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Abstract: In this work, we developed quantitative structure–activity relationships (QSAR) models for
prediction of oxygen radical absorbance capacity (ORAC) of flavonoids. Both linear (partial least
squares—PLS) and non-linear models (artificial neural networks—ANNs) were built using parameters
of two well-established antioxidant activity mechanisms, namely, the hydrogen atom transfer (HAT)
mechanism defined with the minimum bond dissociation enthalpy, and the sequential proton-loss
electron transfer (SPLET) mechanism defined with proton affinity and electron transfer enthalpy. Due
to pronounced solvent effects within the ORAC assay, the hydration energy was also considered. The
four-parameter PLS-QSAR model yielded relatively high root mean square errors (RMSECV = 0.783,
RMSEE = 0.668, RMSEP = 0.900). Conversely, the ANN-QSAR model yielded considerably lower
errors (RMSEE = 0.180 ± 0.059, RMSEP1 = 0.164 ± 0.128, and RMSEP2 = 0.151 ± 0.114) due to the
inherent non-linear relationships between molecular structures of flavonoids and ORAC values.
Five-fold cross-validation was found to be unsuitable for the internal validation of the ANN-QSAR
model with a high RMSECV of 0.999 ± 0.253; which is due to limited sample size where resampling
with replacement is a considerably better alternative. Chemical domains of applicability were defined
for both models confirming their reliability and robustness. Based on the PLS coefficients and partial
derivatives, both models were interpreted in terms of the HAT and SPLET mechanisms. Theoretical
computations based on density functional theory at ωb97XD/6-311++G(d,p) level of theory were
also carried out to further shed light on the plausible mechanism of anti-peroxy radical activity.
Calculated energetics for simplified models (genistein and quercetin) with peroxyl radical derived
from 2,2′-azobis (2-amidino-propane) dihydrochloride suggested that both SPLET and single electron
transfer followed by proton loss (SETPL) mechanisms are competitive and more favorable than HAT
in aqueous medium. The finding is in good accord with the ANN-based QSAR modelling results.
Finally, the strongly predictive ANN-QSAR model was used to predict antioxidant activities for a
series of 115 flavonoids designed combinatorially with flavone as a template. Structural trends were
analyzed, and general guidelines for synthesis of new flavonoid derivatives with potentially potent
antioxidant activities were given.
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1. Introduction

Flavonoids belong to a class of naturally-occurring polyphenols ubiquitous to plant life, especially
in vegetables, fruits, flowers, seeds, and grains [1]. Generally, flavonoids can act as antioxidants with a
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variety of known mechanisms: (i) free radical scavenging, (ii) proton donation, (iii) singlet oxygen
quenching, and (iv) transition metal ion chelation [2]. Reactive oxygen species are regularly generated
in biological systems as by-products of several metabolism processes, such as energy production,
cell growth regulation, and intercellular signaling [3]. Reactive oxygen species scavenging activity
and antioxidants imbalance can, however, lead to oxidative damage of cell membranes, important
proteins and enzymes, and DNA strands. Consequently, reactive oxygen species are believed to be
the causative factor of a multitude of chronic illnesses, such as cancer, heart disease, and accelerated
aging [4]. In biological systems, there are several antioxidant physiological defenses, and flavonoids
in particular with large antioxidant capacities contribute to them greatly (e.g., via anti-inflammatory
action) [5].

Quantitative structure–activity relationships (QSAR) models are extensively used for antioxidant
activity prediction, understanding the governing mechanisms, and design of more potent
compounds [6]. When it comes to flavonoids, several QSAR models were developed throughout the
years for prediction of their antioxidant activity. For instance, Lien et al. have developed a QSAR
model correlating Trolox-equivalent antioxidant capacity (TEAC) with the number and position of
hydroxyl groups within the flavonoid ring system [7]. Building upon their work, Amić et al. developed
a QSAR model for free radical scavenging activity prediction using the position of the hydroxyl groups
as a molecular descriptor [8]. These models have exhibited reasonable predictive ability and were
statistically significant. Moreover, in the study of Amić et al., an activity cliff has formed clustering the
compounds into two distinct groups on the plot of predictive ability of the model, which points to
potential overfitting [8].

Besides the number and positions of hydroxyl groups, Rasulev et al. and Ray et al. have used
theoretical (e.g., quantum chemical), and empirical molecular descriptors for QSAR modelling [9,10].
The resulting QSAR models were of superior predictive ability. However, no external validation was
performed, and the chemical domain of applicability was not defined. To the authors’ knowledge,
QSAR studies on prediction of flavonoids antioxidant activity that would completely satisfy all the
OECD QSAR principles are virtually non-existent [11].

Due to the inherent complexity of the relationships between molecular structure of antioxidants
and their activity, linear models are often insufficient for its prediction [12]. Therefore, in this work,
besides a linear model (based on partial least squares (PLS) with the statistically inspired modification
of PLS (SIMPLS) algorithm) typically employed in such studies, we have employed an approach
using artificial neural networks (ANNs) for prediction of oxygen radical absorbance capacity (ORAC
expressed in mM TE) of flavonoids [13,14]. Distinguishable from other studies, in our work we have
not only extensively validated the QSAR models, but also interpreted both the developed models.
ANN-based QSAR models were interpreted through the use of the partial derivative (PaD) method
as opposed to the typical black box approach. Finally, the chemical domain of applicability was
defined [12,15].

Ease of interpretability of the developed QSAR models is due to the fact that they were built
using quantum mechanical (QM) descriptors calculated using density functional theory (DFT) [16,17].
Typically, parameters of the hydrogen atom transfer (HAT) mechanism such as the number of hydroxyl
groups (n(OH)), and minimum bond dissociation enthalpy (BDEmin) are used, which were thought to
be predominant in ORAC assays [18]. As such, the antioxidant activity is thought to be accounted for
with the minimum BDE which estimates the least energy required to homolytically cleave the O-H
bond at 298 K; where higher BDE corresponds to a slower HAT process. However, studies (including
our own) have shown that there is a poor correlation between ORAC values and BDEmin, with
r = −0.202, p > 0.05 [19]. As opposed to the TEAC assay, there could exist more prevalent mechanisms
(see Figure S1) other than the conventional HAT mechanism in the ORAC assay. The sequential
proton-loss electron transfer (SPLET) and single electron transfer followed by proton loss (SETPL)
mechanisms are often found to be competing. The SPLET mechanism defined with electron transfer
enthalpy (ETE) and proton affinity (PA) [20] can be preferred to HAT, especially when the assay
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is performed in a hydrophilic medium instead of a lipophilic one [19,21]. Since only the SPLET
mechanism has been thoroughly studied in the literature, we have focused only on HAT and SPLET
mechanisms in current QSAR modelling [19–21]. As a result, in the scope of this study, we have used
parameters of both the HAT and SPLET mechanisms in implicit water solvent for building the PLS-
and ANN-QSAR models. Based on the developed ANN-QSAR model, ORAC values were predicted
for a set of flavonoids designed with an in-silico combinatorial approach. Consequently, general
guidelines and perspectives for synthesis of better and potentially more potent antioxidants were
given. To further support our hypothesis, we have examined the energetics of all possible mechanisms
(HAT, SPLET, and SETPL) of the interaction of two flavonoids (namely genistein and quercetin) with
the radical initiator 2,2′-azobis (2-amidino-propane) dihydrochloride (AAPH) in both the gas phase
and implicit aqueous solvent.

