
 International Journal of

Molecular Sciences

Article

Oritatami: A Computational Model for Molecular
Co-Transcriptional Folding

Cody Geary 1, Pierre-Étienne Meunier 2, Nicolas Schabanel 3,* and Shinnosuke Seki 4

1 Computer Science Computation and Neural Systems Bioengineering Caltech, MS 136-93, Moore Building,
Pasadena, CA 91125, USA; codyge@gmail.com

2 Computer Science Dept, Hamilton Institute, Maynooth University, Co. Kildare, Ireland;
pierre-etienne.meunier@mu.ie

3 CNRS, École normale supérieure de Lyon (LIP), CEDEX 07, 69364 Lyon, France
4 Computer and Network Engineering Dept, University of Electro-Communications, 1-5-1, Chofugaoka,

Chofu, Tokyo 1828585, Japan; s.seki@uec.ac.jp
* Correspondence: nicolas.schabanel@ens-lyon.fr

Received: 15 April 2019; Accepted: 30 April 2019; Published: 7 May 2019
����������
�������

Abstract: We introduce and study the computational power of Oritatami, a theoretical model that
explores greedy molecular folding, whereby a molecular strand begins to fold before its production is
complete. This model is inspired by our recent experimental work demonstrating the construction of
shapes at the nanoscale from RNA, where strands of RNA fold into programmable shapes during their
transcription from an engineered sequence of synthetic DNA. In the model of Oritatami, we explore
the process of folding a single-strand bit by bit in such a way that the final fold emerges as a space-time
diagram of computation. One major requirement in order to compute within this model is the ability
to program a single sequence to fold into different shapes dependent on the state of the surrounding
inputs. Another challenge is to embed all of the computing components within a contiguous strand,
and in such a way that different fold patterns of the same strand perform different functions of
computation. Here, we introduce general design techniques to solve these challenges in the Oritatami
model. Our main result in this direction is the demonstration of a periodic Oritatami system that folds
upon itself algorithmically into a prescribed set of shapes, depending on its current local environment,
and whose final folding displays the sequence of binary integers from 0 to N “ 2k ´ 1 with a seed of
size Opkq. We prove that designing Oritatami is NP-hard in the number of possible local environments
for the folding. Nevertheless, we provide an efficient algorithm, linear in the length of the sequence,
that solves the Oritatami design problem when the number of local environments is a small fixed
constant. This shows that this problem is in fact fixed parameter tractable (FPT) and can thus be
solved in practice efficiently. We hope that the numerous structural strategies employed in Oritatami
enabling computation will inspire new architectures for computing in RNA that take advantage of
the rapid kinetic-folding of RNA.

Keywords: natural computing; self-assembly; molecular folding

1. Introduction

The process by which one-dimensional sequences of nucleotides or amino-acids acquire their
complex three-dimensional geometries, which are key to their function, is a major puzzle of biology
today. Understanding molecular folding will not only shed light on the origin and functions of the
molecules existing in nature, it will also enable us to control the process more finely, and engineer
artificial molecules with a wide range of uses, from performing missing functions inside living
organisms, to producing precisely targeted drugs.

Int. J. Mol. Sci. 2019, 20, 2259; doi:10.3390/ijms20092259 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://dx.doi.org/10.3390/ijms20092259
http://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/20/9/2259?type=check_update&version=2

Int. J. Mol. Sci. 2019, 20, 2259 2 of 28

Biomolecular nano-engineering includes DNA self-assembly, which gave rise to an impressive
number of successful experimental realizations, from arbitrary 2D shapes [1] to molecule cyclic
machines [2], or counters [3]. First pioneered by Seeman [4], DNA nanotechnologies only really
started to take off once a computer science model was devised by Winfree [5] to program molecular self
assembly in a computer science way.

Since then, many models have been designed to refine different features of experiments:
hierarchical self-assembly [6,7], modeling the absence of a seed, kinetic tile assembly [5,8], 3D and
probabilistic tile assembly [9], among others.

However, the potential applications of this type of DNA technology inside cells are limited by
the high thermal stability of the DNA duplex, where consequently DNA nanostructures are typically
formed through the process of annealing: Namely, by heating the molecules up to high temperatures
in a precisely controlled environment and then cooling them down at a precisely controlled rate.
This assembly paradigm allows researchers to design DNA structures with amazing precision by
taking advantage of computational techniques to optimize the thermodynamics of strand-strand
interactions, see for instance [10].

However at the same time the method requires precise control over temperature and other
variables that are not always possible to control in every environment, such as for example within
living cells. Other biopolymers such as RNA and proteins do not share this limitation, as nature uses
both mediums to produce exquisite structures on a continuous basis. Researchers have successfully
assembled functional nanoparticles and scaffolds out of these alternatives [11–14]. However, their
assembly process is harder for us to program: while the shape that folds depends on both the sequence
and the environment, the sequence is read linearly and expressed regardless of the environment.
This contrasts with more classical programming models such as Turing machines, or even tile assembly,
which are able to jump to different parts of the program depending on the input. Another important
difficulty is that even predicting the final folded shape of a biopolymer given the sequence is still the
center of active research, especially for proteins [15–19].

In particular, a large body of computer science literature is focused on energy optimization, one
of the main drivers of folding. For example, in different variants of the hydrophobic-hydrophilic (HP)
model [20], it has been shown that the problem of predicting the most likely geometry (or configuration)
of a sequence is NP-complete [21–26], both in two and three dimensions, and in different variants of
the model.

The kinetics of folding, which is the step-by-step dynamics of the reaction, has been demonstrated
by biochemists to play a major role in the final shape of molecules [27], and even play a prevalent role at
the heart of the mechanism of RNA switches in biology [28]. In recent experimental results, researchers
have even been able to control this mechanism to engineer various things out of RNA represented by
the RNA origami architecture for single-stranded rectangular tiles [29], and followed by more complex
structural motifs [30] and RNA-origami-based FRET system [31].

This paper introduces a new model of computation and molecular folding inspired by RNA
folding, intended to capture the kinetics of folding and model the experiments in [29]. In particular,
it focuses on the co-transcriptional nature of RNA folding, whereby molecules fold concurrently while
being transcribed (see Figure 1): in computer science terms, the folding process is a local energy
optimization, or otherwise put, a greedy algorithm. A key limitation of this model is that the strand folds
irreversibly once beads are locked into place, a simplification that makes working with the model
tractable, but that also eliminates an important aspect of natural RNA folding—the possibility for
structural rearrangement.

Int. J. Mol. Sci. 2019, 20, 2259 3 of 28

Figure 1. An RNA molecule folding over itself while being transcribed, as the experiments in [29].

The first experimental results have used a standard benchmark: making simple shapes, such as
squares (as shown for instance on Figure 2). With the new model introduced in this paper, our goal is
twofold: first, explore the engineering possibilities of this mechanism, in order to make arbitrary shapes
and structures. Then, the other aim of our study is to understand the complexity of sequence operations,
to understand the computational processes which led to the creation of complex molecular networks.

Figure 2. The design of a square, co-transcriptionally folded with RNA, and the corresponding path on
the triangular lattice.

1.1. Main Contributions

In our model, called Oritatami, we consider a sequence of “beads”, which are abstract basic
components, standing for nucleotides or even sequences of nucleotides (also called domains).
In oritatami, only the latest produced beads of the molecules are allowed to move in order to adopt
a more favorable configuration. The folding is driven by the respective attraction between the beads.

Our main construction is a binary counter. Counters are an essential component of many
sophisticated constructions in biological computing, in particular in tile assembly [32,33]. Counters are
also an important benchmark in experiments [3].

Theorem 1. There is a fixed periodic sequence 0, 1, . . . , 59, 0, 1, . . . of period 60 whose rule is given in Figure 3,
which, when started from a seed encoding an integer x in binary with at most 2k` 1 bits for some k, folds into a
structure encoding x` 1, x` 2, . . . , 22k`1 ´ 1, on the successive rows of the triangular grid.

We prove the correctness of this construction by designing an abstract module system to handle the
complexity of the base mechanism of the model, which is about as low-level as assembly code in more
standard computing models.

