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Abstract: TCDD-inducible poly-ADP-ribose polymerase (TIPARP) is an aryl hydrocarbon receptor
(AHR) target gene that functions as part of a negative feedback loop to repress AHR activity. Tiparp−/−

mice exhibit increased sensitivity to the toxicological effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD), including lethal wasting syndrome. However, it is not known whether Tiparp−/− mice also
exhibit increased sensitivity to other AHR ligands. In this study, we treated male Tiparp−/− or wild type
(WT) mice with a single injection of 100 mg/kg 3-methylcholanthrene (3MC). Consistent with TIPARP’s
role as a repressor of AHR signaling, 3MC-treated Tiparp−/− mice exhibited increased hepatic Cyp1a1
and Cyp1b1 levels compared with WT mice. No 3MC-treated Tiparp−/− mice survived beyond day 16
and the mice exhibited chylous ascites characterized by an accumulation of fluid in the peritoneal
cavity. All WT mice survived the 30-day treatment and showed no signs of fluid accumulation. Treated
Tiparp−/− mice also exhibited a transient and mild hepatotoxicity with inflammation. 3MC-treated WT,
but not Tiparp−/− mice, developed mild hepatic steatosis. Lipid deposits accumulated on the surface
of the liver and other abdominal organs in the 3MC-Tiparp−/− mice. Our study reveals that Tiparp−/−

mice have increased sensitivity to 3MC-induced liver toxicity, but unlike with TCDD, lethality is due
to chylous ascites rather than wasting syndrome.

Keywords: TCDD-inducible poly-ADP-ribose polymerase (TIPARP); 3-methylcholanthrene; chylous
ascites; wasting syndrome; 2,3,7,8-tetrachlorodibenzo-p-dioxin

1. Introduction

The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that mediates
a wide range of biological effects in response to endogenous and dietary ligands. Toxicological
effects are induced upon activation by numerous environmental and synthetic ligands, including
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and polycyclic aromatic hydrocarbons (PAHs) such as
3-methylcholanthrene (3MC) [1]. In response to 3MC or other AHR agonists, the AHR translocates to
the nucleus where it heterodimerizes with AHR nuclear translocator (ARNT) and the complex then
binds to AHR response elements (AHREs) located in the 5′ regulatory region of hundreds of genes,
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including cytochrome P450 1A1 (CYP1A1), CYP1B1, and TCDD-inducible poly-ADP-ribose-polymerase
(TIPARP) [1,2].

PAHs are a group of ubiquitous environmental pollutants that are generated from anthropogenic
and natural incomplete combustion processes [3]. Important sources include cigarette smoke, diesel
exhaust, and grilled foods [4]. The main routes of exposure for humans are via the inhalation of PAHs
from the ambient air and through the ingestion of charred foods [5]. The toxic mechanism of action
for PAHs includes both their well-established genotoxicity, which results from their bioactivation to
mutagenic metabolites that form DNA adducts, and their ability to mediate non-genotoxic effects
through various intracellular receptors [6,7]. The metabolism of PAHs is multifaceted with the
AHR-mediated induction of drug-metabolizing enzymes, such as CYP1A1 and CYP1B1, being central
to the generation of reactive metabolites [3]. 3MC is a synthetic PAH that is genotoxic and mutagenic,
and has also been reported to increase cell proliferation, alter reproduction, modulate estrogen signaling,
and activate the AHR [8–10]. However, unlike TCDD, a single high-dose exposure to 3MC does not
cause severe hepatotoxicity or induce wasting syndrome, although mild hepatosteatosis has been
reported [11].

TIPARP, also known as poly-ADP-ribose polymerase 7 (PARP7) or ADP-ribosyltransferase
diphtheria toxin-like 14 (ARTD14), is an AHR target gene and a member of the PARP family
of proteins, which catalyze the transfer of ADP-ribose units onto themselves or onto acceptor
proteins [12–14]. ADP-ribosylation is a post-translational modification that is involved in numerous
cellular processes, including metabolism, DNA repair, immune cell function and regulation, protein
stability, and gene regulation [15]. TIPARP is a mono-ADP-ribosyltransferase and it is predominantly
localized in the nucleus in many cell types [12,16]. Its cellular localization is dependent on a N-terminal
nuclear localization signal and a CCCH-zinc finger domain [17]. TIPARP is involved in several
biological processes including innate immunity, responses to viral infection, stem cell pluripotency,
astrocyte autophagy, and the regulation of transcription [12,18–20]. TIPARP expression is induced by
platelet-derived growth factors [21], viral infection [22], nuclear hormone receptors [23] and AHR [2].
Increasing evidence suggests that TIPARP functions as part of a negative feedback loop to regulate
AHR signaling through mono-ADP-ribosylation [12,13]. Tiparp−/− and hepatocyte-specific Tiparp−/−

mice treated with a normally non-lethal dose of 10 µg/kg TCDD exhibit increased sensitivity to
TCDD-induced toxicities including the development of steatohepatitis, hepatotoxicity, and lethal
wasting syndrome [13,24]. However, whether Tiparp−/− mice exhibit increased sensitivity to other AHR
ligands has not been determined.

In the present study, we treated male Tiparp−/− or wild type (WT) mice with a single non-lethal
dose of 100 mg/kg 3MC and monitored them for up to 30 days. Interestingly, no 3MC-treated Tiparp−/−

mice survived beyond day 16. This increased sensitivity to 3MC-induced lethality was not due to
severe hepatotoxicity or wasting syndrome, but rather the mice exhibited a chylous ascites condition
characterized by the peritoneal accumulation of a viscous fluid with high lipid and protein content.
Our data show that TIPARP has an important role in modulating the differential toxic effects of two
distinct AHR ligands, and further characterize it as a key regulator of the AHR signaling pathway.

2. Results

In a previous study by our group, we reported that treatment of male or female Tiparp−/− mice
with a single intraperitoneal (IP) injection of 100 µg/kg TCDD resulted in an enhanced sensitivity to
wasting syndrome causing death between day 3 and 5; treated WT mice survived to the end of the
30-day period [13]. These data provided further support for TIPARP’s role as a negative regulator of
AHR activity [12]. To determine if Tiparp−/− mice exhibit increased AHR signaling in the presence of
another, but readily metabolizable AHR ligand, male Tiparp−/− mice and WT mice were treated with a
single IP injection of 100 mg/kg 3MC. The hepatic mRNA expression levels of Cyp1a1 and Cyp1b1
were significantly higher in 3MC-treated Tiparp−/− mice compared with WT mice after a 6 h exposure
(Figure 1A,B). Tiparp mRNA levels were increased in WT but not in Tiparp−/− mice (Figure 1C).
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Figure 1. Hepatic gene expression of aryl hydrocarbon receptor (AHR) target genes in male mice 6 h 
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expression levels of (A) Cyp1a1, (B) Cyp1b1 and (C) Tiparp were determined by qPCR. Data represent 
the mean ± SEM; n = 3 for all genes. a p < 0.05 two-way ANOVA comparison between genotype-
matched corn oil- and 3MC-treated mice and b p < 0.05 two-way ANOVA comparison between 
treatment-matched WT and Tiparp-/- mice followed by a Tukey’s post hoc test. 

