhibits a glucose-lowering effect
comparable to metformin [117]. In rat diabetic cardiomyocytes (H9c2) exposed to 33 mM glucose,
treatment with 1 pM ASP increased the expression of Glut4, ACC and uncoupling protein 2 (UCP2) by
decreasing the expression of adenine monophosphate activated protein kinase threonine 172 (pAMPK
(Thr172)) and CPT1 [70]. These effects concomitantly increased the level of antioxidant enzymes and
anti-apoptotic genes (Bcl2/Bax ratio), which, as a result, improved cell viability, insulin sensitivity and
glucose uptake.

Molineria latifolia is a perennial herbal plant with vital diabetic ameliorating properties. Findings
from previous studies reported diabetic healing efficacy of Molineria latifolia crude extract by
upregulating key genes (IRS-1, Glut4 and IGF-1) in insulin-signalling pathways [118]. An investigation
using high-fat diet (HFD)-induced diabetic animal models demonstrated that treatment of male rats
with polyphenol-rich ethyl acetate fraction (100-200 mg/kg BW) from Molineria latifolia significantly
increased the expression of insulin-signalling effectors such as IRS1, IRS2, Akt2 Glut4 and hexokinase
2 (HK2) through phosphorylation of IRS1/Akt pathway in skeletal muscle tissues [105]. This was
associated with increased insulin sensitivity and improved glucose uptake, thereby reducing insulin
resistance [119].

Mulberry leaf (Folium Mori) phenolic-rich extract is widely known for its diabetic mitigating
properties and has been extensively used in Chinese medicines to treat diabetic symptoms such as high
blood glucose, hyperlipidaemia and diabetic-induced nephropathy [120]. In treating STZ-induced
diabetic rats with (2 g/kg BW) the extract was shown to increase the expression of insulin signalling
genes (IRS-1, PI3K, and Glut4) in skeletal tissue, which, as a result, reduced insulin resistance effects,
improved glucose tolerance and significantly reduced plasma glucose levels [106]. These findings
suggest that Folium mori extract can upregulate insulin sensing genes and ameliorate insulin resistance
by activating the IRS-1/PI3K/Glut4 pathway.

4.3. Polyphenols and Gene Modulations on Gluconeogenesis Pathways

In hepatocytes, elevated FFA levels lead to ectopic fat deposition (storage of triglycerides in tissue
other than adipose tissues), which consequently inhibits IRS2-associated AKT/PI3K cascade activation
and Glut2 expression, reducing insulin-stimulated glucose uptake (insulin resistance) [121]. Ectopic
fat-induced inhibition of AKT/PI3K decreases the phosphorylation of FOXO1, which, as a result,
activates the transcription of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase
(PEPCK), the rate-limiting enzymes for gluconeogenesis [122]. The resulting increased hepatic glucose
production leads to hyperglycaemia and the development of T2DM [123,124].
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Cinnamon extracts (CE) have been reported to improve insulin sensitivity and glucose homeostasis
by regulating hepatic enzymes activities, attributed to its phytochemical composition such as cinnamic
acid, cinnamaldehyde and proanthocyanidins [125]. Supplementation of rat hepatoma cells (H4IIE)
with (1-25 pg/mL) CE was demonstrated to inhibit hepatic glucose production by downregulating
the expression of PEPCK and Gépase (Figure 2), concomitantly decreasing blood glucose levels [126].
Such insulin-like and glucose-lowering effects of CE may help to ameliorate T2DM conditions.

Fructus corni (Cornus officinalis) is another polyphenol-rich (loganin and ursolic) plant known
for its stimulatory role of liver and glucose uptake diabetic lowering activities [127]. Treatment with
50 mg/mL of Fructus corni extracts demonstrated insulin-mimetic effects by inhibiting the expression of
PEPCK [128] in the liver tissue, whereas, loganin and ursolic compounds failed to exhibit any effect
on PEPCK expression. This suggests that these two major components may not be the only putative
actives in the extract and that some other compounds may be responsible for the potent synergistic
bioactive effects in the gluconeogenesis pathway.