2. Results and Discussion

2.1. Linear PLS-QSAR Model

The PLS-based QSAR model (Equation (1)) has been extensively validated through both LOOCV
and external validation. The optimal number of latent variables (LVs) was also determined through
LOOCV. As it can be observed from Figure S2, the optimal number of LVs was found to be 2 with the
minimum RMSECV of 0.783. Predictive ability of the cross-validated PLS-QSAR model is visualized
in Figure S3, while its predictive ability on the external validation set is depicted in Figure 1A. Even
though all the points are well dispersed along the ideal y = x line, the corresponding errors are still
quite high. More precisely, the model has exhibited a root mean square error of cross-validation
(RMSECV) of 0.783, root mean square error of estimation (RMSEE) of 0.668, and root mean square error
of prediction (RMSEP) of 0.900. Furthermore, the PLS-based QSAR model was found to be statistically
significant with an F value of 18.53, and a p value of 5.70 × 10−3. The PLS-based QSAR model has also
shown to be reliable and robust as all the compounds were found to lay within the chemical domain of
applicability of the model (Figure 1B).

ln(ORAC) = −0.049(±0.022) − 0.219(±0.019)HE−
0.264(±0.017)BDEmin(1) − 0.193(±0.017)PA(1)−
0.090(±0.010)ETE(1)

F = 18.53; p = 5.7× 10−3

(1)

2.2. Interpretation of the PLS-QSAR Model

All the coefficients of the developed PLS-based QSAR model have exhibited negative values.
This is consistent with the assumed SPLET and HAT mechanisms (Figure 1C). Specifically, the lower
the proton affinity (PA (1)) and electron transfer enthalpy (ETE (1)) barriers are, the higher the ORAC.
Accordingly, the lower the minimum bond dissociation enthalpy (BDEmin (1)) is, ORAC of a compounds
will be higher. Finally, since all the species involved in the SPLET mechanism are well solvated,
the lower hydration energy (HE) increases the antioxidant capacity. Interestingly, the linear model has
shown that the BDEmin (1) parameter is the most important, followed by the HE, PA (1), and ETE (1)
parameters. This inconsistency stems from the inherent complex non-linear relationships between QM
parameters of molecular structure of flavonoids and their corresponding ORAC values.
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Figure 1. (A) Predictive ability of the partial least squares (PLS)-based quantitative structure–activity 
relationships (QSAR) model. Navy blue circles denote the training, while pink circles denote the 
testing set observations (n = 36). (B) Applicability domain of the PLS-based QSAR model. Navy blue 
circles denote the training, while pink circles denote the testing set observations. Critical leverage (h*) 
value is 0.600 (n = 36). (C) Distribution of the coefficients of the PLS-based QSAR model. 
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Figure 1. (A) Predictive ability of the partial least squares (PLS)-based quantitative structure–activity
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set observations (n = 36). (B) Applicability domain of the PLS-based QSAR model. Navy blue circles
denote the training, while pink circles denote the testing set observations. Critical leverage (h*) value is
0.600 (n = 36). (C) Distribution of the coefficients of the PLS-based QSAR model.

2.3. Non-Linear ANN-QSAR Model

First, the ANN architecture was optimized using the protocol of Žuvela et al. consisted of eight
hidden neurons, using the Levenberg-Marquardt algorithm with mean squared error (MSE) as a
pointwise loss function for training [12,22,23]. As opposed to the PLS-QSAR model, for ANN-QSAR
models the dataset was randomly separated into 26 training, 5 testing, and 5 validation entries.
Randomized training was repeated 100 times in order to obtain a standard deviation for both the
predictions and the corresponding errors.

2.4. Validation of the ANN-QSAR Model

The ANN-QSAR model has been trained in 1000 cycles (resampling with replacement) in which
the training, testing, and validation sets were randomized. In fact, the number of hidden neurons
has been determined based on errors calculated for each set (i.e., mean error ± standard deviation).
Five-fold cross-validation (CV) has also been performed. However, with such a limited number of
samples it is unsuitable for internal validation (with an RMSECV of 0.999 ± 0.253; Figure S4) and
resampling with replacement is a more viable option. Moreover, splitting the dataset into five folds
for CV has considerably decreased the amount of samples for training the ANN model resulting in
considerably higher error. Thereby, the developed ANN-based QSAR model was found to be strongly
predictive with 0.180 ± 0.059, 0.164 ± 0.128, and 0.151 ± 0.114 for RMSEE, RMSEP on the testing, and
RMSEP on the validation sets, respectively (number of training cycles; n = 1000). Strong predictive
ability of the ANN-QSAR model can be observed from the plot of experimental ln (ORAC) values in
dependence with the predicted values (Figure 2A).
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Chemical domain of applicability was also defined for the ANN-based QSAR model with average
values of standardized residuals and leverages (n = 1000). It was found that most of the compounds lie
within the warning limits: three multiples of standard deviations of standardized residuals and the
critical leverage value of 0.577 (Figure 2B). Two outlying compounds (epicatechin and tectochrysin) can
be observed. One of them (tectochrysin) exhibited average leverage values larger than the threshold
making them structurally important for the ANN model. They are predicted quite well, confirming
stability and robustness of the model. It is worth noting that and tectochrysin exhibited the smallest
experimental ORAC values out of all the compounds (0.206 ± 0.017). On the other hand, epicatechin
was predicted quite poorly and is an outlier from the dataset.
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oxidation step. Error bars represent the standard deviation of predictions based on 1000 ANN training 
cycles. 
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oxidation step (ETE (1)), and bond dissociation enthalpy of the first oxidation step (BDEmin (1)). This 
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compounds themselves which in turn were shown to be strongly correlated to PA (1) (r = 0.80, p < 
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important parameter contributing to ORAC. As in the case of the PLS-QSAR model, the importance 

Figure 2. (A) Predictive ability of the artificial neural network (ANN)-based QSAR model.
(B) Applicability domain of the ANN-based QSAR model (n = 36). (C) Relative contributions of
the four molecular descriptors towards the targets (ORAC) as calculated using the PaD method.
Legend; hydration energy (HE), minimum bond dissociation enthalpy (BDEmin (1)), electron transfer
enthalpy (ETE (1)), and proton affinity (PA (1)). For the first three descriptors, the index 1 represents
the first oxidation step. Error bars represent the standard deviation of predictions based on 1000 ANN
training cycles.