To study if Tiparp-/- mice exhibit increased sensitivity to 3MC-induced toxicity, we treated  
Tiparp-/- and WT mice with a single IP injection of 100 mg/kg 3MC and monitored them for up to 30 
days. All WT mice treated with 3MC survived the duration of the study without any signs of distress. 
In contrast, the 3MC-treated Tiparp-/- mice died on or between days 8 to 16 (Figure 2A). The mice were 
either found dead in the morning on the day of death or had to be humanely euthanized due to poor 
health. An initial decrease in body weight of 3MC-treated Tiparp-/- mice was followed by an increase 
after day 8. No significant differences in food intake were observed. This was most likely due to high 
variability among the animals and the lower number of surviving Tiparp-/- mice as the 30-day 
experiment progressed. (Figure 2B,C). In each of the 3MC-treated Tiparp-/- mice, abdominal distention 
was evident around days 5–6. This distention was due to the accumulation of fluid in the peritoneum, 
which may have accounted for the gradual increase in weight over time. All fluid samples obtained 
from these mice were milky white and viscous (Figure 2D).  

 
Figure 2. Thirty-day survival study characteristics. (A) Kaplan–Meier survival curves indicating the 
survival rate of 3MC-treated WT (+/+) and Tiparp-/- (-/-) mice. Mice were euthanized when body weight 
loss exceeded 20% of the baseline (day 0) value or if the animal had reached an endpoint as described 
in the Materials and Methods. (B) Daily body weights expressed as a percent of baseline values (i.e., 
day 0). (C) Daily food intake measurements expressed as a gram per gram percentage of daily mouse 
body weight normalized to baseline values. For B and C, the data represent the mean ± SEM; n = 4–6. 

Figure 1. Hepatic gene expression of aryl hydrocarbon receptor (AHR) target genes in male mice 6 h after
treatment with 100 mg/kg 3MC. Hepatic RNA was isolated, reverse transcribed and mRNA expression
levels of (A) Cyp1a1, (B) Cyp1b1 and (C) Tiparp were determined by qPCR. Data represent the mean ±
SEM; n = 3 for all genes. a p < 0.05 two-way ANOVA comparison between genotype-matched corn oil-
and 3MC-treated mice and b p < 0.05 two-way ANOVA comparison between treatment-matched WT
and Tiparp−/− mice followed by a Tukey’s post hoc test.

To study if Tiparp−/− mice exhibit increased sensitivity to 3MC-induced toxicity, we treated
Tiparp−/− and WT mice with a single IP injection of 100 mg/kg 3MC and monitored them for up to 30
days. All WT mice treated with 3MC survived the duration of the study without any signs of distress.
In contrast, the 3MC-treated Tiparp−/− mice died on or between days 8 to 16 (Figure 2A). The mice
were either found dead in the morning on the day of death or had to be humanely euthanized due to
poor health. An initial decrease in body weight of 3MC-treated Tiparp−/− mice was followed by an
increase after day 8. No significant differences in food intake were observed. This was most likely due
to high variability among the animals and the lower number of surviving Tiparp−/− mice as the 30-day
experiment progressed. (Figure 2B,C). In each of the 3MC-treated Tiparp−/− mice, abdominal distention
was evident around days 5–6. This distention was due to the accumulation of fluid in the peritoneum,
which may have accounted for the gradual increase in weight over time. All fluid samples obtained
from these mice were milky white and viscous (Figure 2D).

We conducted a subsequent acute 6-day toxicity study to characterize the effects of 3MC on the
Tiparp−/− mice. Similar to that observed in the 30-day study, a translucent to milky white and viscous
fluid accumulated in the peritoneal cavities of all 3MC-treated Tiparp−/− mice on day 6 (Figure 3A).
However, the samples were less viscous and more translucent compared with treated Tiparp−/− mice in
the 30-day study. Biochemical analyses of the collected fluid samples from the 3MC-treated Tiparp−/−

mice in the 30-day and 6-day study revealed high triglyceride levels and high protein concentrations.
The triglyceride levels of the viscous fluid ranged from 322 to 1923 mg/dL, while protein levels ranged
from 1.9 to 2.6 g/dL (Table 1). Wright Giemsa staining of the fluid revealed a high concentration of
immune cells (Figure 3B). Flow cytometry was then used to phenotype the cells. The majority of the
cells were hematopoietic (CD45.2+) and they were predominantly innate cell types since they were
negative for CD3 and CD19, which are markers for T and B cells, respectively. These innate cells
were not antigen-presenting cells (CD11c-, MHC II-) but were predominantly neutrophils (Ly6C+,
Ly6G+) (Figure 3C). Based on these biochemical parameters, the fluid was similar to chylous ascites in
humans [25], except for the predominance of neutrophils rather than the characteristic lymphocytic
population observed in patients (Table 1).
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Figure 2. Thirty-day survival study characteristics. (A) Kaplan–Meier survival curves indicating the
survival rate of 3MC-treated WT (+/+) and Tiparp−/− (−/−) mice. Mice were euthanized when body
weight loss exceeded 20% of the baseline (day 0) value or if the animal had reached an endpoint as
described in the Materials and Methods. (B) Daily body weights expressed as a percent of baseline
values (i.e., day 0). (C) Daily food intake measurements expressed as a gram per gram percentage of
daily mouse body weight normalized to baseline values. For B and C, the data represent the mean
± SEM; n = 4–6. (D) Representative images of the closed peritoneum and opened peritoneal cavity
of WT (left; day 30) and Tiparp−/− mice (right; day 16). Images on the top show an intact peritoneum
with fluid accumulation in the 3MC-treated Tiparp−/− mice (right) compared with similarly treated
WT mice (left). Images on the bottom show the open abdomen and all tissues in the peritoneal cavity.
Reduced epididymal white adipose tissue was observed in the Tiparp−/− mice with remnants of the
fluid adhering to the tissues.

Table 1. Characteristics of chylous ascites observed from 3MC-treated Tiparp−/− mice. Values for the
clinical diagnosis of chylous ascites were adapted from Cárdenas and Chopra (2002) [25]. Values in
parentheses indicate the number of observations over the number of total observations.