We then show a generic construction method in this model, which we applied to automate parts
of the design of the counter. Moreover, this result helps understanding the computational complexity
of sequence programming. Precisely, we prove two results in this direction:

Theorem 2. Designing a single sequence that folds into different target shapes in a set of surrounding
environments, is NP-complete in the number of environments.

More surprisingly, it turns out that there is an algorithm to solve this problem in time linear in the
length of the sequence. This algorithm is also practical, as we were able to use it to find sequences for our
main construction:

Int. J. Mol. Sci. 2019, 20, 2259 4 of 28

Theorem 3. The sequence design problem is FPT with respect to the length ` of the sequence: there is
an algorithm linear in ` (but exponential in the number of environments) to design a single sequence that
folds into the target shapes in the given environments.

As Winfree’s thesis [5] on the very abstract tile assembly model did inspire many successful
experimental works (see for instance [3,10,34–36]), we hope that the numerous structural strategies
employed in Oritatami enabling computation will inspire new architectures for computing in RNA
that take advantage of the rapid kinetic-folding of RNA.

00
11
22

33
44

55
66

77
88

99
1010

1111
1212

1313
1414

1515
1616

1717
1818

1919
2020

2121
2222

2323
2424

2525
2626

2727
2828

2929

3030
3131

3232
3333

3434
3535

3636
3737

3838
3939

4040
4141

4242
4343

4444
4545

4646
4747

4848
4949

5050
5151

5252
5353

5454
5555

5656
5757

5858
5959

Figure 3. The rule of the Counter oritatami system: in this diagram, we have b b1 iff there is a bullet ‚
at the intersection of one the two lines coming from b and from b1; for instance, we have 4 8 but not
4 7.

1.2. Related Work

The oritatami system has received considerable attention since its proposal in the conference
abstract of this paper [37]. As mentioned above, counters serve as a key component in tile self-assembly,
especially for assembling shapes. Masuda et al. implemented a small oritatami system that serves
as a 4-state automaton with output and integrated it with our binary counter (Theorem 1) into
a larger-scale oritatami system towards the self-assembly of an arbitrary finite portion of Heighway
dragon fractal [38]. Note that our binary counter works under inertial dynamics and they proposed
a modified implementation working under oblivious dynamics with a different ratio of transcription
speed to folding (technically speaking, ours works with delay 4 while theirs does with delay 3; delay is
formally defined in Section 2). This illustrates the flexibility of oritatami designs. The transcript of their
system is periodic as our binary counter; the period is linearly proportional to the size of the target
portion. Demaine et al. [39] and Han and Kim [40] independently conducted more comprehensive
studies of the shape self-assembly by oritatami systems recently. In particular, Demaine et al. proved
that there is a universal set of 114 bead types with a rule set with which an arbitrary finite shape can
be folded by an oritatami system, as long as the shape is scaled-up by a small factor.

The FPT algorithm (Theorem 3) has brought about useful modules not only for the binary counter
but also for subsequent oritatami systems including the above-mentioned Heighway dragon fractal
assembler, Satisfiability (SAT) tautology checker [41], and the time-efficient universal Turing machine
simulation in [42]. The construction in [42] is the most intricate oritatami system implemented
so far, developing much further the paradigms for co-transcriptional molecular programming
introduced here.

Int. J. Mol. Sci. 2019, 20, 2259 5 of 28

Other variants of the rule design problem have been investigated by [43,44]. An alternative
heuristic to the FPT algorithm to optimize the rule set has been proposed by Han and Kim [45].

2. Model and Main Results

Given two words a, b P B˚, we denote by ab their concatenation.

2.1. Model

2.1.1. Oritatami System

Oritatami is about the folding of finite sequences of beads, each from a finite set
B of bead types, using an attraction rule , on the triangular lattice graph T “ pZ2,„q
where px, yq „ pu, vq if and only if pu, vq P tpx ´ 1, yq, px ` 1, yq, px, y ` 1q, px ` 1, y ` 1q,
px´ 1, y´ 1q, px, y´ 1qu.

A configuration c of a sequence w P B˚ is a self-avoiding path of length n “ |w| labelled by w in T,
i.e., a path whose vertices c1, . . . , cn are pairwise distinct and labelled by the letters of w. We denote by
btpciq “ wi the bead-type of the i-th bead of c. A partial configuration of a sequence w is a configuration
of a prefix of w. For any partial configuration c of some sequence w, an elongation of c by k beads is
a partial configuration of w of length |c| ` k. We denote by Cw the set of all partial configurations of w
(the index w will be omitted when the context is clear). We denote by cŹk the set of all elongations by k
beads of a partial configuration c of a sequence w and by cŸk the singleton containing the prefix of
length |c| ´ k of c.

An oritatami system O “ pp, , δq is composed of (1) a (possibly infinite) transcript p, which is
a sequence of beads, of a type chosen from a finite set B, (2) an attraction rule, which is a symmetric
relation Ď B2 and (3) a parameter δ called the delay time.

Given an attraction rule and a configuration c of a sequence w, we say that there is a bond
between two adjacent positions ci and cj of c in T if wi wj. The number of bonds in a configuration c of
w, written Epcq, is the negation of the number of bonds within c: formally,

Epcq “ ´|tpi, jq : ci „ cj, j ą i` 1, and wi wju|.

2.1.2. Oritatami Dynamics

A dynamics for a sequence w is a function Dw : 2Cw Ñ 2Cw such that for all subset S of partial
configurations of length ` of w, DpSq is a subset of the elongations by one bead of the partial
configurations in S (thus, partial configurations of length `` 1).

Given an oritatami system O “ pp, , δq and a seed configuration σ of a seed sequence s of
length `, a dynamics D sp gives at each time step the set of favored nascent configurations of transcript p,
as a function of the set of favored nascent configurations at the previous time step. Initially, the set of
favored nascent configurations is σŹpδ´1q, that is all the possible elongations of the seed configuration
by δ´ 1 beads. Then, the set of favored nascent configurations at step t is D t

sppσ
Źpδ´1qq, that is the set

of all elongations by pt` δ´ 1q beads of the seed configuration prolongated by the transcript according
to dynamics D .

We explore greedy folding dynamics where only the most recently transcribed beads can move, all
other beads remain in place. These still unsettled beads are said nascent and their number is controlled
by the integer parameter δ (in most of this article, δ ď 4). We consider two different dynamics to model
the “greedy” nature of the process:

The inertial dynamics was also called hasty dynamics in a preliminary version of this work [37].
It does not question previous choices but chooses the energy-minimal
positions for the δ nascent beads among all elongations of the previously
adopted partial configurations. It lets the δ ´ 1 already placed nascent
beads where they are and abandons the extension of a configuration if no

Int. J. Mol. Sci. 2019, 20, 2259 6 of 28

extension with the newly transcribed bead allows to reach a lowest energy
configuration available for the δ nascent beads.

Formally, given a set of currently favored nascent configurations, I

elongates each of them by one bead, and keeps the elongated configurations
that have minimum energy among those who share the same prefix of
length |σ| ` t:

I pSq “
ď

γ P SŸpδ´1q

arg min
c P γŹδ X SŹ1

Epcq

The oblivious dynamics is oblivious in the sense that it consists of always choosing the best
available positions for the nascent δ beads regardless of the previously
preferred choices, as opposed to I . Formally, O takes a set of currently
favored nascent configurations, removes the last δ´ 1 positions from all
of them, and selects the minimal energy configurations among all of their
elongations by δ beads. Precisely:

OpSq “
ď

γ P SŸpδ´1q

arg min
c P γŹδ

Epcq

Oritatami systems seem less governable under the oblivious dynamics than under the inertial
dynamics, as a larger number of configurations are to be considered for energy minimization under
the oblivious dynamics and also as previously discarded configurations may be reconsidered later on.

With the exception of Section 5, in this article, we choose the inertial dynamics. Our binary counter
is described for the inertial dynamics in Section 3. Many subsequent articles [38–46] chose the oblivious
dynamics. Masuda et al. [38] adapted our binary counter to the oblivious dynamics and used it as
a component of their oritatami system folding arbitrary finite portion of Heighway dragon fractal.