2.5. Interpretation of the ANN-QSAR Model

Typically, in QSAR studies involving ANNs, correlations are either omitted altogether or inferred
from a linear model. It is a very misleading and detrimental practice to do so [12]. In this work, we
employed the PaD method to independently analyze and interpret the correlations and the underlying
causal relationships between the input QM parameters and the output ORAC of the ANN-based QSAR
model. Analysis of the normalized sum of squared derivatives (SSD) (Figure 2C) has shown that the
proton affinity of the first oxidation step (PA (1)) has shown to be the governing factor towards ORAC,
followed by hydration energy (HE), electron transfer enthalpy of the first oxidation step (ETE (1)),
and bond dissociation enthalpy of the first oxidation step (BDEmin (1)). This is consistent with the
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assumed SPLET mechanism, where the initial barriers are the pKa values of the compounds themselves
which in turn were shown to be strongly correlated to PA (1) (r = 0.80, p < 0.01) [19]. Based on the
PaD analysis of the developed ANN-QSAR model, the HE is the second most important parameter
contributing to ORAC. As in the case of the PLS-QSAR model, the importance of solvent effects on
ORAC are elucidated. The second barrier of the SPLET mechanism, the ETE (1) was ranked the third
most important by magnitude of its normalized SSD. Finally, the contribution of BDEmin (1) towards
ORAC was the lowest.

Besides their relative importance towards ORAC, scatter plots of partial derivatives of the four QM
parameters against themselves were constructed (Figure 3). It can be observed that for HE (Figure 3A)
the majority of partial derivatives are either negative, zero, or close to zero. For BDEmin (1), many of the
partial derivatives being <0 (Figure 3B). Although there are many positive values, the trend is generally
negative. As for the PA (1) and ETE (1), for both most of the partial derivatives are either negative or
zero (Figure 3C,D), with a general negative trend. For higher ETE (1) values (~110 kcal/mol), their
further increase has a detrimental effect on ORAC. From the analysis of the trends in partial derivatives
of the QM descriptors, a strong non-linearity is revealed. Accounting for the complex non-linear trend
between the molecular structure of flavonoids and ORAC resulted in a considerable decrease of model
error as compared to the PLS-based QSAR model.
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Figure 3. Partial derivatives for each input calculated using the PaD method. For (A) hydration
energy (HE), (B) minimum bond dissociation enthalpy (BDEmin (1)), (C) proton affinity (PA (1)), and
(D) electron transfer enthalpy (ETE (1)). For the first three descriptors, the index 1 represents the
first oxidation step. Error bars represent the standard deviation of predictions based on 1000 ANN
training cycles.
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2.6. Mechanism of Hydrogen Abstraction Transfer by Peroxyl Radical

Various plausible mechanisms have been proposed for understanding the interaction of flavonoid
antioxidants with the free radical derived from the assay of oxygen radical absorbance capacity
(ORAC).17 However, to date, the actual mechanism has not been determined conclusively. In the
ORAC assay, upon thermal decomposition, the reactive oxygen species (ROS) generator, 2,2′-azobis
(2-amidino-propane) dihydrochloride (AAPH) produces a peroxyl free radical.17 The redox reactivity
of flavonoids (ROH) can follow three possible chemical pathways: (1) HAT, (2) SPLET, and (3) SETPL
mechanisms (see Table 1). Understanding the anti-peroxyl radical activity of flavonoids is essential for
design of more potent antioxidants.

Table 1. Calculated (ωB97XD/6-311+G** level of theory) gas-phase and aqueous-phase reaction
enthalpies (∆H298, kcal/mol) of the hydrogen atom transfer (HAT), sequential proton-loss electron
transfer (SPLET), and single electron transfer followed by proton loss (SETPL) reaction pathways for
interaction of genistein and quercetin with peroxyl radical derived from 2,2′-azobis (2-amidino-propane)
dihydrochloride (AAPH).
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Genistein Quercetin

Gas Phase Water Gas Phase Water

Overall reaction

ROH + PO•→RO• + POH 5.6 0.8 −3.1 −5.6
HAT mechanism
ROH→RO• + H• 83.8 85.3 75.1 78.9
PO• + H•→POH −78.2 −84.5 −78.2 −84.5

SPLET mechanism
ROH + PO•→RO− + POH•+ 134.2 32.9 126.8 31.9
RO− + POH•+→RO• + POH −128.6 −32.1 −129.8 −37.5

SETPL mechanism
ROH + PO•→ROH•+ + PO− 144.6 32.6 137.6 28.0
ROH•+ + PO−→RO• + POH −138.9 −31.7 −140.7 −33.6

To gain some insight into the mechanistic aspect of antioxidant activity of flavonoids with the
ORAC essay, we examined the HAT, SPLET, and SETPT reaction pathways between two model
flavonoids, genistein, and quercetin (ROH), and the peroxyl radical derived from AAPH (PO•) by
locating the key intermediates on the potential energy surface. The structures and reaction enthalpies
(∆H298) of various steps of the three reaction pathways were examined at the ωB97XD/6-311+G** level
in the gas phase (ε = 1) and aqueous solution (ε = 78.4), using the implicit SMD solvation model.
Unless otherwise noted, the relative enthalpies (∆H298) given in the text correspond to the aqueous
values. The overall hydrogen abstraction reaction is predicted to be thermal neutral (genistein) or
slightly exothermic (quercetin) (Table 1). For the HAT mechanism, direct O−H homolytic dissociation
enthalpy has a high value of 79−85 kcal/mol. The second SPLET mechanism involves a proton transfer
from genistein/quercetin (ROH) to peroxy radical (PO•) as the first step, followed by an electron
transfer from RO− to POH•+. The first step is the rate-determining step with a reaction enthalpy of
32–33 kcal/mol. As one might have expected from the strong solvation effect of the ion pair intermediate
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(RO− + POH•+), the solvent effect in aqueous medium is enormous, with a sizable solvent stabilization
energy of ~100 kcal/mol in the first step (Table 1). The third SETPL mechanism, reverse sequence of
SPLET, involves an electron transfer in the first step to form ROH•+ and PO− as key intermediates,
followed by a proton transfer. The first electron transfer step is the rate-limiting step with a calculated
enthalpy (33 and 28 kcal/mol, for genistein and quercetin, respectively) comparable to that of the SPLET
pathway. Based on the calculated thermodynamics (Table 1), both SPLET and SETPL mechanisms
are predicted to be competitive and significantly more favorable than the HAT mechanism. Thus,
we conclude that the dominant mechanism for the hydrogen abstraction reaction is likely SPLET or
SETPL in the aqueous medium of the ORAC essay. This theoretical finding is in good accord with the
ANN-QSAR modelling results, which indicate the important roles of electron transfer enthalpy and
hydration energy molecular parameters of the SPLET mechanism. Our thermodynamic result also
suggests that SETPL QM descriptors, namely ionization potential (IP) and proton dissociation enthalpy
(PDE), could serve as primary descriptors in the development of the QSAR of flavonoid. Finally, we
note that the HAT mechanism cannot be ruled out in a nonpolar medium as solvent stabilization of the
ion pair intermediate (in SPLET and SETPL) is expected to be small in such an environment.