Measure Clinical Diagnosis of
Chylous Ascites Tiparp−/− Mice Days 8–16 Tiparp−/− Mice Day 6

Appearance Milky white and cloudy Milky white and cloudy (7/7) Milky white and cloudy (4/6)
White and translucent (2/6)

Triglyceride Level >200 mg/dL 48–2065 mg/dL 322–1923 mg/dL
Cell Population Lymphocytes Neutrophils Neutrophils

Total Protein 1.1–7.0 g/dL 1.9–5.1 g/dL (mean: 3.8 g/dL) 1.9–2.6 g/dL (mean: 2.2 g/dL)

Since liver toxicity is a contributing factor to chylous ascites, we examined the livers of 3MC-
and corn oil treatments in WT and Tiparp−/− mice. Significant reductions in body weight for both
treated WT and Tiparp−/− mice were observed at day 3, but only for Tiparp−/− mice at day 6 (Figure 4A).
Both 3MC-treated WT and Tiparp−/− mice had increased liver weights (Figure 4B). 3MC-treated
Tiparp−/− mice had a significant, but transient, increase in serum alanine aminotransferase (ALT)
activity (Figure 4C) on day 3, which returned to baseline on day 6. We next determined the hepatic
AHR-regulated gene expression after 6 h and at day 6. The mRNA levels of Cyp1a1 were not
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significantly different between genotypes; however, Cyp1b1 mRNA levels were significantly greater in
3MC-treated Tiparp−/− mice compared with similarly treated WT mice (Figure 4D,E).Int. J. Mol. Sci. 2019, 20, x 5 of 15 
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Figure 3. Wright Giemsa stain and flow cytometry analysis of the chylous ascites collected from
the peritoneum of 3MC-treated mice on day 6. (A) Accumulation of fluid observed in 3MC-treated
WT and Tiparp−/− mice. (B) Cellular bodies present in the ascitic fluid. (C) To phenotype the
cellular infiltrate, flow cytometry was used and identified the populations to be predominantly
neutrophilic. Representative plot of four ascites samples showing a greater neutrophil population
(Ly6C+, Ly6G+). Peritoneal fluid was stained directly. Almost all cells in fluid are hematopoietic
(CD45.2+) and the majority are innate cell types (CD3- and CD19-). Of these innate cell types, they are
not antigen-presenting cells (CD11c- and MHC II-).
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Figure 4. Six-day exposure to 100 mg/kg 3MC causes a transient increase in alanine aminotransferase
(ALT) activity and increased hepatic Cyp1b1 but not Cyp1a1 expression levels. (A) Body weight.
(B) Liver weight. (C) ALT activity levels. Gene expression levels of Cyp1a1 (D), Cyp1b1 (E), and Tiparp
(F). Data represent the mean ± SEM; n = 3 for all genes. a p < 0.05 two-way ANOVA comparison
between genotype-matched corn oil- and 3MC-treated mice and b p < 0.05 two-way ANOVA comparison
between treatment-matched WT and Tiparp−/− mice followed by a Tukey’s post hoc test.
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The histopathology of the liver was examined to determine if there was any indication of liver
toxicity or injury (Figure 5A). Hematoxylin & Eosin (H&E) staining of liver sections from corn oil-treated
animals displayed an intact architecture with no migratory immune cells from the portal triad or the
central vein. WT animals treated with 3MC showed mild microvesicular steatosis as evidenced by
vacuolated hepatocytes. Tiparp−/− animals treated with 3MC displayed an increase in the number of
resident Küpffer cells in the sinusoids, signifying a mild inflammatory cell infiltration. In support
of this increased inflammation, higher levels of the AHR-responsive inflammatory cytokines and
chemokines Serpine 1, Il6, Cxcl1, and Cxcl2 were detected in 3MC-treated Tiparp−/− mice compared
with treatment-matched WT mice (Figure 5B–E). No significant differences in Tnfα and Il-1β levels
were observed (Figure 5B–E).
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Figure 5. 3MC induces increased inflammation and inflammatory cytokine levels in Tiparp−/− compared
with WT mice. (A) Hematoxylin & Eosin (H&E) staining of the liver lobe at day 6 after corn oil or 3MC
treatment. 100×magnification. Scale bar represents 100 µm. Gene expression levels of Serpine 1 (PAI-1)
(B), Il6 (C), Cxcl1 (D), Cxcl2 (E), Tnfα (F), and IL1β (G). Data represent the mean ± SEM; n = 3 for all
genes. a p < 0.05 two-way ANOVA comparison between genotype-matched corn oil- and 3MC-treated
mice and b p < 0.05 two-way ANOVA comparison between treatment-matched WT and Tiparp−/− mice
followed by a Tukey’s post hoc test.

Gross liver images from WT corn oil- and 3MC-treated mice, as well as the Tiparp−/− corn
oil-treated animals, displayed a normal liver appearance with a rich red-brownish coloration (Figure 6A).
All Tiparp−/− mice treated with 3MC were found with white, lobular lesions encapsulating their livers.
The source of this white infiltrate appeared to originate from the right lobe, where a white mass
was also found in the area. To investigate the involvement of the AHR in hepatic steatosis, Oil Red
O staining was conducted to visualize neutral fats. Both WT and Tiparp−/− corn oil-treated mice
exhibited normal liver histology (Figure 6B). Conversely, 3MC-treated WT mice had microvesicular fat
accumulation around the central vein. However, this was not observed in the 3MC-treated Tiparp−/−

mice. No genotype differences in 3MC-induced lipid uptake transporter, Cd36, levels were observed
(Figure 6C). No significant increases in the expression levels of genes involved in lipogenesis (Fasn,
Srebp1) and β-oxidation (Cpt1a) were determined (Figure 6D–F).

Due to the lipid accumulation on internal tissues, perigonadal white adipose tissue (WAT) was
removed and weighed at endpoint (Figure 7A). 3MC-treated Tiparp−/− mice had an approximate 60%
reduction in perigonadal WAT levels. The mRNA levels of the AHR target gene, Cyp1a1, were induced
to a higher level in Tiparp−/− mice compared with WT mice (Figure 7B). Tiparp mRNA levels were
induced by 3MC treatment in WT mice but not in Tiparp−/− mice (Figure 7C). Two lipases—Pnpla2 and
Hsl—involved in triglyceride hydrolysis were also studied to examine their expression in WAT and
involvement in lipid partitioning. Tiparp−/− mice displayed increased mRNA expression levels of both
Pnpla2 and Hsl in WAT compared to corn oil-treated controls or 3MC-treated WT mice (Figure 7D,E).
Serum β-hydroxybutyrate levels were increased in 3MC-treated WT and Tiparp−/− mice compared with
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control treated mice (Figure 7F). They were, however, significantly higher in Tiparp−/− mice compared
with WT mice, suggesting that the increased lipolysis and resulting free fatty acids are converted into
energy and ketone body formation.
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corn oil- and 3MC-treated WT and Tiparp−/− mice at day 6. (B) Oil Red O staining was conducted
to visualize neutral fats. Gene expression levels of Cd36, (C), Fasn (D), Srebp1 (E), and Cpt1a (F).
Data represent the mean ± SEM of inflammatory genes; n = 3. a p < 0.05 two-way ANOVA comparison
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Figure 7. Increased AHR signaling and loss of white adipose tissue (WAT) weight levels in 3MC-treated
Tiparp−/− mice. (A) WAT weight was expressed as a percentage of total body weight on day 6.
The mRNA expression levels of the AHR target genes Cyp1a1 (B), Tiparp (C), Pnpla2 (D), Hsl (E)
and serum β-hydroxybutyrate (F) were measured. Data represent the mean ± SEM; with an n = 3
(A). a p < 0.05 two-way ANOVA comparison between genotype-matched corn oil- and 3MC-treated
mice followed by a Tukey’s post hoc test for multiple comparisons and b p < 0.05 two-way ANOVA
comparison between treatment-matched WT and Tiparp−/− mice followed by a Tukey’s post hoc test.
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To determine if AHR was mediating the 3MC-toxicity, Tiparp−/− mice were cotreated with 3MC
and the AHR antagonist, CH223191. Cotreatment with CH223191 reduced the 3MC dependent increase
in Cyp1b1 mRNA levels (Figure 8A), reduced serum ALT activity (Figure 8B) and reduced epididymal
WAT loss (Figure 8C). However, CH223191 cotreatment did not prevent 3MC-induced chylous ascites
in Tiparp−/− mice, but reduced the severity as indicated by significantly reduced triglyceride levels and
increased clarity of the fluid (Table 2).
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Figure 8. Cotreatment with CH223191 reduced 3MC-induced alanine aminotransferase (ALT) activity
and epididymal adipose tissue loss. WT or Tiparp−/− mice were cotreated with 100 mg/kg 3MC on
day 1 and with 10 mg/kg CH223191 (CH) on days 1 and 3. (A) Hepatic Cyp1b1 mRNA expression
levels. (B) ALT activity levels on day 3. (C) WAT weight was expressed as a percentage of total body
weight on day 6. Data represent the mean ± SEM. a p < 0.05 two-way ANOVA comparison between
(A) genotype-matched corn oil- and 3MC-treated mice, (B) genotype-matched day 0 and 3MC-treated
day 3 mice, and (C) treatment-matched WT and Tiparp−/− mice on day 6. b p < 0.05 two-way ANOVA
comparison between WT and Tiparp−/− mice treated with 3MC and 3MC + CH followed by a Tukey’s
post hoc test.