Determinism, Halt and Resulting Folding. An oritatami system O “ pp, , δq is deterministic
for dynamics D and seed σ of sequence s if for all i ě 1, the position of the i-th bead of p is uniquely
determined at time i, i.e., if for all i ě 1, |tc|σ|`i : c P D i

sppσ
Źpδ´1qqu| “ 1.

We say thatO stops at time t with seed σ and dynamics D , if D t
sppσ

Źpδ´1qq “ H and D z
spptσuq ‰ H

for z ă t. If O stops at time t, the set D t
sppσ

Źpδ´1qq is the result of the folding process; if it consists
of a single configuration c, we say that c is the resulting folding and that the oritatami system O folds
deterministically into configuration c. If the transcript p is finite, the folding process will stop at time
t “ |p| ´ δ` 1 or before in case of a geometric obstruction (no more elongation is possible because the
configuration gets trapped in a closed area). If the transcript p is infinite, the folding process may only
stop because of a geometric obstruction.

Notation for configurations. We will use a NW
Ô b, a NE

Õ b, a ÑE b, a ŒSE b, a ÖSW b, a ÐW b to denote
a configuration consisting of two beads with types a and b where b is placed respectively at the
NW, NE, E, SE, SW or W of a. As an example, the configuration in Figure 4 is described as

30 NW
Ô 31 NW

Ô 32ÑE 33ŒSE 34 NE
Õ 35ÑE 36ŒSE 37ÐW 38ÖSW 39ÑE 40ÑE 41.

32

30

31

33

39

34

35

40

38

36

41

37

Figure 4. A configuration encoded by 30 NW
Ô 31 NW

Ô 32ÑE 33ŒSE 34 NE
Õ 35ÑE 36ŒSE 37ÐW 38ÖSW 39ÑE 40ÑE 41.

Int. J. Mol. Sci. 2019, 20, 2259 7 of 28

3. Folding a Binary Counter

3.1. General Idea of The Construction

Our construction works with δ “ 4. The counter is implemented by folding the periodic sequence
of bead types 0, 1, . . . , 58, 59, 0, 1, . . . with period 60. Our construction proceeds in zig-zags as the
classic implementation of a counter with a sweeping Turing machine whose head goes back and forth
between the two ends of the coding part of the tape. Each pass is 3-rows thick and folds each part of
the molecule into a parallelogram of size 4ˆ 3 or 6ˆ 3 except for the last and the first parts of each pass
which are folded into parallelograms of size 3ˆ 6 to accomplish the U-turn downwards and start the
next pass. The zig pass, folding three rows at a time from right to left, computes the carry propagation
in the current value of the counter. The zag pass, folding three rows at a time from left to right, writes
down the bits of the newly incremented value, and gets the folding to resume at the right-hand side of
the configuration.

The molecule is semantically divided into 4 parts, called modules:

• Module A (beads 0–11, in blue in all figures): the First Half-Adder
• Module B (beads 12–29, in red in all figures): the Left-Turn module
• Module C (beads 30–41, in blue in all figures): the Second Half-Adder
• Module D (beads 42–59, in red in all figures): the Right-Turn module

Encoding. The current value of the counter is encoded in standard binary with the most significant
bit to the left. Each bit is encoded into a specific folding of the modules A and C of the molecule in the
rows corresponding to a zag pass: namely folding A0 and C0 for 0, and A1 and C1 for 1. During the zig
pass, the value of the carry is encoded by the position of the molecule when it starts to fold Module A or
C: carry “ 0 if Module A or C starts to fold in the top row; carry “ 1 if Module A or C starts to fold
from the bottom row.

In the zig pass (Ð), modules A and C “read” from the row above the value encoded into the
folding in the row above during the previous zag-phase (or in the seed configuration for the first zig
pass), and fold into a shape (called a brick, see Section 4.1) A00, A10, A01, A11 or C00, C10, C01, C11
accordingly where Axc is the brick corresponding to the case where x is the bit read in the row above
and c is the carry. In the zig pass, modules B and D just propagate the carry value (0 or 1, i.e., start
from top or bottom row) output by the preceding module A or C to the next.

When the zig pass reaches the leftmost part of the row on top, the beads there forces the module
B to adopt the Left-turn shape which reverses the folding direction and starts the next zag pass.

In the zag pass (Ñ), modules A and C “read” the bricks above Axc or Cxc and folds into the bricks
that encodes the corresponding bits, namely Ay or Cy where y “ px` cq mod 2. There are no carry
propagation and all the modules B and D fold into the same brick B2 or D2 in this pass.

When the molecule reaches the rightmost part of the row on top of it, the special beads there force
the module D to fold into the Right-turn brick which reverses the folding direction and starts the next
zig pass.

3.2. The First Two Passes of The Folding

Let’s run the first passes of the 3 bits counter to get acquainted with the process.

The seed configuration is shown in Figure 5. The seed configuration for the p2k` 1q-bit counter
is composed of 4k` 3 parts:

• The first part 20ŒSE 21ŒSE 26ŒSE 27ÑE 28ÑE 29, made of beads from Module B, encodes a sequence
that will trigger the carriage return at the end of the next zig pass.

• The central part consists in k repetitions of the same sequence of 4 patterns, plus an extra repetition
of the first pattern at the end (the central part consists thus in 4k` 1 parts in total):

Int. J. Mol. Sci. 2019, 20, 2259 8 of 28

– 30ÑE 39ÑE 40ÑE 41 encoding a bit 0 using beads from Module C,
– followed by 42ÑE 47ÑE 48ÑE 53ÑE 54ÑE 59 encoding nothing but padding using beads from

Module B,
– followed by 0ÑE 9ÑE 10ÑE 11 encoding a bit 0 using beads from Module A,
– followed by 12ÑE 17ÑE 18ÑE 23ÑE 24ÑE 29 encoding nothing but padding using beads from

Module D.

Note the symmetry by a shift of 30 of the beads values in the patterns involving Modules A and C,
and Modules B and D.

• The last part 42ÑE 48ÑE 50 ÖSW 51ÐW 52 ŒSE 53ÑE 54 NE
Õ 55 ŒSE 56 ŒSE 57ÐW 58ÐW 59, made of beads from

Module D, encodes a sequence that will first initiate the next zig pass and later trigger the carriage
return at the end of the next zag pass.

Note that the seed configuration ends at the bottom row of the upcoming zig pass, which encodes
thus that initially the carry is 1.

21

20

27

26

28 29 30 39 40 41 42 47 48 53 54 59 0 9 10 11 12 17 18 23 24 29 30 39 40 41 42

53

52

48

59

54

51

50

58

56

55

57

0 (C0)0 (A0)0 (C0)

Carry = 1 (bottom)

Figure 5. The seed configuration for the 3-bits counter encoding the three bits 000 as the initial value of
the counter.

The first zig pass (Ð). Each zig pass starts with a carry equal to 1, i.e., starts folding from the
bottom row. In the first zig pass, the first module A (see Figure 6) folds into the brick A01, encoding the
bit 1 “ 0` 1 with no carry propagation, as a consequence of the carry being 1 and of reading the first
bit, 0, from the seed above. Note that the folding A01 ends at the top row, encoding that the carry is
now 0. The reading of the bit from the seed is accomplished by the way the module binds to the seed
which shapes the module accordingly as we will see in details in Section 3.3.

21

20

27

26

28 29 30 39 40 41 42 47 48 53 54 59 0 9 10 11 12 17 18 23 24 29 30

10

11

39

9

5

4

40

8

6

3

41

7

1

2

42

0

53

52

48

59

54

51

50

58

56

55

57

1 (A01)

0 (A0)0 (C0) Carry = 0 (top)

Figure 6. The folding of the first module, A: starting with a carry 1, encoded by the position of the first
bead (on the bottom row), this module “reads” a 0 from the seed by binding to the seed, and folds into
A01, encoding a 1 with no carry propagation, as encoded by the position of the last bead (on the top
row of the module).

Then, as illustrated in Figure 7, the next modules B, C, D, and A fold into shapes B0, C00, D0 and
A00 respectively: B0 and D0 meaning that no carry is propagated (they start and end on the top row);
and C00 and A00 meaning that the (input) carry is 0 and the bit read from the seed is 0.