In addition to its potent insulin secretion abilities, EGCG also inhibits glucose production in
hepatocytes. Incubation of H4IIE cells with EGCG (5-25 pM) was shown to suppress PEPCK and
G6Pase genes via PI3K activation in a dose-dependent manner [57], resulting in reduced hepatic glucose
output (Figure 2). It was also shown, in the same study, that treatment of H4IIE with EGCG (up to
50 uM for 30-240 min) promoted tyrosine phosphorylation of insulin signalling proteins such as IR-f3,
IRS-1 and IGF-1R through Akt/PI3K activation, owing to its insulin-mimetic properties. On the contrary,
later investigations argued that the suppression of glucose production by EGCG does not involve the
activation of insulin signalling pathway, as inhibition of PI3K demonstrated no effects on the activities of
EGCG [129]. Nevertheless, both studies concurred that EGCG suppression of hepatic gluconeogenesis
was dependent on initial production of ROS, a known activator of Ca2+/calmodulin-dependent protein
kinase kinase (CaMKK) [130] and tyrosine-phosphorylated proteins [131]. The exact mechanisms
of how EGCG activates CaMKK via ROS production are, however, still unclear. As such, further
investigations are warranted to identify molecular targets for the management of T2DM.

Extracts from germinated-brown rice arguably contain a higher amount of bioactive compounds
than brown rice and have thus been known for their diverse diabetic lowering activities including blood
glucose-lowering effects, improved total plasma cholesterol and enhanced hepatic function [132]. The
diabetic mitigating properties of germinated-brown rice products have been related to the presence of
bioactive compounds such as gamma-amino butyric acid, acylated steryl glycoside, oryzanol, and other
phenolics [133]. A nutrigenomic investigation reported that exposure of hepatic cells (HEPG2) and
diabetic rats (Sprague-Dawley) to 50 ppm and 50-100 ppm of germinated-brown rice extracts,
respectively, downregulated hepatic gluconeogenic genes such as Fructose-1,6-bisphosphatase (Fbp1)
and Phosphoenolpyruvate carboxykinase 1 (Pck1), more potently than metformin [134]. This, as a result,
inhibited hepatic glucose output and reduced blood glucose levels, suggesting that germinated-brown
rice extract may provide anti-hyperglycaemic properties by inhibiting hepatic glucose production and,
therefore, help to manage T2DM.

Hesperidin and naringin are citrus flavonoids with implicated antioxidant capacity, lipid and
glucose-lowering effects [135]. In hyperglycaemic-induced diabetic mice, treatment with hesperidin
and naringin (0.2 g/kg BW) for 5 weeks downregulated G6Pase and PEPCK in liver tissue, thereby
reducing blood glucose levels [136].

Coupled with its potent 3-cell genes upregulation and insulin secretion ameliorating properties,
resveratrol has also been shown to modulate the expression of genes controlling hepatic gluconeogenesis
processes in T2DM (Table 4). Animal studies revealed that treatment of diabetic mice (C57BL/Ks]-db/db)
with resveratrol (0.02%, w/w) for 6 weeks significantly decrease the expression of hepatic gluconeogenic
genes SREBP-1c, PECK and G6P by activating AMPK and its downstream targets in liver tissues [137].
The resulting inhibition of hepatic glucose output was correlated with reduced blood glucose and
plasma FFA levels and improved hepatic function. This suggests resveratrol as a potential agent to
help manage T2DM through the activation of AMPK pathway.
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Table 4. Polyphenols and gene modulations on gluconeogenesis pathways.
Polyphenols Genes Affected Function Pathways Cell]sw)/:ll; 1:sue Ref.
In vitro models
Cinnamon extract | Hepatic ~
(1-25 ug/mL) | PEPCK, | G6Pase glucose output PEPCK Cells-H4IIE [126]
Fructus Corni | Hepatic . ~
(50 mg/mL) | PEPCK Glucose out put Gluconeogenesis Cells-H4IIE [128]
EGCG (5-25 uM) | PEPCK, | G6Pase | Hepatic PI3K Cells-HA4IIE [57]
glucose out put
| Hepatic .
EGCG (<1-10 pM) L PEPCK, | G6Pase glucose output AMPK/CaMKK Cells-HA4IIE [130]
Germinated black rice | Hepatic . )
(50 ppm) 1 Pck1, | Fbpl glucose output Gluconeogenesis Cells-HepG2 [134]
In vivo models
Germinated black rice | Hepatic . Liver- Sprague- )
(50-100 ppm) 4 Pekl, | Fbpl glucose output Gluconeogenesis Dawley rats [134]
Hesperidin and | Hepatic . Liver-C57BL/
Naringin (0.2 g/kg BW) | GbPase, | PEPCK glucose output Gluconeogenesis KsJ-db/db mice [130]
Resveratrol 1 PECK, | G6P, T GK, T Hepatic Liver-C57BL/
(0.02% w/w) | SREBP-1c¢ glucose uptake PEPCK/AMPK Ks]J-db/db mice [157]
T Glycogen
synthesis, T
Fermented food paste T G6PD, T GCK, T Hepatic insulin Glycolysis Liver-Balb/c [138]