Table 2. Characteristics of ascites observed after 3MC and CH223191 cotreatment compared to 3MC
alone in Tiparp−/− mice. Values in parentheses indicate the number of observations over the number of
total observations.

Measure Tiparp−/− Mice Day 6
3MC

Tiparp−/− Mice Day 6
3MC + CH223191

Appearance Milky white and cloudy (4/4) Clear fluid (1/4)
white and milky (3/4)

Triglyceride Level 560–1670 mg/dL
(mean: 924 mg/dL)

135–1264 mg/dL
(mean: 853 mg/dL)

Cell Population Neutrophils Neutrophils

Total Protein 3.4–4.0 g/dL
(mean: 3.6 g/dL)

3.5–4.0 g/dL
(mean: 3.7 g/dL)

3. Discussion

Here we show that exposure to a high dose of 3MC is lethal to male Tiparp−/− mice, but not to
similarly treated WT animals. In previous studies, we reported that whole-body or hepatocyte-specific
deletion of Tiparp results in an increased sensitivity to TCDD-induced hepatotoxicity, steatohepatitis
and lethal wasting syndrome [13,24]. However, unlike TCDD, 3MC-treated Tiparp−/− mice developed
a chylous ascites-like condition, with evidence of hepatic inflammation, but without steatosis [25].
Treatment with the AHR inhibitor, CH223191, partially rescued the severity of the chylous ascites,
implicating AHR as the mediator of the 3MC-induced toxic outcomes. Our data provide further
evidence for the important role of TIPARP in the negative regulation of toxicant-induced AHR activity.

In agreement with previous work, we observed that a single IP injection of 100 mg/kg 3MC
resulted in hepatic steatosis in C57BL/6 mice [11]. Hepatic steatosis was, however, not observed in
similarly treated Tiparp−/− mice. This may have been due to the higher induction of CYP1A1 expression
that occurs in the absence of Tiparp, resulting in rapid hepatic 3MC metabolism; thus, preventing
hepatic steatosis. In support of this, Ahrr−/− mice show a delayed response to skin carcinogenesis
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caused by benzo[a]pyrene (B[a]P) due to increased Cyp1a1 levels in skin and more rapid metabolism
and clearance of B[a]P [26]. However, no increases in hepatic Cyp1a1 levels were reported in liver,
lung, and heart, suggesting that the loss of Ahrr expression favors the detoxification of carcinogens via
increased Cyp1a1 levels in some but not all tissues. Whether Tiparp−/− mice also show a shift in the
metabolism that favors the detoxification of chemical carcinogens has not been determined.

Chylous ascites is defined as a build-up of lymph within the abdomen due to obstruction in
the abdominal lymphatic system [27]. Normally, the lymphatic system returns interstitial fluid and
proteins to the venous circulation via lymphatic vessels to the lymph nodes. These channels drain
into the cisterna chyli at the start of the thoracic duct; however, damage or obstruction to this network
can lead to a chyle leak. During such a situation, the lymph fluid becomes milky and viscous due
to the conversion of long-chain triglycerides into free fatty acids and monoglycerides, there is an
increase in protein content, and an influx of myeloid and lymphoid cell populations [25]. In humans,
chylous ascites predominantly contain lymphocytes with a small number of neutrophils [28]. If a
predominance of neutrophils is observed, it would be suggestive of peritonitis that may result from an
infection [29]. Moreover, AHR activation is known to increase the number of neutrophils recruited to
infected tissues, such as lung airways during influenza infection [30]. The chylous ascites observed in
the 3MC-treated Tiparp−/− mice was very similar in composition to that observed in humans except for
the predominance of neutrophils. Gram staining of the peritoneal fluid was negative for the presence
of bacteria (data not shown). Thus, the reason for the neutrophilia in the peritoneal cavity is unknown,
but may be in part due to increases in the neutrophil chemoattractants Cxcl1 and Cxcl2, which were
elevated in livers of 3MC-treated Tiparp−/− mice. However, their serum or peritoneal fluid levels were
not determined in our study. Since chylous ascites was not observed in TCDD-treated Tiparp−/− mice,
the recruitment of neutrophils to the peritoneal cavity is influenced by the nature of the AHR ligand
and not a simple result of AHR activation in Tiparp−/− mice.

Treatment of Tiparp−/− mice with either 10 µg/kg TCDD [13,24] or 100 mg/kg 3MC (the present
study) is lethal. However, the effect of each AHR ligand differs with respect to the observed toxicity and
the cause of death. TCDD-treated animals display increased sensitivity to hepatotoxicity and wasting
syndrome, whereas 3MC-treated animals present with chylous ascites and only mild liver toxicity.
Reduced levels of epididymal WAT and increased expression of lipolytic enzymes were consistently
observed after treatment with either AHR ligand [13,24]. 3MC-treated Tiparp−/− mice lost significant
body weight and epididymal WAT without any reduction in food intake, suggesting that Tiparp loss
may affect the efficiency of intestinal fat and or nutrient absorption perhaps due to an obstruction in
the lymph. The lack of efficient lipid absorption could explain the increase in lipolysis, which would be
needed to provide energy that was not being obtained from the food. This is supported by increased
serum β-hydroxybutyrate levels, suggesting increased energy from β-oxidation in the liver.