Int. J. Mol. Sci. 2019, 20, 2259 9 of 28

21

20

27

26

28 29 30

10

11

39

9

7

6

40

8

4

5

41

3

1

0

42

2

58

59

47

57

55

54

48

56

52

53

53

51

49

48

54

50

46

47

59

45

43

42

0

44

40

41

9

39

37

36

10

38

34

35

11

33

31

30

12

32

28

29

17

27

25

24

18

26

22

23

23

21

19

18

24

20

16

17

29

15

13

12

30

14

10

11

39

9

5

4

40

8

6

3

41

7

1

2

42

0

53

52

48

59

54

51

50

58

56

55

57

1 (A01)0 (C00)0 (A00)

Carry = 0 (top)

Figure 7. The folding of the central part of the first zig pass in the 3-bits counter.

Finally, as illustrated in Figure 8, the last module, B, of the zig pass binds to the 3-beads long
carriage-return pattern at the leftmost part of the seed and folds into the shape BT conducing the
molecule to go down by 6 rows, reverse direction and start the following zag pass. Note that the
bottom of the shape BT contains the exact same carriage-return pattern.

21

20

27

26

15

14

28

21

20

16

13

29

27

26

22

19

17

12

30

28

25

23

18

10

11

39

29

24

9

7

6

40

8

4

5

41

3

1

0

42

2

58

59

47

57

55

54

48

56

52

53

53

51

49

48

54

50

46

47

59

45

43

42

0

44

40

41

9

39

37

36

10

38

34

35

11

33

31

30

12

32

28

29

17

27

25

24

18

26

22

23

23

21

19

18

24

20

16

17

29

15

13

12

30

14

10

11

39

9

5

4

40

8

6

3

41

7

1

2

42

0

53

52

48

59

54

51

50

58

56

55

57

1 (A01)0 (C00)

return

0 (A00)

Carriage

Figure 8. In our construction, the leftmost three beads of any configuration are different from the other
beads the left U-turn module binds to inside the zig or zag pass: when the left U-turn module folds
next to these bead types, it “triggers” the production of an actual U-turn.

The first zag pass (Ñ). The zag pass is mostly a normalization pass as illustrated in
Figures 9 and 10. It progresses from left to right and computes the new value of each bit by rewriting
each shape A00 and A11 as C0, C00 and C11 as A0, A10 and A01 as C1, and C10 and C10 as A0. Shapes
A0 and C0 encode 0, and Shapes A1 and C1 encode 1, both to be read during the upcoming zig pass.
Modules B and D just fold into the shapes B2 and D2 respectively, encoding nothing but padding.

21

20

27

26

15

14

28

21

20

16

13

29

27

26

22

19

17

12

30

28

25

23

18

10

11

39

29

24

32

9

7

6

40

30

31

33

8

4

5

41

39

34

35

3

1

0

42

40

38

36

2

58

59

47

41

37

57

55

54

48

56

52

53

53

51

49

48

54

50

46

47

59

45

43

42

0

44

40

41

9

39

37

36

10

38

34

35

11

33

31

30

12

32

28

29

17

27

25

24

18

26

22

23

23

21

19

18

24

20

16

17

29

15

13

12

30

14

10

11

39

9

5

4

40

8

6

3

41

7

1

2

42

0

53

52

48

59

54

51

50

58

56

55

57

1 (A01)0 (C00)

0 (C0)

Figure 9. During the zag pass, all modules start from the bottom row, computing the value of each
new bit by rewriting shapes A00 and A11 as C0, C00 and C11 as A0, A10 and A01 as C1, and C10 and
C10 as A1.

Int. J. Mol. Sci. 2019, 20, 2259 10 of 28

21

20

27

26

15

14

28

21

20

16

13

29

27

26

22

19

17

12

30

28

25

23

18

10

11

39

29

24

32

9

7

6

40

30

31

33

8

4

5

41

39

34

35

3

1

0

42

40

38

36

2

58

59

47

41

37

44

57

55

54

48

42

43

45

56

52

53

53

47

46

50

51

49

48

54

48

49

51

50

46

47

59

53

52

56

45

43

42

0

54

55

57

44

40

41

9

59

58

2

39

37

36

10

0

1

3

38

34

35

11

9

4

5

33

31

30

12

10

8

6

32

28

29

17

11

7

14

27

25

24

18

12

13

15

26

22

23

23

17

16

20

21

19

18

24

18

19

21

20

16

17

29

23

22

26

15

13

12

30

24

25

27

14

10

11

39

29

28

32

9

5

4

40

30

31

33

8

6

3

41

35

34

38

7

1

2

42

36

37

39

0

53

52

48

41

40

59

54

51

50

58

56

55

57

1 (C1)0 (A0)0 (C0)

return
Carriage

Figure 10. At the end of the first zag pass, the new value of each bit have been encoded into shapes: A0
or C0 for bits equal to 0, A1 or C1 for bit equal to 1.

Finally, as illustrated in Figure 11, the last module, D, of the zag pass binds to the 3-beads long
carriage-return pattern in the rightmost part of the seed and folds into the shape DT conducing the
molecule to go down by 6 rows, reverse direction and start the next zig pass. Note that, as for the
shape BT, the bottom of the shape DT contains the exact same carriage-return pattern.

21

20

27

26

15

14

28

21

20

16

13

29

27

26

22

19

17

12

30

28

25

23

18

10

11

39

29

24

32

9

7

6

40

30

31

33

8

4

5

41

39

34

35

3

1

0

42

40

38

36

2

58

59

47

41

37

44

57

55

54

48

42

43

45

56

52

53

53

47

46

50

51

49

48

54

48

49

51

50

46

47

59

53

52

56

45

43

42

0

54

55

57

44

40

41

9

59

58

2

39

37

36

10

0

1

3

38

34

35

11

9

4

5

33

31

30

12

10

8

6

32

28

29

17

11

7

14

27

25

24

18

12

13

15

26

22

23

23

17

16

20

21

19

18

24

18

19

21

20

16

17

29

23

22

26

15

13

12

30

24

25

27

14

10

11

39

29

28

32

9

5

4

40

30

31

33

8

6

3

41

35

34

38

7

1

2

42

36

37

39

0

53

52

48

41

40

44

59

54

51

50

42

43

45

58

56

55

53

52

48

47

46

57

59

54

51

50

49

58

56

55

57

1 (C1)0 (A0)0 (C0)

Carriage
return

Figure 11. Finally, at the end of the first zag pass, the last module D binds to the carriage-return pattern
in the seed and fold into the shape DT to accomplish the right U-turn from which the next zig pass
can start.

Figure 12 shows the 3-bits counter folded upto the value 3 “ 011 in binary. One can observe the
shape A11 in the second zig pass. A11 corresponds to reading a 1 with a carry 1 which propagates the
carry: indeed, the folding ends at the bottom row which propagates the carry to the next module C
which folds into C01 as it reads a 0 from above with carry 1. Note that shape A11 is then rewritten as
C0 in the following zag pass below.

Int. J. Mol. Sci. 2019, 20, 2259 11 of 28

0 (A11)
Carry=1

1 (C1)0 (A0)

0 (C0)1 (A1)

Carry=1

Carry=0

1 (C01)
Carry=1

Figure 12. The folding of the 3-bits counter upto value 3 “ 011 in binary. Observe the carry propagation
in the second zig pass.

3.3. How Does Computation Take Place: Modules, Functions, States and Environment

Each module A, B, C or D implements various “functions” that are “called” when the molecule is
folded. Which function is called depends on two things:

the current “state” of the molecule: here, the state is whether the carry is 0 or 1. As mentionned
earlier this is encoded in the position of the molecule when
the module starts to fold: it starts in the top row if the carry
is 0; in the bottom row if the carry is 1.

the local environment of the molecule: the environment, i.e., the beads already placed around the
current area where the folding takes place, acts as the
memory in the computation.