(0.1-1.0 kg/BW) PFK, T 6PGD sensitivity, | mice

Hepatic
glucose output

PEPCK—Phosphoenolpyruvate carboxykinase; G6Pase—Glucose-6-phosphatase; Pckl1—Phosphoenolpyruvate
carboxykinase 1; Fbpl—Fructose-1,6-bisphosphatase 1; GK—glucokinase; SREBP-lc—sterol regulatory
element-binding protein-1c;  G6PD—glucose-6-phosphate dehydrogenase; =~ GCK—glucokinase gene;
PFK—Phosphofructokinase; 6PGD—6-Phosphogluconate dehydrogenase deficiency; ~AMPK—Adenine
monophosphate activated protein kinase; CaMKK—Ca2+/calmodulin-dependent protein kinase kinase;
T—increased gene expression; |—decreased gene expression.

Fermented food paste (FFP) is a source of polyphenols, including caffeolyquinic acid and
sakuranetin, with potential diabetic relieving properties associated with its hyperglycaemic regulatory
role and hepatic protective mechanisms [138]. Supplementation of streptozotocin (STZ)-induced
diabetic mice with FFP (0.1 and 1.0 g/kg BW) for 6 weeks upregulated the expression of GK,
phosphofructokinase (PFK), and 6-phosphogluconate dehydrogenase (6PGD) genes in the liver tissue,
responsible for hepatic glycolysis (breaking down of glucose to ATP) [138]. Such modulatory effects
were correlated with hepatic insulin sensitivity and glucose uptake, inhibiting hepatic gluconeogenesis.
Besides glucose output inhibit, FFP was also shown (by the same study) to increase the expression of
glucose transporter genes (Glut1, Glut4, and Glut8) and adiponectin gene, but inhibits pro-inflammatory
cytokines (IL-1p3 and TNF-x). This may suggest diverse diabetic lowering activities of FFP, indicating a
potential for glucohomeostasis management in T2DM.

4.4. Effects of Polyphenols on Lipid Peroxidation Pathways

Excessive FFAs has been associated with increased ROS, which through various molecular
receptors, attach to cell membranes and initiate progressive lipid oxidation to form lipid peroxide.
This mechanism renders the double bonds of polyunsaturated fatty acids unstable leading to cellular
injury, thereby disrupting cellular signalling mechanisms controlling glucohomeostasis [139,140].
Various polyphenols and phenolic compounds have been shown to possess adipogenic gene modulatory
effects attributed to their antihyperlipidaemic properties.
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Consumption of pomegranate (Punica granatum Linn), rich in phenolic compounds such as ellagic
acid, flavonoids, anthocyanins and punicalagin [141], has been linked to an increased level of antioxidant
enzyme activities, reduced lipid peroxidation and improved glucose homeostasis [142,143]. In vitro
study using liver cells (HepG2) and in vivo study using male Zucker diabetic rats demonstrated that
pomegranate flower extract upregulated key adipogenic genes PPARa«, carnitine palmitoyltransferase-1
(CPT-1) and acyl-CoA oxidase (ACO), while PPARy remained unchanged in both HepG2 and liver
tissue from the diabetic rats [144]. This substantially reduced triglycerides level and lipid accumulation
in the liver (ectopic lipid storage), thereby improving hepatic glucose metabolisms.