Although this is the first report that 3MC exposure causes chylous ascites, other studies using a
variety of transgenic animal models have observed a similar phenotype. In a transgenic mouse model
where overexpression of vascular endothelial growth factor (VEGF)-C was induced in adipocytes,
chylothorax was observed within seven days of doxycycline treatment in drinking water which led
to in overexpression of VEGF-C [31]. Lymphatic vessels in VEGF-C transgenic mice were enlarged
and allowed for retrograde flow of milky, triglyceride-rich chyle from the thoracic duct back into
the originating lymphatics and, consequently, into the thoracic cavity due to weakened valves and
other lymphatic abnormalities promoted by VEGF-C overexpression. The deletion of RASA1, a Ras
GTPase-activating protein that negatively regulates lymphatic vessel growth, resulted in a lymphatic
vessel disorder characterized by extensive lymphatic vessel hyperplasia, dilation, leakage, and early
lethality caused by chylothorax [32]. Patients with a mutation in RASA1 are at a higher risk of
developing Parkes–Weber syndrome, which presents itself as a disease with upper and lower extremity
lymphedema with some cases of chylothorax and/or chylous ascites [33]. Exposure to TCDD or
3MC has been demonstrated to upregulate VEGF expression [34]. Moreover, adult Tiparp−/− mice
show evidence of vascular defects [35]. Together with the increased sensitivity of Tiparp−/− mice
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to AHR ligands, the activation or downregulation of components in other signaling pathways may
lead to the malformation of the lymphatic system, resulting in the accumulation of extravasated
fluid. However, whether the accumulation of chylous fluid in the Tiparp−/− mice is due to the
obstruction of the lymphatics or a defect in dietary and endogenous lipid absorption and/or metabolism
remains unknown.

In summary, we show that 3MC-treated Tiparp−/− mice display an increased sensitivity to
3MC-induced toxicity and lethality, further supporting the role of Tiparp as an important negative
regulator of AHR-mediated responses. However, we cannot exclude the possibility that various 3MC
metabolites are also involved, since the increased Cyp1a1 levels in 3MC-treated Tiparp−/− mice would
result in elevated levels of 3MC-derived metabolites. Future studies evaluating alternative routes
of administration, lower doses of 3MC, other PAHs and/or AHR ligands, and effects in additional
genetically modified mouse models will be needed to determine the etiology of the 3MC-induced
chylous ascites in the absence of Tiparp expression.

4. Materials and Methods

4.1. Chemicals and Biological Reagents

For chemical treatments, a 100-mg vial of 3-methylcholanthrene (3MC) was purchased from
Sigma-Aldrich (St. Louis, MO, USA) at an HPLC purity of >97.5%. Dimethyl sulfoxide (DMSO) and
CH223191 were also purchased from Sigma-Aldrich. One-hundred percent pure corn oil (CO) was
purchased from a local grocer. A 10 mg/mL stock of 3MC was made and this solution was made fresh
before injection and disposed of after 30 days. Liver sections for H&E staining were preserved in neutral
buffered 10% formalin solution (Sigma-Aldrich), and liver sections for Oil Red O were suspended
in VWR® Clear Frozen Section Compound (Radnor, PA, USA) to embed tissues for cryosectioning.
The Infinity™ ALT Liquid Stable Reagent was purchased from Fisher Diagnostics (Middletown, VA,
USA) for use in the in vitro determination of ALT activity in mouse serum.

4.2. Animals

TiparpGt(ROSA)79Sor mutant mice (stock number: 007206) were purchased from Jackson
Laboratories (Bar Harbor, ME, USA) and have been previously described [13,35]. The animal
colony was maintained by breeding heterozygotes. Only WT (Tiparp+/+) and Tiparp−/− mice were used
in experiments. Animals were housed in the Division of Comparative Medicine at the University of
Toronto (Toronto, ON, Canada). The temperature was constant at 21 ◦C; a maintained light–dark cycle
(12 h and 12 h); humidity within the facility was controlled; and standard rodent chow and sterile water
were provided ad libitum. All procedures and experiments conducted were in accordance with the
principles set by the Canadian Council on Animal Care guidelines and approved by the Local Animal
Care Committee (protocol # 20010338) on the 9th of September 2014 at the University of Toronto.

4.3. MC and CH223191 Treatment

Seven-to-nine week old male Tiparp+/+ and Tiparp−/− mice were given a single intraperitoneal
injection of 100 mg/kg body weight of 3MC dissolved in corn oil. Control (corn oil) mice received an
equivalent volume of corn oil corrected for body weight. For 3MC and the AHR antagonist CH223191
cotreatment studies, mice were injected with 100 mg/kg 3MC and 10 mg/kg CH223191 dissolved in
DMSO or an equivalent volume of DMSO as control. The animals received a second IP injection of
CH or DMSO on day 3. Solutions were heated to 37 ◦C and vortexed to ensure solubilization of the
compound prior to treatment. Mice were monitored daily and proper personal protective equipment
was implemented for the handling of 3MC-treated animals. If considered endpoints were met at
any moment during the experiment, humane intervention was implemented to prevent or relieve
unnecessary pain and distress. Suggested endpoints include body weight loss exceeding 20% of
normal body weight as measured on day 0, severe lethargy and reluctance to move when provoked,
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hunched or abnormal posture, severe dehydration or malnutrition, and signs of severe discomfort.
If these ailments could not be alleviated through preventative measures, then the mice were humanely
euthanized. Animals were supplied with standard chow (Teklad Global Diet® 2018; 18% protein, 6%
fat) in the form of pelleted food from Harlan Laboratories (Indianapolis, IN, USA).

4.4. Body and Food Weight Measurements

Mice and food pellets were weighed daily in the morning and values were recorded throughout
the study. Body weight was taken after stabilization of weight fluctuation by the scale. For food
intake measurements, ~100 g of intact food pellets were placed on the top wire feeder and weighed on
Day-1 for the calculation of the baseline value (day 0). All pellets on top of the wire feeder as well
as any residual pieces on the cage floor were accounted for in the daily food intake measurement.
Measurements recorded on each subsequent day were subtracted from the previous day’s recorded
value to provide the daily food intake value. Body weight and food intake values were normalized to
baseline and graphed as an increase or decrease from day 0.

4.5. Blood Collection and ALT analysis

Blood was collected from the saphenous vein of the hind leg. Approximately 100 µL of blood
was collected in a Microvette® 200 Z-Gel tube, and this was conducted on day 0 (before treatment for
baseline values), day 3, and day 6. Blood samples were placed at room temperature for a minimum of
30 min for coagulation. The sample can then be centrifuged at 10,000 rpm for 5 min to separate the
serum, which was subsequently collected and stored at −80 ◦C until ALT analysis. The Infinity™ ALT
(GPT) Liquid Stable Reagent (Fisher Diagnostics) was warmed to 37 ◦C for optimal assay conditions.
Samples were processed in duplicates. Immediately before assay measurements, 160 µL of the ALT
reagent was aliquoted into each well. The constant temperature was set at 37 ◦C within the BioTek
Synergy™MX multi-mode microplate reader (BioTek Instruments) and kinetic measurements were
taken at an absorbance of 340 nm each minute for a total duration of 15 min. Activity levels were
adjusted with the recommended factor. Values were then plotted against time and the average of the
two slopes was obtained.

4.6. β-Hydroxybutyrate Levels

β-hydroxybutyrate levels were measured using an assay kit (Sigma-Aldrich). A serum sample
volume of 10 µL was used and was directly added onto a 96-well plate. The assay was performed
according to the supplier’s specifications and preparation instructions. Absorbance was measured at
450 nm.