2.7. In-Silico Design of Potent Flavonoid-Based Antioxidants

Using flavone as a template (Figure 4), aromatic hydrogens bound to aromatic carbons of A-,
B- and C-rings were exchanged with hydroxyl, at up to three of its ten possible sites. This yielded
115 possible structures. Based on the values of the four previously mentioned QM parameters (PA
(1), ETE (1), BDEmin (1), and HE), their leverage values were computed and analyzed. As it can be
observed from Figure S5, all the 115 designed compounds fall well within the chemical domain of
applicability of the developed models. Using the developed ANN-based QSAR model, the ORAC
values of the 115 designed compounds were predicted and can be found in Table S1.
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Analyzing the data presented in Table S1, it can be observed that the top 55 combinatorially
designed compounds exhibited predicted ORAC values larger than 5, while the bottom 18 have
exhibited ORAC values lower than 2. On average for the first top 55 compounds (Table 2), the R3, R6,
R7, R8, R2′, R3′, and R5′ groups had the highest frequency. For the bottom 18 compounds (Table 2),
R4, R6, R7, and R3′ are the most prominent positions. The overlap between the top 55 and bottom
18 seem to be the R6, R7, and R3′ positions. This points to a fact that OH groups on these positions
in combination with OH groups on one or more of the other identified positions (e.g., R4) result in
a considerable decrease in ORAC value. Indeed, as it can be observed from Table S1, for instance,
compound #115 with a predicted ORAC value of 0.291 has OH groups at only at the R6 group, while
e.g., compound #105 has an OH group on the R4 position, besides the R6 and R2′ positions. Thereby,
four important positions to place OH groups were identified. R6, R2′, and R3′ positions, with 20, and
R7 with 19 occurrences within the first 55. The identified positions are crucial in the design of novel
flavonoids as potentially more potent antioxidants.
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Table 2. Frequency of occurrence of OH groups for the top 55 (ORAC > 5) and bottom 18 (ORAC < 2)
designed compounds.

R1 R2 R3 R4 R5 R6 R7 R8 R1′ R2′ R3′ R4′ R5′ R6′

Top 55 compounds (ORAC > 5)
0 0 11 1 7 20 19 17 0 20 20 18 16 7

Bottom 18 compounds (ORAC < 2)
0 0 0 5 0 9 5 0 2 0 5 2 3 2

The most prominent OH groups are denoted in bold.

3. Materials and Methods

3.1. Chemicals and Instruments

Fluorescein disodium and 6-hydroxy-2,5,7,8-tetramethyl-2-carboxylic acid (Trolox) were purchased
from Aldrich (Milwaukee, WI, USA), while 2,2‘-Azobis (2-amidino-propane) dihydrochloride
(AAPH) was obtained from Manchester Organics Ltd (Runcorn, UK). Thirty six flavonoids
(namely, genistein, naringenin, scutellarin, 3,5,7,8,3′,4′-hexahydroxyflavone, epicatechin, kaempferol,
eriodictyol, apigenin, quercetin, liquiritigenin, fisetin, taxifolin, hesperetin, 3,3′,4′-trihydroxyflavone,
7,3′,4′-trihydroxyflavone, diosmetin, luteolin, morin, epigallocatechin, 5,3′,4′-trihydroxyflavone,
ampelopsin, myricetin, wogonin, 7,8-dihydroxyflavone, ampelopsin, myricetin, wogonin,
7,8-dihydroxyflavone, chrysin, pinocembrin, catechin, eupatilin, baicaLien, pectolinaringenin,
3,5-dyhydroxyflavone, alpinetin, galangin, genkwanin, primuletin, tectochrysin) were purchased from
Nanjing Plant Origin Biological Technology Co., Ltd. (Nanjing, China). All other standards were
purchased from Sigma Aldrich (St. Louis, MO, USA). The ORAC assay was performed using a FL600
microplate fluorescence reader (Bio-Tek Instruments, Inc., Winooski, VT, USA). The fluorescence filters
with an excitation wavelength of 485 ± 20 nm and an emission wavelength of 530 ± 25 nm were
used. KC4 3.0 (rev 29) software was used to control the plate reader, while the samples were diluted
using the Precision XS automating pipetting system controlled using the Precision power software 1.0
(Bio-Tek Instruments, Inc.). The 96-well polystyrene microplates and the corresponding covers were
obtained from VWR International Inc (Bridgeport, NJ, USA).

3.2. Preparation of Standards and Solutions

0.414g of 2,2′-Azobis(2-amidinopropane) dihydrochloride (AAPH) was entirely dissolved in a
volume of 10 mL of phosphate buffer (75 mM, pH 7.4). A final concentration of 153 mM was achieved
and the AAPH was kept in an ice bath. Unused AAPH solutions are discarded within a period of 8
h. Stock solutions of fluorescein in a concentration of 4.19 × 10−3 mM were buffered with a 75 mM
phosphate buffer to achieve a pH of 7.4 and were kept at 4 ◦C in the dark. Fresh fluorescein was further
diluted in 75 mM phosphate buffer (pH value of 7.4) to prepare working fluorescein concentrations of
8.16 × 10−5 mM. For the Trolox standard; 0.250 g of Trolox was dissolved in 50 mL of 75 mM phosphate
buffer (pH 7.4) for a final concentration of 0.02 M. Using the same phosphate buffer, the Trolox stock
solutions in concentrations of 50, 25, 12.5, and 6.25 µM were prepared. All the analyzed flavonoids
were dissolved in an acetone/water (50:50, v/v) mixture for an initial stock concentration of 1.0 mM
and was stored at −30 ◦C in the dark. Out of the stock solution, working solutions were prepared by
dilution in phosphate buffer.

3.3. Automatic ORAC Assay

Precision XS automating pipetting system was used for automated sample preparation, while the
ORAC assay itself was performed based on the protocol reported by Huang et al. [24]. Trolox was used
as a control standard. The experiments were performed at the temperature of 37 ◦C at the pH value of
7.4 with a blank sample in parallel. The FL600 microplate fluorescence reader was programmed to
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measure the fluorescence of fluorescein every minute upon adding the AAPH. All the measurements
were expressed relative to the initial reading and blank and were performed in triplicate. Table 3
contains the structures of all the flavonoids used in this antioxidant study as well as their respective
ORAC values.