Punicic acid (PA) from pomegranate was shown to enhance the expression of PRAR « and vy, and
fatty acid-binding protein 4 (FABP4) in muscle cells of db/db mice, increasing insulin sensitivity [145].
FABP4 is involved in glucose and lipid metabolism, and its upregulation has been associated with
the development of insulin resistance and T2DM [146]. As such, its upregulation reported here may
need further investigations. Supplementation of 3T3-L1 with PA (30 uM) increased the expression of
PPARy, Glut4 (Figure 2) and reduced ROS [147]. However, in recent studies using an adipocyte cell line
(83T3-L1), PA and its main polyphenols (ellagic acid, punicalagin and the gastrointestinal metabolite
urolithin A) downregulated PPAR-y, Glut4 and FABP4 [148,149]. Although variations in study design
and cell models may contribute to the conflicting results, pomegranate extracts may upregulate the
expression of adipogenic genes to enhance free fatty acid uptake into the targeted tissues (muscles,
liver and adipose tissues) while inhibiting their expression in adipocyte saturated tissues (intestines).
Besides genetic modulation, pomegranate extracts have also been shown to inhibit the activities of key
enzymes linked to T2DM (DPP-4, x-glucosidase and lipase) and reduced lipid accumulation in 3T3-L1
adipocyte-like cells [148].

4.5. Effect of Polyphenols on Inflammatory Pathways

Under chronic glucolipotoxicity, overproduction of ROS leads to protein oxidation which
consequently generates pro-inflammatory signals (peroxiredoxin 2). This triggers an inflammatory
response recruiting M1 macrophages activated via toll-like receptor-4 (TLR-4) to produce
pro-inflammatory markers such as TNF-¢, interleukin 13 (IL-1f3), IL-6 and MCP1 [150]. IL-6 and
TNF activate the Janus kinase/signal transducer and activator of transcription (JAK/SAT) and
mitogen-activated protein kinase (MAPK), respectively, inducing cellular damage and insulin resistance.
Lines of evidence have reported that polyphenols can downregulate key inflammatory markers such
as protein kinase-c, cyclooxygenase-2 (COX-2) and inhibit major mediating pathways such as NF-«B,
inducible nitric oxide synthase (iNOS) and MAPK [151]. Phenolic compounds have also been shown
to modulate inflammatory signalling processes by altering enzymatic activities such as tyrosine and
serine-threonine protein kinase.

Punicic acid (PA) from pomegranate has also been shown to possess anti-inflammatory activities by
suppressing the expression of pro-inflammatory molecules in addition to its enhanced lipid metabolic
activities. In obese diabetic mice, treatment with 5 and 10 uM PA suppressed NF-«B and TNF-« in
both adipose and liver tissue, in a dose-dependent manner [145]. Coupled with its insulin signalling
ameliorating effects, as mentioned above, ASP has also been proven to downregulate inflammatory
genes suppressor of cytokine signalling 3 (Socs3), tumour necrosis factor receptor superfamily (Tnfsf),
CD44, JAK/STAT and MAPK) and pro-apoptotic genes (Mapk3, optic atrophy 1 (Opal) and Chuck) by
neutralising intracellular ROS and reducing DNA nick formation [104].