4.7. RNA Extraction and Isolation

Mice were humanely euthanized by cervical dislocation and the whole liver was washed in
ice-cold PBS, dried quickly on absorbent paper, and recorded for tissue weight. Epididymal WAT
was removed from the perigonadal region washed in ice-cold PBS and weighed. All tissues were
flash-frozen immediately in liquid nitrogen after recording tissue weights. Collected fluid samples were
prepared on microscope slides before storing at −80 ◦C. For RNA isolation from liver, approximately
50 mg of frozen liver was homogenized in 500µL of TRIzol® reagent. Samples were incubated at
room temperature to allow for the complete dissociation between complexes before the addition of
chloroform. The samples were vigorously vortexed and centrifuged at 13,000 rpm for 15 min at 4 ◦C
for phase separation. The RNA, located in the upper aqueous phase, was added with 70% ethanol of
equal volume. The lysate was thoroughly mixed and transferred into RNA binding columns supplied
by the Aurum™ Total RNA Mini Kit. Once the RNA was eluted, these tubes were placed directly
on ice. RNA concentration, purity, and quality were measured using the spectrophotometer at a
40-fold dilution in water. Extracted liver RNA samples were adjusted to 50 ng/µL with the addition of
DNase/RNase-free distilled water.
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4.8. cDNA Synthesis and Gene Expression Analyses

For the synthesis of cDNA from RNA, 10 µL of 500 ng normalized liver was reverse transcribed
using SuperScript® III and its components. The reaction mix consisted of 4 µL 5× First Strand buffer,
0.1 mM DTT, 50 mM random hexamers, 10µM dNTP mixture, distilled water, and SuperScript® III in a
total reaction volume of 20 µL per sample. Using the MJ Cycler Software 2.0 (Bio-Rad) on the Bio-Rad
Chromo4™ DyadDisciple™, the cDNA synthesis reaction involved an initial 1 h incubation at 50 ◦C
followed by a 15 min at 70 ◦C to inactivate the enzyme. The synthesized reaction was then diluted
with DNase/RNase-free distilled water. The qPCR reaction was prepared using SsoFast EvaGreen®

SYBR Supermix, and 10 µM forward and reverse primer verified with NCBI Primer-BLAST (Bethesda,
MD, USA). Technical duplicates were performed for each target gene transcript and normalized to
the tata binding protein (Tbp) mRNA content. Reactions were performed on the Bio-Rad Chromo4™
DyadDisciple™ with the following conditions; 95 ◦C for 3 min and 45 cycles of 95 ◦C for 5 s for
denaturation and 60 ◦C for 20 s. Data were analyzed using the Opticon Monitor™ 3 software (Bio-Rad)
and fold changes were computed by the comparative cycle threshold (∆∆CT) method and normalized
to corn oil-treated WT controls.

4.9. Tissue Histology

To prepare slides for Hematoxylin & Eosin (H&E) staining, liver sections obtained from the animal
dissections were freshly fixed in neutral buffered 10% formalin solution before processing and paraffin
embedding. In this procedure, the liver was sectioned into 5-µm-thick segments. To prepare slides for
Oil Red O staining, liver samples were suspended in VWR® Clear Frozen Section Compound and
flash-frozen in liquid nitrogen as previously described [13]. Sections of 5-µm-thick tissue-embedded
ribbons were sliced using a cryostat and adhered onto a glass slide. The aforementioned procedures
were services provided at Princess Margaret Hospital (Toronto, ON, Canada) of the University Health
Network. For each slide, representative images of the cell population were obtained at 40×, 100×,
and 200×magnification.

4.10. Wright Giemsa Stain

Peritoneal ascites was suspected from the observable distension of the abdomen, the peritoneum
was carefully slit for the insertion of a 1cc Luer-slip syringe and withdrawal of the fluid for inspection
and analysis. An aliquot of the sample was smeared as a thin film across a microscope slide using
aseptic techniques over an open flame. The sample was allowed to air-dry before fixing in 100%
methanol. The fixed sample was flooded with modified Accustain® Wright Giemsa stain and an equal
volume of distilled water was added to the stain. For visualization, Wright Giemsa-stained slides were
imaged using a brightfield microscope and Nikon NIS-Elements Viewer imaging software. For each
slide, representative images of the cell population were obtained at 40×, 100×, and 200×magnification.

4.11. Flow Cytometry

Peritoneal ascites were isolated and stained directly using fixable viability dye in eF506 (eBioscience,
San Diego, USA) and for surface markers using the following antibodies; anti-mouse CD45.2 in FITC
(clone: 104; eBioscience), anti-mouse CD3ε in PE-Cy7 (clone: 145-2C11; eBioscience), anti-mouse
CD19 in BV605 (clone: 6D5; BioLegend, San Diego, USA), anti-mouse MHC class II in e450 (clone:
AF6-120.1; eBioscience), anti-mouse CD11c in AF700 (clone: N418; eBioscience), anti-mouse Ly6C
in PerCP-Cy5.5 (clone: HK1.4; eBioscience), and anti-mouse Ly6G in APC (RB6-8C5; eBioscience).
Samples were analyzed using LSRFortessa (BD Biosciences, San Jose, USA) and FlowJo (TreeStar Inc.,
Ashland, USA) software.
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4.12. Statistical Analysis

Daily body weight and food intake measures are expressed as the mean ± standard error of the
mean (SEM) across all animals and analyzed by repeated measures two-way analysis of variance
(ANOVA) with a Tukey’s post hoc statistical test for multiple comparisons between day-matched
mice. A log-rank (Mantel–Cox) test was used in the survival curve analyses to determine significance
(p < 0.05) between groups. In all other results, a two-way analysis of variance (ANOVA) followed by
Tukey’s multiple comparisons test was used to determine statistical significance (p < 0.05). All data
were graphed and analyzed using GraphPad Prism 6 statistical software (San Diego, CA, USA) using
grouped measures.
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Abbreviations

3MC 3-methylcholanthrene
AHR aryl hydrocarbon receptor
AHRE AHR response element
ARNT AHR nuclear translocator
ARTD ADP-ribosyltransferase diphtheria toxin-like
B[a]P benzo[a]pyrene
CYP1A1 cytochrome P450 1A1
IP intraperitoneal
PAH polycyclic aromatic hydrocarbon
PARP poly-ADP-ribose polymerase
TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin
TIPARP TCDD-inducible poly-ADP-ribose polymerase
WAT white adipose tissue

References

1. Hankinson, O. The aryl hydrocarbon receptor complex. Annu. Rev. Pharm. Toxicol. 1995, 35, 307–340.
[CrossRef] [PubMed]

2. Ma, Q.; Baldwin, K.T.; Renzelli, A.J.; McDaniel, A.; Dong, L. TCDD-inducible poly(ADP-ribose) polymerase:
A novel response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biochem. Biophys. Res. Commun. 2001, 289, 499–506.
[CrossRef] [PubMed]

3. Shimada, T.; Fujii-Kuriyama, Y. Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by
cytochromes P450 1A1 and 1B1. Cancer Sci. 2004, 95, 1–6. [CrossRef] [PubMed]

4. Matthews, J. Aryl Hydrocarbon Receptor (AhR) Targeted by Xenobiotic Compounds and Dietary
Phytochemicals. In Hormone-Disruptive Chemical Contaminants in Food, Pongratz, I., Ed; RSC Issues in
Toxicology Series: Cambridge, UK, 2013.