Table 3. List of flavonoids, their molecular structures a and determined oxygen radical absorbance
capacity (ORAC) values. ANN: artificial neural network.

# Name Molecular Structure ln (ORAC) PLS ANN

1 Genistein
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Table 3. Cont.

# Name Molecular Structure ln (ORAC) PLS ANN

12 Taxifolin

 

9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.942 ± 0.004 1.570 1.922 ± 0.081

13 Hesperetin

 

10 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.938 ± 0.014 1.239 2.035 ± 0.062

14 3,3′,4′-Trihydroxyflavone

1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.869 ± 0.019 1.143 1.873 ± 0.033

15 7,3′,4′-Trihydroxyflavone

 

2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.691 ± 0.016 1.368 1.658 ± 0.068

16 Diosmetin

 

3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.656 ± 0.001 1.069 1.728 ± 0.066

17 Luteolin

 

4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.611 ± 0.013 1.322 1.730 ± 0.065

18 Morin

 

5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

O

HO OH

O
OH

OH

HO
1.517 ± 0.006 1.424 1.588 ± 0.095
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20 5,3′,4′-Trihydroxyflavone

 

7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.223 ± 0.038 1.141 1.206 ± 0.041

21 Ampelopsin

 

8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.204 ± 0.038 1.842 1.245 ± 0.080

22 Myricetin

 

9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

O
OH

O

OH

HO
OH

OH
OH

1.173 ± 0.000 1.721 1.248 ± 0.077
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10 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.077 ± 0.000 0.697 0.924 ± 0.137
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Table 3. Cont.

# Name Molecular Structure ln (ORAC) PLS ANN

24 7,8-Dihydroxyflavone
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1.016 ± 0.001 0.226 1.051 ± 0.068

26 Pinocembrin

 

13 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.013 ± 0.011 0.225 0.978 ± 0.105

27 Catechin

 

14 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.012 ± 0.018 1.597 1.266 ± 0.243

28 Eupatilin

 

15 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.891 ± 0.013 0.556 0.799 ± 0.119

29 Baicalein

 

16 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.816 ± 0.003 1.382 0.730 ± 0.139

30 Pectolinarigenin

 

17 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.788 ± 0.023 0.515 0.832 ± 0.084

31 3,5-Dihydroxyflavone

 

18 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.767 ± 0.046 0.846 0.761 ± 0.095

32 Alpinetin

 

19 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.492 ± 0.009 0.410 0.505 ± 0.095

33 Galangin

 

20 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.328 ± 0.030 1.063 0.539 ± 0.123

34 Genkwanin

 

21 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−0.072 ± 0.058 0.667 −0.031 ±
0.131

35 Primuletin

 

22 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−0.969 ± 0.004 0.044 −1.055 ±
0.164

36 Tectochrysin

 

23 

 

 

−1.581 ± 0.079 −1.306 −1.575 ±
0.247

a Optimized geometries (ωB97XD/6-311++G**) are given in Figure S6.
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3.4. QSAR model Development

3.4.1. Molecular Descriptors

For development of quantitative structure–activity relationships (QSAR) models for prediction
of antioxidant activity of flavonoids, an initial matrix of predictors was generated using quantum
mechanical (QM) molecular descriptors. Two mechanisms of antioxidant activity were considered:
(i) hydrogen atom transfer (HAT) [18], and (ii) sequential proton-loss electron-transfer (SPLET)
mechanisms [20]. Three descriptors of the HAT mechanism, the minimum bond dissociation enthalpy
(BDEmin of the first and second oxidation step) and the number of hydroxyl groups (n(OH)) were
considered. Four descriptors of the SPLET mechanism, proton affinity (PA) and the electron transfer
enthalpy (ETE) for two oxidation steps were further considered. Due to major differences in the
values of these parameters in the gas phase and solvent, besides these descriptors, hydration energy
(HE) was also considered. The enthalpies were defined with equations detailed in the Supporting
Information of this paper. For the gas-phase calculations, at ωb97XD/6-311++G(d,p) level, the
following enthalpy values (H) of proton and electron were used: H(H+) = 1.481 kcal mol−1 and
H(e−) = 0.752 kcal mol−1 [25]. Similarly, for the case of water (based on SMD solvation method),
the following values: H(H+) = −250.574 kcal mol−1 and H(e−) = −17.816 kcal mol−1 were employed.
To calculate the solvated values of these constants, a model was built by “attaching” the proton or
electron to one molecule of solvent (i.e., H2O monomer) [26]. The relative permittivity of water
(εr = 78.4) was used for calculation [27].

3.4.2. Conformational Analysis and Geometry Optimization

Conformational analysis was first performed for geometries of 36 flavonoids using molecular
mechanics with the MMFF force field in Spartan 14 (Wavefunction, Inc., Irvine, CA, USA) [28,29].
Three steps were used in the conformational analysis: (i) torsion rotation, (ii) two correlated rotations
to keep the rings closed, and (iii) a six-membered ring flip. Each of the steps was followed by energy
minimization. Subsequently, all the generated conformers were optimized using the semi-empirical
Austin model 1 (AM1) method [30]. Out of these conformers, 20 lowest-energy structures were
optimized at HF/3-21G level of theory. Finally, five resulting lowest energy structures were fully
optimized using density functional theory (DFT) with the ωb97XD functional and 6-311++G(d,p) basis
set [17,31,32]. These calculations were first performed in the gas phase.

Conformational analyses in this approach were performed on the neutral, anionic and mono-radical
species of all flavonoids, while the radical anion and diradical species were directly optimized at the
highest level of theory. In addition to the gas-phase calculations, calculations were also performed
in aqueous phase using the implicit SMD continuum solvation model [33]. Geometry optimizations
were performed for radical and radical cation forms based on the lowest-enthalpy conformers of the
flavonoids. All the DFT calculations were carried out using Gaussian 16 (Gaussian, Inc., Wallingford,
CT, USA, Ref. S1 in SI) software.

3.4.3. Selection of Molecular Descriptors for QSAR Modelling

Out of all the computed QM molecular descriptors, four (namely, BDEmin (1), ETE (1), PA (1),
and HE) were a-priori selected to build ANN-based QSAR models. Although exhibiting quite strong
correlation to Trolox-equivalent antioxidant capacity (TEAC), the number of hydroxyl groups, as
expected, correlate poorly with the ORAC values [12]. According to Zhang et al., including this
descriptor into the ORAC modelling process did not improve its predictive ability [19]. Similarly, poor
correlations were exhibited between BDEmin (2), ETE (2), PA (2) and ORAC as well. Generally, diradical
and diradical anion species are known to be energetically unfavorable, and thus unstable in solution.
Given this nature, we have excluded the descriptors of the second oxidation step from the final QSAR
model. Values of the four (BDEmin (1), ETE (1), PA (1), and HE) descriptors are summarized in Table 4.
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Table 4. Summary of calculated quantum mechanical parameters of the two considered antioxidant
mechanisms.