The position where the folding of a module starts, determines which beads of a given module
will be exposed to and interact with the environment. Then, by creating bonds (or not) with the
environment, each module will adopt a specific shape. Therefore, the possible binding schemes will
be different depending on this initial position. Similarly, depending on the beads already placed in
the environment, the part of the module exposed to it will adopt one form or another depending on
how many bonds it can create with the environment. Adopting the language of computer science:
the position at which a module starts to fold, determines which function of the module is called; the
function then reads the input encoded by the beads already placed in the environment.

Figure 13 provides a precise description on how the function of the Half-Adder Module C are
implemented in the zig pass. As the zig pass goes from right to left, the figure is meant to be read
from right to left. In the zig pass, Module C implements two functions: (1) Add 1 to the bit above and
propagate the carry if needed, or (2) Copy the bit above unchanged. Add is called if the carry is 1 at
the beginning of the folding and Copy is called if the carry is 0. The following step-by-step description
of the folding explains how:

Int. J. Mol. Sci. 2019, 20, 2259 12 of 28

31

30

32

3333

33

54 59 0 9 10 11 12

28

29

17

27

25

24

18

34

353637

37 37

33

31

30

32

54 59 0 9 10 11 12

28

29

17

27

25

24

18

40

41

39

37

36

38

34

35

33

31

30

32

54 59 0 9 10 11 12

28

29

17

27

25

24

18

4545

45

43

42

44

40

41

39

37

36

38

35

34

33

31

30

32

54 59 0 9 10 11 12

28

29

17

27

25

24

18

33

31

32

30

54 59 0 9 10 11 12

28

17

29

25

26

18

27

35

34

36

33

37

31

32

30

54 59 0 9 10 11 12

28

17

29

25

26

18

27

40

41

39

35

34

38

36

33

37

31

32

30

54 59 0 9 10 11 12

28

17

29

25

26

18

27

3333

32 31 30 2933

54 59 0 5 6 11 12

28

29

17

27

25

24

18

33

32

34

31

35

30

36

3737

37

54 59 0 5 6 11 12

28

29

17

27

25

24

18

40

41

39

33

32

38

34

31

37

35

30

36

54 59 0 5 6 11 12

28

29

17

27

25

24

18

4545

45

35

30

36

43

42

44

40

41

39

33

32

38

34

31

37

54 59 0 5 6 11 12

28

29

17

27

25

24

18

4545

45

43

42

44

40

41

39

35

34

38

36

33

37

31

32

30

54 59 0 9 10 11 12

28

17

29

25

26

18

27

33

31

32

30 29

54 59 0 5 6 11 12

28

27

17

29

25

26

18

40

39

41

37

38

36

34

33

35

32

31

30

54 59 0 5 6 11 12

28

27

17

29

25

26

18

45

43

44

42

40

39

41

37

38

36

33

34

35

32

31

30

54 59 0 5 6 11 12

28

27

17

29

25

26

18

34

33

37

36

31

32

30 2935

54 59 0 5 6 11 12

28

27

17

29

25

26

18

1) Beads 30-332) Beads 34-373) Beads 38-414) Beads 42-45

B2A0

B0

D2

C00

B2

B0

D2 A1

C10

B2D2 A1

B1C11

B2A0D2

B1C01

￩￩￩

Carry = 1

0 (A0)

0 (A0)

1 (A1)

1 (A1)

Carry = 0

Carry = 1

Carry = 0

Carry = 1

Carry = 0

Carry = 0

Carry = 0

1 (C01)

0 (C00)

1 (C10)

0 (C11)

Figure 13. An illustration of how the module C applies a different function which results in different
foldings according to the initial state of the molecule (carry = 0 or 1) at the beginning of the folding of
the module, and to the environment (the bit 0 or 1 encoded) read above by the function. This figure is
meant to be read from right to left (zig passÐ).

Beads 30–33 (rightmost column in Figure 13):
if the carry is 0 at start, then bead 30 is able to bind with beads 11 and 12 from the
environment and depending on whether the input encodes a bit 0 or 1, bead 32
will be able to bind either to 28 or to 5 and 6 respectively. Whereas if the carry is 1,
then bead 30 cannot reach the beads 11 and 12. Thus, these are beads 31 and 32
that will bind with beads 10 and 12 from the environment, giving to the molecule a
completely different shape.

Beads 34–37 with carry = 0 at start:
as bead 34 is attracted by both beads 30 and 31, the molecule folds upon itself
similarly but with a different rotation depending on whether it has read a 0 or a 1 in
the environment above: vertically if it has read a 0, horizontally if it has read a 1.
Bead 36 attracted by beads 9 and 27 fixes the end of the tip in place leaving bead 37
free to move for now.

Beads 34–37 with carry = 1 at start:
Bead 34 is attracted by beads 9 and 10 encoding a bit 0 above which allows beads 36
and 37 to bind with 31 as well, but prefers to bind with 31 together with 35 otherwise.
This induces two different shapes: the beginning of a “wave” pattern () if the
bit read above is 0; or the beginning of a “switchback” pattern () if the bit read
is 1.

Beads 38–41, without carry propagation (carry = 0, or carry = 1 and bit read = 0):
in these three cases the folding of the beads 38–41 starts from the same position.
As the environment is different for each of them, we could design the rule so that
this part of the module prefers to adopt the same shape, climing along the part
already folded to the top row to start the next module with a carry “ 0.

Beads 38-41, with carry propagation (carry = 1 and bit read = 1):
because the switchback pattern is upside down in this case, bead 37 stays low and
bead 38 can firmly attach to the top with beads 5, 6 and 33, and the tip of the module

Int. J. Mol. Sci. 2019, 20, 2259 13 of 28

folds downwards as 40 and 41 are attracted by 37. This ensures that the folding of
the module ends at the bottom row, propagating the carry “ 1 to the next module.

Note that the bottom rows of the four resulting foldings differ significantly: 39–38–37–30 for C01,
39–38–33–32 for C00, 39–38–37–36 for C10, and 41–36–35–30 for C11. This will allow to distinguish
between them in the following zag pass to write the correct bit for the new value of the counter.

4. Proof of Correctness (Theorem 1)

4.1. Overview

As mentioned earlier, each 60-period of the molecule is semantically divided into four modules:

• Module A (beads 0–11): the First Half-Adder
• Module B (beads 12–29): the Left-Turn module
• Module C (beads 30–41): the Second Half-Adder
• Module D (beads 42–59): the Right-Turn module

Depending on the environment in which they fold upon themselves, each of these modules may
adopt the following different configurations. We call bricks the various configurations each module
will adopt in the final folding, as they are the bricks upon which the whole folding is built.

There are six bricks for Modules A and C:

• Axc and Cxc in the zig pass where x, c P t0, 1u are the bit read from the brick above (Ax or Cx) and
the (input) carry from the preceding module (Bc or Dc);

• Ay and Cy in the zag pass where y is the bit written: namely y “ x` c mod 2 if the brick above
is Axc or Cxc.

There are four bricks for Modules B and D:

• Bc1 and Dc1 in the zig pass where c1 P t0, 1u is the carry output by the preceding brick Cxc or Axc,
namely c1 “ x^ c;

• and B2 and D2 in the zag pass.

The proof works in three stages: (1) we describe the targeted final folding and show that this
target folding implements correctly a binary counter: i.e., that the bricks implement correctly the
relationships between the y, x, c and c1 described above. Then, we show that the molecule folds indeed
as prescribed by the target folding. We proceed in two more stages: (2) we enumerate all the possible
surroundings for each module in the target folding; and (3) we show by recurrence that each module
folds into the desired brick in each of the possible surroudings. For stage 3, our program produces
automatically a human-readable folding certificate, which shows the correctness of each step of the
folding in each possible environment. It consists in displaying in a compact but readable way, all the
possible extensions of the current configuration, and displaying for each of them the number of bonds
created (the number in the north-east corner); the maximum bonding configurations are displayed
in bold. For readability, we group together extensions when they share a common path up to their
last bond (the number of paths grouped is then displayed in the south-east corner for cross-checking).
The resulting enumeration is displayed as a tree where only the maximum bond configuration (in bold)
gives birth to configurations at the next level. Following the bold path in the tree certificate shows
the folding adopted by the molecule. See Figures 14 and 15 for two examples of folding certificates
for Brick A01 in the surrounding consisting of the bricks B2, C0, D2 and D1, and for Brick A11 in the
surrounding consisting of the bricks B2, C1, D2 and D1. Figure 14 corresponds to the half-adder A
reading a 0 from above (Brick C0) and a carry from the right (Brick D1); whereas Figure 15 corresponds
to the half-adder A reading a 1 from above (Brick C1) and a carry from the right (Brick D1). Note that

Int. J. Mol. Sci. 2019, 20, 2259 14 of 28

the output configuration is exiting the region from the top for Brick A01 (no carry is propagated) and
from the bottom for Brick A11 (a carry is propagated).