5. Larsson, B.K.; Sahlberg, G.P.; Eriksson, A.T.; Busk, L.A. Polycyclic aromatic hydrocarbons in grilled food.
J. Agric. Food Chem. 1983, 31, 867–873. [CrossRef] [PubMed]

http://dx.doi.org/10.1146/annurev.pa.35.040195.001515
http://www.ncbi.nlm.nih.gov/pubmed/7598497
http://dx.doi.org/10.1006/bbrc.2001.5987
http://www.ncbi.nlm.nih.gov/pubmed/11716501
http://dx.doi.org/10.1111/j.1349-7006.2004.tb03162.x
http://www.ncbi.nlm.nih.gov/pubmed/14720319
http://dx.doi.org/10.1021/jf00118a049
http://www.ncbi.nlm.nih.gov/pubmed/6352775


Int. J. Mol. Sci. 2019, 20, 2312 14 of 15

6. Fertuck, K.C.; Kumar, S.; Sikka, H.C.; Matthews, J.B.; Zacharewski, T.R. Interaction of PAH-related compounds
with the alpha and beta isoforms of the estrogen receptor. Toxicol. Lett. 2001, 121, 167–177. [CrossRef]

7. Hyzd’alova, M.; Pivnicka, J.; Zapletal, O.; Vazquez-Gomez, G.; Matthews, J.; Neca, J.; Pencikova, K.;
Machala, M.; Vondracek, J. Aryl Hydrocarbon Receptor-Dependent Metabolism Plays a Significant Role
in Estrogen-Like Effects of Polycyclic Aromatic Hydrocarbons on Cell Proliferation. Toxicol. Sci. 2018, 165,
447–461. [CrossRef]

8. Rhon-Calderon, E.A.; Toro, C.A.; Lomniczi, A.; Galarza, R.A.; Faletti, A.G. Changes in the expression of
genes involved in the ovarian function of rats caused by daily exposure to 3-methylcholanthrene and their
prevention by alpha-naphthoflavone. Arch. Toxicol. 2018, 92, 907–919. [CrossRef]

9. Bresnick, E.; Foldes, R.; Hines, R.N. Induction of cytochrome P450 by xenobiotics. Pharm. Rev. 1984, 36,
43S–51S.

10. Helle, J.; Keiler, A.M.; Zierau, O.; Dorfelt, P.; Vollmer, G.; Lehmann, L.; Chittur, S.V.; Tenniswood, M.;
Welsh, J.; Kretzschmar, G. Effects of the aryl hydrocarbon receptor agonist 3-methylcholanthrene on the
17beta-estradiol regulated mRNA transcriptome of the rat uterus. J. Steroid. Biochem. Mol. Biol. 2017, 171,
133–143. [CrossRef]

11. Kawano, Y.; Nishiumi, S.; Tanaka, S.; Nobutani, K.; Miki, A.; Yano, Y.; Seo, Y.; Kutsumi, H.; Ashida, H.;
Azuma, T.; et al. Activation of the aryl hydrocarbon receptor induces hepatic steatosis via the upregulation
of fatty acid transport. Arch. Biochem. Biophys. 2010, 504, 221–227. [CrossRef]

12. MacPherson, L.; Tamblyn, L.; Rajendra, S.; Bralha, F.; McPherson, J.P.; Matthews, J.
2,3,7,8-tetrachlorodibenzo-p-dioxin poly(ADP-ribose) polymerase (TiPARP, ARTD14) is a
mono-ADP-ribosyltransferase and repressor of aryl hydrocarbon receptor transactivation. Nucleic Acids Res.
2013, 41, 1604–1621. [CrossRef]

13. Ahmed, S.; Bott, D.; Gomez, A.; Tamblyn, L.; Rasheed, A.; MacPherson, L.; Sugamori, K.S.; Cho, T.; Yang, Y.;
Grant, D.M.; et al. Loss of the Mono-ADP-Ribosyltransferase, TIPARP, Increases Sensitivity to Dioxin-Induced
Steatohepatitis and Lethality. J. Biol. Chem. 2015, 290, 16824–16840. [CrossRef]

14. Bindesboll, C.; Tan, S.; Bott, D.; Cho, T.; Tamblyn, L.; MacPherson, L.; Gronning-Wang, L.M.; Nebb, H.I.;
Matthews, J. TCDD-inducible poly-ADP-ribose polymerase (TIPARP/PARP7) mono-ADP-ribosylates and
coactivates liver X receptors. Biochem. J. 2016, 473, 899–910. [CrossRef]

15. Luscher, B.; Butepage, M.; Eckei, L.; Krieg, S.; Verheugd, P.; Shilton, B.H. ADP-Ribosylation, a Multifaceted
Posttranslational Modification Involved in the Control of Cell Physiology in Health and Disease. Chem. Rev.
2018, 118, 1092–1136. [CrossRef]

16. Vyas, S.; Chesarone-Cataldo, M.; Todorova, T.; Huang, Y.H.; Chang, P. A systematic analysis of the PARP
protein family identifies new functions critical for cell physiology. Nat. Commun. 2013, 4, 2240. [CrossRef]

17. Gomez, A.; Bindesboll, C.; Satheesh, S.V.; Grimaldi, G.; MacPherson, L.; Hutin, D.; Ahmed, S.;
Tamblyn, L.; Cho, T.; Nebb, H.I.; et al. Characterization of TCDD-Inducible Poly-ADP-Ribose Polymerase
(TIPARP/ARTD14) Catalytic Activity. Biochem. J. 2018, 475, 3827–3846. [CrossRef]

18. Han, B.; Zhang, Y.; Zhang, Y.; Bai, Y.; Chen, X.; Huang, R.; Wu, F.; Leng, S.; Chao, J.; Zhang, J.H.; et al. Novel
insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP:
Implications for cerebral ischemic stroke. Autophagy 2018, 14, 1164–1184. [CrossRef]

19. Yamada, T.; Horimoto, H.; Kameyama, T.; Hayakawa, S.; Yamato, H.; Dazai, M.; Takada, A.; Kida, H.; Bott, D.;
Zhou, A.C.; et al. Constitutive aryl hydrocarbon receptor signaling constrains type I interferon-mediated
antiviral innate defense. Nat. Immunol. 2016, 17, 687–694. [CrossRef]

20. Kozaki, T.; Komano, J.; Kanbayashi, D.; Takahama, M.; Misawa, T.; Satoh, T.; Takeuchi, O.; Kawai, T.;
Shimizu, S.; Matsuura, Y.; et al. Mitochondrial damage elicits a TCDD-inducible poly(ADP-ribose)
polymerase-mediated antiviral response. Proc. Natl. Acad. Sci. USA 2017, 114, 2681–2686. [CrossRef]