# Compound Name n (OH) ETE (1) PA (1) BDEmin (1) HE

1 Genistein 3 89.175 33.630 83.987 −17.606
2 Naringenin 3 90.557 33.240 84.979 −19.251
3 Scutellarin 4 78.864 35.648 75.694 −17.513
4 3,5,7,8,3′,4′-Hexahydroxyflavone 6 67.389 42.831 71.402 −20.148
5 Epicatechin 5 68.664 49.233 79.080 −27.271
6 Kaempferol 4 84.259 33.472 78.913 −17.382
7 Eriodictyol 4 84.665 33.190 79.037 −21.559
8 Apigenin 3 89.514 35.499 86.196 −18.219
9 Quercetin 5 83.812 32.554 77.549 −19.749

10 Liquiritigenin 2 89.619 33.975 84.776 −19.203
11 Fisetin 4 84.471 33.907 79.560 −19.860
12 Taxifolin 5 85.166 32.360 78.708 −23.422
13 Hesperetin 3 85.930 33.240 80.352 −17.828
14 3,3′,4′-Trihydroxyflavone 3 73.742 43.939 78.863 −13.813
15 7,3′,4′-Trihydroxyflavone 3 84.339 34.749 80.271 −21.503
16 Diosmetin 3 87.176 33.782 82.141 −16.976
17 Luteolin 4 84.601 34.584 80.367 −20.391
18 Morin 5 70.199 47.284 78.665 −21.759
19 Epigallocatechin 6 78.699 35.785 75.666 −27.626
20 5,3′,4′-Trihydroxyflavone 3 84.893 34.572 80.647 −15.957
21 Ampelopsin 6 82.652 32.448 76.283 −25.878
22 Myricetin 6 81.442 33.218 75.843 −21.695
23 Wogonin 2 89.929 33.535 84.646 −11.865
24 7,8-Dihydroxyflavone 2 84.537 32.175 77.894 −14.759
25 Chrysin 2 96.442 33.750 91.375 −13.037
26 Pinocembrin 2 97.500 33.197 91.879 −13.970
27 Catechin 5 68.136 49.725 79.043 −27.785
28 Eupatilin 2 92.534 33.579 87.295 −13.554
29 Baicalein 3 81.439 33.164 75.786 −12.133
30 Pectolinarigenin 2 92.425 33.712 87.319 −12.482
31 3,5-Dihydroxyflavone 2 83.211 36.125 80.518 −7.727
32 Alpinetin 1 95.985 33.690 90.857 −17.037
33 Galangin 3 85.569 33.430 80.181 −12.605
34 Genkwanin 2 89.997 35.002 86.181 −14.537
35 Primuletin 1 89.804 40.053 91.039 −8.315
36 Tectochrysin 1 108.611 39.485 109.278 −9.220

Thermodynamic quantum mechanical (QM) parameters (ETE (1), PA (1), BDEmin (1), and HE) are expressed in
kcal mol−1. The index one refers to the first oxidation step. All the abbreviations explained in the text.

3.5. QSAR Model Development

Prior to building all the models, the dependent variable, ORAC [34] was transformed to the
natural logarithmic scale to reduce skewness. Then, partial least squares (PLS) was employed to build
initial QSAR models. The dataset was uniformly divided into 25 training and 11 validation samples
using the Kennard and Stone stratification algorithm [35]. The PLS model coefficients were fitted using
the method of least squares.

Since relationships between molecular structure and antioxidant activity are complex, the linear
PLS model does not account for the whole variability of ORAC values for the 36 investigated flavonoids.
To tackle this problem, we developed another QSAR model using a non-linear machine learning
method, namely artificial neural networks (ANNs) [36]. The ANN architecture was thoroughly
optimized employing a grid search, i.e., the number of hidden neurons was varied in [2:1:100] and
the training ratio in [60:1:75%]. Levenberg-Marquardt back-propagation algorithm was employed
for training the ANNs. Recently, we have shown in a comprehensive study that for interpretation of
ANN-QSAR models the partial derivative (PaD) method could be safely used without an experienced
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(bio)chemist present [12,15]. Thereby, the PaD method was utilized for analysis of the contribution of
the input variables towards the output (ORAC).

3.6. QSAR Model Validation

In this study, leave-one-out cross-validation (LOO-CV) was employed for the internal validation
of the PLS model, while the stratified validation set was used for its external validation. In that manner,
predictions were made for observations that were not used within any segment of the modelling
process. In the case of the ANN-based QSAR model, the dataset was randomly divided into a training
set of 26, testing set of 5, and validation set of 5 compounds. The resulting neural networks were
trained in 1000 replicated cycles (resampling with replacement), giving standard deviation values for
all the predictions and errors. Five-fold CV (resampling without replacement) was also performed.
However, it was found to be unsuitable for an ANN model with such a limited number of samples.
Model performance metrics (root mean square error of estimation or prediction (RMSEE or RMSEP,
Equation (4)) were subsequently computed. This allowed for obtaining genuinely reliable information
about the predictive ability of the developed models [37,38].

RMSEE/RMSEP =

√
(y(pred.) − y(obsd.))2

n
(2)

Chemical domain of applicability was also defined with two warning limits: (i) critical leverage
(h*), and (ii) three multiples of standard deviation of standardized residuals. Leverage values represent
the diagonal of the “hat” matrix and were obtained using the following equation:

h = diag
[
X2

T
(
X1

TX1
)−1

X2

]
(3)

where X1 represents the predictor matrix for the training set, while X2 represents the predictor matrices
for either training, testing, or validation sets [39]. Critical leverage value (h*) was computed using the
following expression:

h∗ = 3(K + 1)/N (4)

where K represents the number of variables, while N represents the number of observations. All the
chemometric computations were performed using MATLAB 2018b (MathWorks, Sherborn, MA, USA)
software [39].

3.7. In-Silico Design of Potent Flavonoid-Based Antioxidants

Based on the ANN-QSAR model, potentially potent flavonoid-based antioxidants were designed.
Using flavone as a template, hydrogens bound to aromatic carbons of A-, B-, and C-rings were
exchanged with hydroxyl groups, at any three of its ten possible sites. This yielded 115 possible
structures. Designed flavonoids were fully optimized using the DFT method atωb97XD/6-311++G(d,p)
level of theory, after which the four QM descriptors (BDEmin (1), ETE (1), PA (1), and HE) were
calculated. The developed ANN-QSAR model was applied to predict their antioxidant activity values,
and the corresponding structural trends were analysed.