Besides their effective insulin signalling proficiency, the diabetic reducing behaviours of
anthocyanins have also been attributed to their anti-inflammatory and anti-oxidative functions.
Treatment of diabetic cells (HK-2) with anthocyanins derivatives C3G and cyanidin chloride (Cy)
at 50 uM markedly increased the expression of PPRARa and LXRa genes [152]. This caused the
downregulation of hyperglycaemic-induced pro-inflammatory cytokines namely intracellular adhesion
molecule-1 (ICAM1), transforming growth factor-f1 (TGFf1) and monocyte chemoattractant protein-1
(MCP-1) by inhibiting the NF-«B pathway (Figure 2). Another study (on diabetic primary HK-2 cells)
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supporting these findings demonstrated that supplementation with anthocyanins (10 uM) suppressed
the expression of apoptosis-related genes (thioredoxin interacting protein (TXNIP), Bcl-2, caspase-3 and
ROS) by inhibiting p38MAPK and ERK1/2 phosphorylation [153]. The resulting decrease in cellular
glucose level has been associated with improved diabetic nephropathy, a primary complication of
T2DM [154].
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Figure 2. Schematic summary of how various plant-derived phenolic compounds target signalling
pathways on various cell types and tissues in type 2 diabetes mellitus. ROS—reactive oxygen
species; ATP—Adenosine triphosphate; Glut2—glucose transporter 2; Glut4—glucose transporter
4; Sirt1—Sirtuin 1; Pdx-1—pancreas and duodenal homeobox 1; IRS1—insulin receptor substrate 1;
TNF-o—tumour necrosis factor alpha; ADP—Adenosine diphosphate; ES—endoplasmic reticulum
stress; AKT—Protein kinase B; PI3K—Phosphatidylinositol 3-kinase; PEPCK—Phosphoenolpyruvate
carboxykinase; Go6Pase—Glucose-6-phosphatase; PcK1—Phosphoenolpyruvate carboxykinase
1, PPARy—peroxisome proliferator-activated receptor; FABP4—fatty acid binding protein 4;
IL-1p—Interleukin 1B; NF-kB—Nuclear factor kappa light chain enhancer of activated B cells;
MAPK—mitogen activated protein kinase; ICAMI1—intracellular adhesion molecules-1; C3G—Cyanidin
3-glucoside; EGCG—Epigallocatechin gallate; black arrows: T—increased gene expression and
l—decreased gene expression); orange arrow—decreased insulin secretion under hyperglycaemic
condition; short green arrow—increased insulin secretion after polyphenols treatment; long green
arrows—different polyphenol extracts and phenolic compounds targeting various pathways.

ROS-induced inflammation is also linked with epigenetic modifications, leading to the generation
of cytokines. The flavonoid fisetin, commonly found in fruits and vegetables, has been known to offer
diabetic healing effects by regulating histone deacetylases (HDACs) activities. In hyperglycaemic
human monocytes (THP-1), treatment with fisetin (3-10 uM) was reported to activate HDACs
and downregulated histone acetylates (HAT) activities, thereby inhibiting NF-kB pathways and
suppressing cytokine release [155]. In another study using THP-1 cells, (—)-Epicatechin (EC), a major
compound in flavanols, was shown to mitigate hyperglycaemic-induced histone acetylation by initiating
chromatin remodelling which prevents p65-NF-«B binding to the TNF-« promoter thereby inhibiting
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its expression [156]. This resulted in decreased cytokine release and improved glucose uptake. Adding
to its spicy nature, curcumin (found in turmeric) has been suggested to exert potent anti-inflammatory
effects [157], validating the reasoning for seasoning. In THP-1 cells (exposed to 25 mM glucose),
supplementation with curcumin (1.5-12.5 pM) significantly downregulated HAT activity, P300 level
and CBP/p300 gene expression by suppressing NF-kB binding to TNF-oc [156].

5. Conclusions

T2DM is a multifaceted disease with various contributing factors including over-nutrition and
genetic dysregulation, leading to insulin deficiency (also referred to as 3-cell dysfunction) and insulin
resistance. Over-nutrition contributes to hyperglycaemia and hyperlipidaemia generating oxidative
stress, which, as a result, induces cellular metabolic dysregulations. This affects gene expression in
major pathways controlling glucohomeostasis. Polyphenolic compounds have antioxidant properties
and can modulate the expression of genes along these pathways to mitigate the diabetic effects
(Figure 2). The exact mechanisms of action of polyphenols are not well understood, but polyphenol
structural elements play a significant role in relation to their interactions with other proteins, absorption,
transportation and bioavailability. Further studies are warranted to identify polyphenols with specific
functions and thus may offer a therapeutic remedy for the management of T2DM.
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RTK Receptor tyrosine kinases
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Socs3 Suppressor of cytokine signalling 3
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