21. Chen, W.V.; Delrow, J.; Corrin, P.D.; Frazier, J.P.; Soriano, P. Identification and validation of PDGF
transcriptional targets by microarray-coupled gene-trap mutagenesis. Nat. Genet. 2004, 36, 304–312.
[CrossRef]

22. Atasheva, S.; Akhrymuk, M.; Frolova, E.I.; Frolov, I. New PARP gene with an anti-alphavirus function.
J. Virol. 2012, 86, 8147–8160. [CrossRef]

23. Sasse, S.K.; Mailloux, C.M.; Barczak, A.J.; Wang, Q.; Altonsy, M.O.; Jain, M.K.; Haldar, S.M.; Gerber, A.N.
The glucocorticoid receptor and KLF15 regulate gene expression dynamics and integrate signals through
feed-forward circuitry. Mol. Cell. Biol. 2013, 33, 2104–2115. [CrossRef]

http://dx.doi.org/10.1016/S0378-4274(01)00344-7
http://dx.doi.org/10.1093/toxsci/kfy153
http://dx.doi.org/10.1007/s00204-017-2096-5
http://dx.doi.org/10.1016/j.jsbmb.2017.03.004
http://dx.doi.org/10.1016/j.abb.2010.09.001
http://dx.doi.org/10.1093/nar/gks1337
http://dx.doi.org/10.1074/jbc.M115.660100
http://dx.doi.org/10.1042/BJ20151077
http://dx.doi.org/10.1021/acs.chemrev.7b00122
http://dx.doi.org/10.1038/ncomms3240
http://dx.doi.org/10.1042/BCJ20180347
http://dx.doi.org/10.1080/15548627.2018.1458173
http://dx.doi.org/10.1038/ni.3422
http://dx.doi.org/10.1073/pnas.1621508114
http://dx.doi.org/10.1038/ng1306
http://dx.doi.org/10.1128/JVI.00733-12
http://dx.doi.org/10.1128/MCB.01474-12


Int. J. Mol. Sci. 2019, 20, 2312 15 of 15

24. Hutin, D.; Tamblyn, L.; Gomez, A.; Grimaldi, G.; Soedling, H.; Cho, T.; Ahmed, S.; Lucas, C.; Chakravarthi, K.;
Grant, D.M.; et al. Hepatocyte-specific deletion of TIPARP, a negative regulator of the aryl hydrocarbon
receptor, is sufficient to increase sensitivity to dioxin-induced wasting syndrome. Toxicol. Sci. 2018, 165,
347–360. [CrossRef]

25. Cárdenas, A.; Chopra, S. Chylous ascites. Am. J. Gastroenterol. 2002, 97, 1896–1900. [CrossRef]
26. Hosoya, T.; Harada, N.; Mimura, J.; Motohashi, H.; Takahashi, S.; Nakajima, O.; Morita, M.; Kawauchi, S.;

Yamamoto, M.; Fujii-Kuriyama, Y. Inducibility of cytochrome P450 1A1 and chemical carcinogenesis by
benzo[a]pyrene in AhR repressor-deficient mice. Biochem. Biophys. Res. Commun. 2008, 365, 562–567.
[CrossRef]

27. Jardinet, T.; Verbeke, L.; Bonne, L.; Maleux, G. Therapeutic intranodal lymphangiography for refractory
chylous ascites complicating acute necrotic pancreatitis. J. Gastrointestin. Liver Dis. 2018, 27, 195–197.

28. Santos, M.A.; Bose, P.S.; Maher, S.; Desai, M. Chylous Ascites: An Unusual Complication of Necrotizing
Pancreatitis. Am. J. Med. 2017, 130, e151–e152. [CrossRef]

29. Huang, L.L.; Xia, H.H.; Zhu, S.L. Ascitic Fluid Analysis in the Differential Diagnosis of Ascites: Focus on
Cirrhotic Ascites. J. Clin. Transl. Hepatol. 2014, 2, 58–64.

30. Stevens, E.A.; Mezrich, J.D.; Bradfield, C.A. The aryl hydrocarbon receptor: A perspective on potential roles
in the immune system. Immunology 2009, 127, 299–311. [CrossRef]

31. Nitschke, M.; Bell, A.; Karaman, S.; Amouzgar, M.; Rutkowski, J.M.; Scherer, P.E.; Alitalo, K.; McDonald, D.M.
Retrograde Lymph Flow Leads to Chylothorax in Transgenic Mice with Lymphatic Malformations.
Am. J. Pathol. 2017, 187, 1984–1997. [CrossRef]

32. Lapinski, P.E.; Kwon, S.; Lubeck, B.A.; Wilkinson, J.E.; Srinivasan, R.S.; Sevick-Muraca, E.; King, P.D. RASA1
maintains the lymphatic vasculature in a quiescent functional state in mice. J. Clin. Invest. 2012, 122, 733–747.
[CrossRef] [PubMed]

33. Burrows, P.E.; Gonzalez-Garay, M.L.; Rasmussen, J.C.; Aldrich, M.B.; Guilliod, R.; Maus, E.A.; Fife, C.E.;
Kwon, S.; Lapinski, P.E.; King, P.D.; et al. Lymphatic abnormalities are associated with RASA1 gene mutations
in mouse and man. Proc. Natl. Acad. Sci. USA 2013, 110, 8621–8626. [CrossRef] [PubMed]

34. Terashima, J.; Tachikawa, C.; Kudo, K.; Habano, W.; Ozawa, S. An aryl hydrocarbon receptor induces VEGF
expression through ATF4 under glucose deprivation in HepG2. BMC Mol. Biol. 2013, 14, 27. [CrossRef]
[PubMed]

35. Schmahl, J.; Raymond, C.S.; Soriano, P. PDGF signaling specificity is mediated through multiple immediate
early genes. Nat. Genet. 2007, 39, 52–60. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/toxsci/kfy136
http://dx.doi.org/10.1016/S0002-9270(02)04268-5
http://dx.doi.org/10.1016/j.bbrc.2007.11.016
http://dx.doi.org/10.1016/j.amjmed.2016.11.034
http://dx.doi.org/10.1111/j.1365-2567.2009.03054.x
http://dx.doi.org/10.1016/j.ajpath.2017.05.009
http://dx.doi.org/10.1172/JCI46116
http://www.ncbi.nlm.nih.gov/pubmed/22232212
http://dx.doi.org/10.1073/pnas.1222722110
http://www.ncbi.nlm.nih.gov/pubmed/23650393
http://dx.doi.org/10.1186/1471-2199-14-27
http://www.ncbi.nlm.nih.gov/pubmed/24330582
http://dx.doi.org/10.1038/ng1922
http://www.ncbi.nlm.nih.gov/pubmed/17143286
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Discussion 
	Materials and Methods 
	Chemicals and Biological Reagents 
	Animals 
	MC and CH223191 Treatment 
	Body and Food Weight Measurements 
	Blood Collection and ALT analysis 
	-Hydroxybutyrate Levels 
	RNA Extraction and Isolation 
	cDNA Synthesis and Gene Expression Analyses 
	Tissue Histology 
	Wright Giemsa Stain 
	Flow Cytometry 
	Statistical Analysis 

	References