3.8. Theoretical Methods

3.8.1. Partial Least Squares (PLS)

PLS [13] is a form of linear regression between a dependent variable y and k-independent variables:
x1, x2, . . . , xk. In PLS, the original X- and y- variables are compressed into latent variables (LVs) which
represent their linear combinations. They are constructed in the direction of maximum variance of
X- and y- and the maximum correlation between X- and y-. Since the few constructed LVs are then
regressed against y, PLS performs simultaneous linear regression and dimension reduction. There



Int. J. Mol. Sci. 2019, 20, 2328 16 of 20

are several algorithms to construct/extract LVs, the most widely used being the NIPALS and SIMPLS
algorithms [13,40]. In this work, the SIMPLS algorithm was employed to extract the LVs used to build
the models. Leave-one-out cross-validation (LOO-CV) was used to optimize the number of latent
variables, while CV—analysis of variance (CV-ANOVA) was used for evaluation of the statistical
significance of the resulting model [41]. Confidence intervals of the individual coefficients were
computed using the t-statistic [37].

3.8.2. Artificial Neural Networks (ANNs)

ANNs constitute machine learning methods by simulating the neural network of a living brain [36].
They consist of layers of neurons inter-connected by synapses. Here, a feed-forward multilayer
perceptron (MLP) neural network with a back-propagation learning algorithm was used [42,43].
The MLP neural network (Figure 5) consists of an input layer, a hidden layer and an output layer,
and this form was selected for regression because it is considered sufficient to be a universal function
approximator [44].
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Output of each of the neurons j, Oj, is defined as:

O j = f
(∑

wi jOi + b j
)

(5)

where wij represent weights of the synapses, Oi represents output of the previous neuron, i, while bj
represents the bias term. These neuron outputs are inputs for the transfer function, and in the case of
regression the input layer contains X-variables (predictors), the hidden layer contains neurons with a
hyperbolic tangent sigmoid transfer function:

σ(x) = tanhx =
ex
− e−x

ex + e−x (6)

while the output layer has neurons with a linear transfer combiner function.

Partial Derivative (PaD) Method

Partial derivative (PaD) method was based on viewing the multilayer perceptron (MLP) ANN as a
multivariate function consisting of vector inputs and scalar outputs. Developed by Dimopoulos, et al.
it is used to analyse the changes of the output when infinitesimal changes are introduced to the
inputs [15,45]. MLP function in the form of f : R2

→ R was considered:

y = f (X) = Φ2(WhoΦ1(WihX + b1)+b2) (7)
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where φ2 refers to the function in the output node, φ1 the activation function at hidden layer nodes,
Who and Wih the weight matrices between output and hidden layers, and between hidden and input
layers, respectively, b1 and b2 the bias for hidden and output layers, and X referred to the inputs.
Thereby, the first partial derivative of the output with respect to a particular input/descriptor was
expressed as the following:

d jk = Φ2
′(Ok)

nh∑
i=1

(
wioΦ1

′Hikw ji
)

(8)

where Ok are the outputs of the hidden layer, wio are the weights for connections between the input and
hidden layers, wji are the weights for connections between the hidden and output layers, i = 1, . . . , nh
represents the index of hidden layer neurons, j = 1, . . . , M the index of input variables, while k = 1, . . . ,
N represents the number of observations. Hik, the outputs of each hidden layer neuron are defined as:

Hik =
M∑

j=1

w jiX jk (9)

where Xjk represents the matrix of input variables.
Obtained partial derivatives with respect to the input variables were analysed to detect the minute

trends in the change of molecular descriptors. Their relative contributions with respect to the ORAC
(output variable) were calculated as a sum of squared partial derivatives (SSD).

4. Conclusions

In conclusion, we developed PLS- and ANN-QSAR models which can be used for prediction of
antioxidant activity of novel flavonoids or their derivatives. It has been extensively validated using
an external validation set, with the ANN training repeated 1000 times obtaining standard deviations
of both predictions and errors. The results have shown that as opposed to the linear PLS model,
the ANN-based QSAR model was highly predictive, reliable, and robust. Since it is based on quantum
mechanical molecular descriptors, it was easy to interpret using the PaD method. The interpretations
revealed the strong non-linearity which resulted in a decrease in model error as compared to the PLS
model. It confirmed the assumption that for flavonoids evaluated using the ORAC assay in solution,
the prevalent mechanism is the SPLET mechanism, strongly preferred over the typical HAT mechanism.
This finding is further supported by DFT calculations on the three possible reaction pathways of two
model compounds, genistein and quercetin, with the peroxy radical generated by the ORAC essay.
Both SPLET and SETPL mechanisms are found to be competitive and favored in aqueous medium.
As the calculated solvent stabilization effect of the ion pair intermediate of both SPLET and SETPL
mechanisms in aqueous medium is enormous, we believe hydration energy is also a critical factor in
designing novel compounds with potent antioxidant activity. The ANN-QSAR calculations have also
revealed the importance of the SETPL mechanism. However, the parameters of the SETPL mechanism
were not considered for current QSAR modelling, which will be the object of future work. Based on the
ANN results of this work, 115 flavone-based structures were further evaluated and their ORAC values
were predicted. Consequently, some general guidelines were given for synthesis of novel flavonoid
derivatives with potent antioxidant activities with an emphasis on R6, R7, R2′, and R3′ positions of the
flavone moiety. However, a concern has been raised about this approach by an academic editor of IJMS
on the non-suitability of capacity assays such as the ORAC assay for construction of Structure Activity
Relationships. The rationale for this concern was that the ORAC assay provides the total number of
radicals that can be scavenged by a molecule, but this does not only involve the parent compound, but
also the oxidation products of the parent compound that are formed [46,47]. Although the ORAC assay
does not measure the initial rates, the initial rate of the antioxidant reaction with ROO itself is a critical
component in the ORAC values. To have a high ORAC value, the initial rates have to be high in the first
place. ORAC assay measures the kinetics of the reaction until the fluorescence is completely quenched,
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if the reaction rate of the antioxidant with the RO2 radical is slow in the first place, the ORAC values
will be low. Ultimately, validation of the predictions through experiments shall be conducted to assess
power of the current model for prediction of ORAC values of newly designed compounds. However,
to construct a model that can take into account of the secondary and tertiary reactions between ROS
and flavonoids is nearly impossible because we do not know the primary/secondary reaction products
of the ROS and the flavonoids.
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8. Amić, D.; Davidović-Amić, D.; Bešlo, D.; Trinajstić, N. Structure-Radical Scavenging Activity Relationships

of Flavonoids. Croat. Chem. Acta 2003, 76, 55–61.
9. Rasulev, B.F.; Abdullaev, N.D.; Syrov, V.N.; Leszczynski, J. A Quantitative Structure-Activity Relationship

(QSAR) Study of the Antioxidant Activity of Flavonoids. QSAR Comb. Sci. 2005, 24, 1056–1065. [CrossRef]
10. Ray, S.; Sengupta, C.; Roy, K. QSAR Modeling of Antiradical and Antioxidant Activities of Flavonoids Using

Electrotopological State (E-State) Atom Parameters. Open Chem. 2007, 5, 1094–1113. [CrossRef]
11. OECD. Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models;

OECD Publishing: Paris, France, 2007.
12. Žuvela, P.; David, J.; Wong, M.W. Interpretation of ANN-Based QSAR Models for Prediction of Antioxidant

Activity of Flavonoids. J. Comput. Chem. 2018, 39, 953–963. [CrossRef]
13. De Jong, S. SIMPLS: An Alternative Approach to Partial Least Squares Regression. Chemom. Intell. Lab. Syst.