22
29

28

32

30

31

33

39

34

35

40

38

36

3

41

37

44

1

2

42

43

45

0

58

57

47

46

50

59

55

56

48

49

51

54

52

51

53

52

56

53

49

50

54

55

57

33
29

28

32

30

31

33

39

34

35

40

38

36

4

3

41

37

44

1

2

42

43

45

0

58

57

47

46

50

59

55

56

48

49

51

54

52

51

53

52

56

22
29

28

32

30

31

33

39

34

35

4

40

38

36

3

41

37

44

1

2

42

43

45

0

58

57

47

46

50

59

55

56

48

49

51

54

52

51

53

52

56

44
24

25

27

14

29

28

32

9

30

31

33

8

39

34

35

3

4

40

38

36

2

3

41

37

44

57

1

2

42

43

45

56

0

58

57

47

46

50

51

59

55

56

48

49

51

50

54

52

51

53

52

56

45

44

33

23

22

26

15

13

24

25

27

14

10

29

28

32

9

7

30

31

33

8

4

39

34

35

3

1

4

40

38

36

2

58

3

41

37

44

57

55

1

2

42

43

45

56

52

0

58

57

47

46

50

51

49

59

55

56

48

49

51

50

46

54

52

51

53

52

56

45

43

44
24

25

27

29

28

32

30

31

33

39

34

35

5

4

40

38

36

6

3

41

37

44

1

2

42

43

45

0

58

57

47

46

50

59

55

56

48

49

51

33

1010

18

19

21

20

23

22

26

15

24

25

27

14

29

28

32

9

30

31

33

8

39

34

35

3

4

40

38

36

2

3

41

37

44

57

1

2

42

43

45

56

0

58

57

47

46

50

51

59

55

56

48

49

51

50

44
23

22

26

15

24

25

27

14

29

28

32

9

30

31

33

8

5

6

39

34

35

3

4

40

38

36

2

3

41

37

44

57

1

2

42

43

45

56

0

58

57

47

46

50

51

59

55

56

48

49

51

50

44
24

25

27

29

28

32

30

31

33

39

34

35

5

4

40

38

36

6

3

41

37

44

7

1

2

42

43

45

0

58

57

47

46

50

59

55

56

48

49

51

54

52

51

53

52

56

33
24

25

27

29

28

32

30

31

33

39

34

35

5

4

40

38

36

7

6

3

41

37

44

1

2

42

43

45

0

58

57

47

46

50

59

55

56

48

49

51

33

22

18

19

21

20

23

22

26

15

24

25

27

14

29

28

32

9

30

31

33

8

5

6

39

34

35

3

4

40

38

36

2

3

41

37

44

57

1

2

42

43

45

56

0

58

57

47

46

50

51

22

33

29

28

30

31

39

34

5

4

40

38

6

3

41

37

7

1

2

42

43

0

58

57

47

46

59

55

56

48

49

54

52

51

53

52

22

1010

29

28

30

31

39

34

5

4

40

38

6

3

41

37

7

1

2

42

43

0

58

57

47

46

59

55

56

48

49

54

52

51

53

52

53

49

50

54

55

33
29

28

30

31

39

34

5

4

40

38

8

9

6

3

41

37

7

1

2

42

43

0

58

57

47

46

59

55

56

48

49

54

52

51

53

52

3324

25

29

28

30

31

39

34

9

5

4

40

38

8

6

3

41

37

7

1

2

42

43

0

58

57

47

46

59

55

56

48

49

54

52

51

53

52

22

22

24

25

29

28

30

31

39

34

5

4

40

38

8

9

6

3

41

37

7

1

2

42

43

0

58

57

47

46

59

55

56

48

49

54

52

51

53

52

22

33

23

22

26

24

25

27

29

28

32

30

31

33

39

34

35

9

5

4

40

38

36

8

6

3

41

37

44

7

1

2

42

43

45

0

58

57

47

46

50

59

55

56

48

49

51

54

52

51

53

52

56

3324

25

27

29

28

32

30

31

33

10

39

34

35

9

5

4

40

38

36

8

6

3

41

37

44

7

1

2

42

43

45

0

58

57

47

46

50

59

55

56

48

49

51

54

52

51

53

52

56

22

22

23

22

26

24

25

27

29

28

32

30

31

33

10

39

34

35

9

5

4

40

38

36

8

6

3

41

37

44

7

1

2

42

43

45

0

58

57

47

46

50

59

55

56

48

49

51

44
23

22

26

24

25

27

29

28

32

30

31

33

10

11

39

34

35

9

5

4

40

38

36

8

6

3

41

37

44

7

1

2

42

43

45

0

58

57

47

46

50

59

55

56

48

49

51

44
23

22

26

24

25

27

29

28

32

12

30

31

33

10

11

39

34

35

9

5

4

40

38

36

8

6

3

41

37

44

7

1

2

42

43

45

0

58

57

47

46

50

55
18

19

21

23

22

26

24

25

27

29

28

32

12

30

31

33

10

11

39

34

35

9

5

4

40

38

36

8

6

3

41

37

44

7

1

2

42

43

45

0

58

57

47

46

50

44

33

17

16

20

21

18

19

21

20

23

22

26

15

24

25

27

14

29

28

32

9

12

30

31

33

8

10

11

39

34

35

3

9

5

4

40

38

36

2

8

6

3

41

37

44

57

7

1

2

42

43

45

56

55
18

19

21

23

22

26

24

25

27

29

28

32

13

12

30

31

33

14

10

11

39

34

35

9

5

4

40

38

36

8

6

3

41

37

44

7

1

2

42

43

45

33

88

12

13

15

26

17

16

20

21

18

19

21

20

23

22

26

15

24

25

27

14

29

28

32

9

12

30

31

33

8

10

11

39

34

35

3

9

5

4

40

38

36

2

8

6

3

41

37

44

57

7

1

2

42

43

45

56

44
18

19

21

23

22

26

24

25

27

13

29

28

32

14

12

30

31

33

10

11

39

34

35

9

5

4

40

38

36

8

6

3

41

37

44

7

1

2

42

43

45

44
17

16

20

21

18

19

21

20

23

22

26

15

24

25

27

14

13

14

29

28

32

9

12

30

31

33

8

10

11

39

34

35

3

9

5

4

40

38

36

2

8

6

3

41

37

44

57

7

1

2

42

43

45

56

33

33

18

19

21

23

22

26

24

25

27

29

28

32

13

12

30

31

33

14

10

11

39

34

35

9

5

4

40

38

36

8

6

3

41

37

44

7

1

2

42

43

45

0

58

57

47

46

50

Figure 14. The folding certificate for the brick A01 in the environment: D2B2 C0
D1A01

.