1993, 18, 251–263. [CrossRef]
14. Farkas, O.; Jakus, J.; Héberger, K. Quantitative Structure—Antioxidant Activity Relationships of Flavonoid

Compounds. Molecules 2004, 9, 1079–1088. [CrossRef]
15. Dimopoulos, Y.; Bourret, P.; Lek, S. Use of Some Sensitivity Criteria for Choosing Networks with Good

Generalization Ability. Neural Process. Lett. 1995, 2, 1–4. [CrossRef]
16. Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [CrossRef]
17. Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965,

140, 1133–1138. [CrossRef]
18. Huang, D.; Ou, B.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005,

53, 1841–1856. [CrossRef]

http://www.mdpi.com/1422-0067/20/9/2328/s1
http://dx.doi.org/10.1039/b311404j
http://dx.doi.org/10.1016/S1360-1385(97)01018-2
http://dx.doi.org/10.2174/092986707780090954
http://www.ncbi.nlm.nih.gov/pubmed/17346166
http://dx.doi.org/10.1021/np9904509
http://dx.doi.org/10.1021/cr0000067
http://dx.doi.org/10.1016/S0891-5849(98)00190-7
http://dx.doi.org/10.1002/qsar.200430013
http://dx.doi.org/10.2478/s11532-007-0047-3
http://dx.doi.org/10.1002/jcc.25168
http://dx.doi.org/10.1016/0169-7439(93)85002-X
http://dx.doi.org/10.3390/91201079
http://dx.doi.org/10.1007/BF02309007
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1021/jf030723c


Int. J. Mol. Sci. 2019, 20, 2328 19 of 20

19. Zhang, D.; Liu, Y.; Chu, L.; Wei, Y.; Wang, D.; Cai, S.; Zhou, F.; Ji, B. Relationship Between the Structures
of Flavonoids and Oxygen Radical Absorbance Capacity Values: A Quantum Chemical Analysis. J. Phys.
Chem. A 2013, 117, 1784–1794. [CrossRef]

20. Litwinienko, G.; Ingold, K.U. Abnormal Solvent Effects on Hydrogen Atom Abstraction. 2. Resolution of the
Curcumin Antioxidant Controversy. The Role of Sequential Proton Loss Electron Transfer. J. Org. Chem.
2004, 69, 5888–5896. [CrossRef]

21. Musialik, M.; Kuzmicz, R.; Pawłowski, T.S.; Litwinienko, G. Acidity of Hydroxyl Groups: An Overlooked
Influence on Antiradical Properties of Flavonoids. J. Org. Chem. 2009, 74, 2699–2709. [CrossRef]

22. Levenberg, K. A Method for the Solution of Certain Non-Linear Problems in Least Squares. Q. Appl. Math.
1944, 2, 164–168. [CrossRef]

23. Marquardt, D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math.
1963, 11, 431–441. [CrossRef]

24. Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-Throughput Assay of Oxygen
Radical Absorbance Capacity (ORAC) Using a Multichannel Liquid Handling System Coupled with a
Microplate Fluorescence Reader in 96-Well Format. J. Agric. Food Chem. 2002, 50, 4437–4444. [CrossRef]

25. Bartmess, J.E. Thermodynamics of the Electron and the Proton. J. Phys. Chem. 1994, 98, 6420–6424. [CrossRef]
26. Rimarčík, J.; Lukeš, V.; Klein, E.; Ilčin, M. Study of the Solvent Effect on the Enthalpies of Homolytic

and Heterolytic N–H Bond Cleavage in P-Phenylenediamine and Tetracyano-p-Phenylenediamine. J. Mol.
Struct. THEOCHEM 2010, 952, 25–30. [CrossRef]

27. Wilhelm, E.; Battino, R. Thermodynamic Functions of the Solubilities of Gases in Liquids at 25.Deg. Chem. Rev.
1973, 73, 1–9. [CrossRef]

28. Halgren, T.A. Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization, and Performance of
MMFF94. J. Comput. Chem. 1996, 17, 490–519. [CrossRef]

29. Halgren, T.A. MMFF VI. MMFF94s Option for Energy Minimization Studies. J. Comput. Chem. 1999, 20,
720–729. [CrossRef]

30. Dewar, M.J.S.; Zoebisch, E.G.; Healy, E.F.; Stewart, J.J.P. Development and Use of Quantum Mechanical
Molecular Models. 76. AM1: A New General Purpose Quantum Mechanical Molecular Model. J. Am.
Chem. Soc. 1985, 107, 3902–3909. [CrossRef]

31. Chai, J.-D.; Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with Damped Atom–atom
Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [CrossRef]

32. Rassolov, V.A.; Ratner, M.A.; Pople, J.A.; Redfern, P.C.; Curtiss, L.A. 6-31G*basis Set for Third-Row Atoms.
J. Comput. Chem. 2001, 22, 976–984. [CrossRef]

33. Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and
on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions.
J. Phys. Chem. B 2009, 113, 6378–6396. [CrossRef]

34. Cao, G.; Alessio, H.M.; Cutler, R.G. Oxygen-Radical Absorbance Capacity Assay for Antioxidants. Free Radic.
Biol. Med. 1993, 14, 303–311. [CrossRef]

35. Kennard, R.W.; Stone, L.A. Computer Aided Design of Experiments. Technometrics 1969, 11, 137–148.
[CrossRef]

36. Haykin, S. Neural Networks: A Comprehensive Foundation; Macmillan: New York, NY, USA, 1994.
37. Massart, D.L.; Vandeginste, B.G.M.; Buydens, L.M.C.; de Jong, S.; Lewi, P.J.; Smeyers-Verberke, J. Handbook of

Chemometrics and Qualimetrics; Elsevier: Amsterdam, The Netherlands, 1997; Volume 20B.
38. Gramatica, P. Principles of QSAR Models Validation: Internal and External. QSAR Comb. Sci. 2007, 26,

694–701. [CrossRef]
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