Int. J. Mol. Sci. 2019, 20, 2259 15 of 28

22
29

28

32

30

31

33

35

34

38

36

37

39

3

41

40

44

1

2

42

43

45

0

58

57

47

46

50

59

55

56

48

49

51

54

52

51

53

52

56

53

49

50

54

55

57

33
29

28

32

30

31

33

35

34

38

36

37

39

4

3

41

40

44

1

2

42

43

45

0

58

57

47

46

50

59

55

56

48

49

51

54

52

51

53

52

56

22

22

24

25

27

14

29

28

32

9

30

31

33

8

35

34

38

7

36

37

39

6

3

41

40

44

57

1

2

42

43

45

56

0

58

57

47

46

50

51

59

55

56

48

49

51

50

54

52

51

53

52

56

45

44
29

28

32

30

31

33

35

34

38

36

37

39

4

3

41

40

44

5

1

2

42

43

45

0

58

57

47

46

50

59

55

56

48

49

51

54

52

51

53

52

56

33

22

29

28

32

30

31

33

35

34

38

36

37

39

4

3

41

40

44

1

2

42

43

45

0

58

57

47

46

50

59

55

56

48

49

51

54

52

51

53

52

56

33

33

29

28

32

30

31

33

35

34

38

36

37

39

4

3

41

40

44

5

1

2

42

43

45

0

58

57

47

46

50

59

55

56

48

49

51

54

52

51

53

52

56

53

49

50

54

55

57

22

1313

24

25

29

28

30

31

35

34

36

37

4

3

41

40

5

1

2

42

43

0

58

57

47

46

59

55

56

48

49

54

52

51

53

52

53

49

50

54

55

11

5050

23

22

26

15

24

25

27

14

29

28

32

9

30

31

33

8

35

34

38

7

36

37

39

6

4

3

41

40

44

57

5

1

2

42

43

45

56

0

58

57

47

46

50

51

59

55

56

48

49

51

50

54

52

51

53

52

56

45

53

49

50

54

55

57

44

48

46

45

59

58

2

39

22
29 30 35 36

7

8

4

3

41

6

5

1

2

42

0

58

57

47

59

55

56

48

54

52

51

53

22
29 30 35

7

36

6

8

4

3

41

5

1

2

42

0

58

57

47

59

55

56

48

54

52

51

53

3324

25

29

28

30

31

35

34

8

36

37

6

7

4

3

41

40

5

1

2

42

43

0

58

57

47

46

59

55

56

48

49

54

52

51

53

52

3324

25

29

28

30

31

35

34

7

8

36

37

6

4

3

41

40

5

1

2

42

43

0

58

57

47

46

59

55

56

48

49

54

52

51

53

52

44
24

25

27

29

28

32

30

31

33

35

34

38

7

8

36

37

39

6

4

3

41

40

44

5

1

2

42

43

45

0

58

57

47

46

50

59

55

56

48

49

51

54

52

51

53

52

56

33
24

25

27

29

28

32

30

31

33

9

35

34

38

7

8

36

37

39

6

4

3

41

40

44

5

1

2

42

43

45

0

58

57

47

46

50

59

55

56

48

49

51

44
23

22

26

24

25

27

29

28

32

30

31

33

9

35

34

38

7

8

36

37

39

6

4

3

41

40

44

5

1

2

42

43

45

0

58

57

47

46

50

59

55

56

48

49

51

55
23

22

26

24

25

27

29

28

32

30

31

33

10

9

35

34

38

7

8

36

37

39

6

4

3

41

40

44

5

1

2

42

43

45

0

58

57

47

46

50

44

22

18

19

21

20

23

22

26

15

24

25

27

14

29

28

32

9

30

31

33

8

9

35

34

38

7

7

8

36

37

39

6

6

4

3

41

40

44

57

5

1

2

42

43

45

56

0

58

57

47

46

50

51

66
23

22

26

24

25

27

29

28

32

30

31

33

10

9

35

34

38

11

7

8

36

37

39

6

4

3

41

40

44

5

1

2

42

43

45

0

58

57

47

46

50

55

22

23

22

26

24

25

27

29

28

32

30

31

33

10

9

35

34

38

7

8

36

37

39

6

4

3

41

40

44

5

1

2

42

43

45

0

58

57

47

46

50

33

33

23

22

26

24

25

27

29

28

32

30

31

33

10

9

35

34

38

11

7

8

36

37

39

6

4

3

41

40

44

5

1

2

42

43

45

0

58

57

47

46

50

59

55

56

48

49

51

22

1313

18

19

23

22

24

25

29

28

30

31

10

9

35

34

11

7

8

36

37

6

4

3

41

40

5

1

2

42

43

0

58

57

47

46

59

55

56

48

49

11

4646

17

16

20

21

18

19

21

20

23

22

26

15

24

25

27

14

29

28

32

9

30

31

33

8

10

9

35

34

38

7

11

7

8

36

37

39

6

6

4

3

41

40

44

57

5

1

2

42

43

45

56

0

58

57

47

46

50

51

59

55

56

48

49

51

50

54

52

51

53

52

56

45

22
24 29 30

10

9

35

12

11

7

8

36

13

14

6

4

3

41

5

1

2

42

0

58

57

47

59

55

56

48

22
23 24 29 30

13

14

10

9

35

12

11

7

8

36

6

4

3

41

5

1

2

42

0

58

57

47

22
24 29 30

12

10

9

35

13

11

7

8

36

14

6

4

3

41

5

1

2

42

0

58

57

47

59

55

56

48

22

23 24 29 30

12

10

9

35

13

14

11

7

8

36

6

4

3

41

5

1

2

42

0

58

57

47

59

55

56

48

22
23 24 29

13

30

12

14

10

9

35

11

7

8

36

6

4

3

41

5

1

2

42

0

58

57

47

3318

19

23

22

24

25

29

28

14

30

31

12

13

10

9

35

34

11

7

8

36

37

6

4

3

41

40

5

1

2

42

43

0

58

57

47

46

22
23 24 29 30

13

12

10

9

35

14

11

7

8

36

6

4

3

41

5

1

2

42

0

58

57

47

3318

19

23

22

24

25

29

28

13

14

30

31

12

10

9

35

34

11

7

8

36

37

6

4

3

41

40

5

1

2

42

43

0

58

57

47

46

44
18

19

21

23

22

26

24

25

27

29

28

32

13

14

30

31

33

12

10

9

35

34

38

11

7

8

36

37

39

6

4

3

41

40

44

5

1

2

42

43

45

0

58

57

47

46

50

33
18

19

21

23

22

26

24

25

27

15

29

28

32

13

14

30

31

33

12

10

9

35

34

38

11

7

8

36

37

39

6

4

3

41

40

44

5

1

2

42

43

45

44
17

16

20

18

19

21

23

22

26

24

25

27

15

29

28

32

13

14

30

31

33

12

10

9

35

34

38

11

7

8

36

37

39

6

4

3

41

40

44

5

1

2

42

43

45

Figure 15. The folding certificate for the brick A11 in the environment: D2B2 C1
D1A11

.

In the next subsections, we use our new tools to prove the correctness of the Oritatami System
presented in Section 3. Precisely, we show that, starting from a proper seed of length 21 ` 20k,
the 60-periodic molecule p0, . . . , 59qω folds upon itself into 2 ¨ 22k`1 ´ 1 rows of height 3 implementing
a p2k` 1q-bits counter counting from 0 to 22k`1.

Int. J. Mol. Sci. 2019, 20, 2259 16 of 28

4.2. Description of the Final Configuration (I.e., the Resulting Folding)

Let us first describe each of the possible bricks for each module:

• Module A, First Half-Adder (beads 0–11):
Zig Direction ÐÝ

11

9

10

6

8

7

5

3

4

0

2

1

11

9

10

4

8

5

3

7

6

2

0

1

11

9

10

2

8

3

1

7

4

0

6

5

9

11

10

8

6

7

3

5

4

2

0

1

Brick A00 Brick A01 Brick A10 Brick A11

Zag Direction ÝÑ

1

2

0

4

3

9

8

5

10

7

6

11

1

2

0

4

3

5

7

8

6

10

9

11

Brick A0 Brick A1
• Module B, Left-Turn module (beads 12–29)

Left Turn ãÑ (Zig-to-Zag turn)

15

14

21

20

16

13

27

26

22

19

17

12

28

25

23

18

29

24

Brick BT

Zig Direction ÐÝ

28

29

27

25

24

26

22

23

21

19

18

20

16

17

15

13

12

14

28

27

29

25

26

24

22

21

23

19

20

18

16

15

17

13

14

12

Brick B0 Brick B1

Zag Direction ÝÑ

14

12

13

15

17

16

20

18

19

21

23

22

26

24

25

27

29

28

Brick B2
• Module C, Second Half-Adder (beads 30–41)

Zig Direction ÐÝ

40

41

39

37

36

38

34

35

33

31

30

32

40

41

39

35

34

38

36

33

37

31

32

30

40

41

39

33

32

38

34

31

37

35

30

36

40

39

41

37

38

36

34

33

35

31

32

30

Brick C00 Brick C01 Brick C10 Brick C11

Zag Direction ÝÑ

32

30

31

33

39

34

35

40

38

36

41

37

32

30

31

33

35

34

38

36

37

39

41

40

Brick C0 Brick C1
• Module D, Right-Turn module (beads 42–59)

Zig Direction ÐÝ

58

59

57

55

54

56

52

53

51

49

48

50

46

47

45

43

42

44

58

57

59

55

56

54

52

51

53

49

50

48

46

45

47

43

44

42

Brick D0 Brick D1

Zag Direction ÝÑ

44

42

43

45

47

46

50

48

49

51

53

52

56

54

55

57

59

58

Brick D2

Right Turn Ðâ (Zag-to-Zig turn)

44

42

43

45

53

52

48

47

46

59

54

51

50

49

58

56

55

57

Brick DT

Int. J. Mol. Sci. 2019, 20, 2259 17 of 28

Note the similarities between the two half-adders A and C in their folding. Using two similar but
different modules A and C allow to avoid interference and simplify the design.

The final configuration. In order to program the molecule, we have partitioned the triangular
grid into regions that will be populated each by a module adopting one of the brick configurations
above. The regions and the bricks populating them are displayed in Figure 16. With the exception of
the seed region on top, the regions consist in parallelograms of size 4ˆ 3, 6ˆ 3 or 3ˆ 6 organized into
2ˆ 22k`1 rows of height 3 and 4k` 3 columns of widths 3 or 6. The regions are to be populated as
follows to implement a p2k` 1q-bits counter, as illustrated on Figure 16:

• The rightmost and leftmost columns have width 3:

– The leftmost column consists in 22k`1 p3 ˆ 6q-regions all populated with the brick BT
(Left Turn).

– The rightmost column consists in 22k`1 p3 ˆ 6q-regions all populated with the brick DT
(Right Turn).

• The 4k` 1 inner columns consist in 4ˆ 3-parallelogram regions if odd and 6ˆ 3-parallelogram
regions if even. The rows consist of an alternation of Zig- and Zag-rows to be read from right to left
and from left to right, respectively. The rows 2i` 1 and 2i` 2 take care of reading i in binary from
the row 2i above, incrementing it in row 2i` 1, and writing i` 1 in row 2i` 2. In order to describe
precisely the folding, let us denote by ij the jth lowest weight bits of i P N when written in binary
and by ρi the position of the lowest-weight 0-bit of i: ρi “ mintj : ij “ 0u. ρi is the position up
to which the carry propagates when one increments i: ρ “ p1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, . . .q.
Precisely, the region in the pth inner row, 1 ď p ď 2 ¨ 22k`1 ´ 1 and the qth inner column,
1 ď q ď 4k` 1 is:

– if p “ 2i` 1 is odd and q “ 2r is even: a 3ˆ 6-parallelogram populated with Brick Kc, where:

∗ K “ B if r is even, and K “ D if r is odd;
∗ c “ 1 if r{2 ă ρi (there still is carry to propagate), and c “ 0 if r{2 ě ρi (there is no more

carry to propagate).

– if p “ 2i and q “ 2r are even: a 3ˆ 6-parallelogram populated with Brick B2 if r is even,
or D2 if r is odd.

– if p “ 2i is even and q “ 2r` 1 is odd: a 4ˆ 3-parallelogram populated with Brick Air if r is
odd and Cir if r is even.

– if p “ 2i` 1 and q “ 2r` 1 are odd: a 4ˆ 3-parallelogram populated with Brick Kirc where:

∗ K “ A if r is even, and K “ C if r is odd;
∗ c “ 1 if r{2 ď ρi (there still is carry to propagate), and c “ 0 if r{2 ą ρi (there is no more

carry to propagate).

• The seed row on top consists in the bottom row of the brick sequence BT,C0,pD2,A0,B2,C0qk,DT.
• The leftmost region of the last row is where the folding stops (counter capacity exceeded).

Int. J. Mol. Sci. 2019, 20, 2259 18 of 28

...

...

A01

C1
DT

B0C00
Size: 4x3 Size: 4x3Size: 6x3Size: 6x3Size: 4x3Size: 4x3Size: 3x6 Size: 4x3Size: 6x3Size: 6x3

D0A00 ...

...

...

...

B0C00D0A00

C0B2A0D2C0B2A0D2A0BT

B2A0D2C0 B2A0D2C0
BT

A11

C0
DT

B1C01D0A00B0C00D0A00

B2A0D2C0 B2A1D2C0
BT

...

...

...

...

A01

C1
DT

B0C01D1A00B0C00D0A00

B2A0D2C0 B2A1D2C0
BT

...

A01

C1
DT

DT

B0C10D0A10B0C10D0A10

B2A1D2C1 B2A1D2C1
BT

A11B1C11D1A11B1C11D1A11Halt

Seed

DT

Size: 3x6

Figure 16. Triangular grid partition into regions populated with the proper bricks. Color coding:
Seed-row in orange; Zig-rows (Ð) in yellow; Zag-rows (Ñ) in blue; Left Turns (ãÑ) in pink; and Right
Turns (Ðâ) in green.

4.3. Input and Output Nascent Configurations

Recall that the inertial dynamics extends only the favored nascent configurations from the previous
time step (i.e., the one that had the maximum number of bonds). We call this set of configurations,
the output nascent configurations of the previous time step, or the input nascent configurations of the
present time step. In this section, we list all the possible input/output nascent configurations according
to our design.

The lemmas in Supplementary Materials Section S.1.2 sum up the results
and yield by a simple induction that the construction is correct. Let us denote
α, α1, α2, α3, β, β1, γ, γ1, θ, θ1, λ2, λ12, λ3, λ13, λ4, λ14, λ5, µ, µ1 all the possible sets of output nascent
configurations for all bricks as illustrated in Figure 17. Note that output nascent configurations
β, β1, γ, γ1, θ, θ1 do not represent a single configuration but a set of configurations as the position of the
last bead d is not fixed.

Int. J. Mol. Sci. 2019, 20, 2259 19 of 28

Zig-rows (ÐÝ)

b
c

a

d d
b

c

a

d
b

c

a

d
b

c

a

Ĳ α Ĳ α1 Ĳ α2 Ĳ α3

b
a

dd
d c

b
a

dd
d c

d
d d
c ab d

d d
c ab

Ĳ β Ĳ β1 Ĳ γ Ĳ γ1

b
a

dd
d c

b c
a

dd

Ĳ θ Ĳ θ1

Zag-rows (ÝÑ)

c

a
b
d c

a
b
d c

a
b
d c

a
b
d

Ĳ λ2 Ĳ λ12 Ĳ λ3 Ĳ λ13

c

a
b
d c

a
b
d c

a
b
d

Ĳ λ4 Ĳ λ14 Ĳ λ5

c

a
b
d d

a

c
b

Ĳ µ Ĳ µ1

Figure 17. Notation for the various possible sets of output nascent configurations.

Figure 18 illustrates the results proven in the following lemmas and demonstrates that the
induction is correct and proves that the bricks fold one after the other so that the molecule folds indeed
into the claimed final configuration presented in Figure 16.

Int. J. Mol. Sci. 2019, 20, 2259 20 of 28

θ γ

θ γ
γ

β

α

α
α

α
α

α

β λ
λ

λ
λ

λ

α

μ
μ

μ

DT

C
0

DT
DT

C
1

DT

C
0

B
2

DT

A
01

C
0

B
2

A
01

A
1

B
0

C
1

B
2

A
10

A
1

B
0

C
0

B
2

A
00

A
1

B
0

B
2

A
0

B
0

D
2

C
00

C
0

B
2

A
00

A
0

B
0

C
0

B
2

A
0

A
01

B
0

C
1

B
2

A
0

A
10

B
0

B
2 B
0

D
2

A
1 C
10

D
2

C
0

D
0

B
2

A
00

D
2

C
1

B
2

D
0

A
10

D
2

C
0

D
0

BT

A
00

A
0 C
00

D
2

C
0

D
0

A
0

D
2

C
0

C
01

D
0

A
1

D
2

C
0

C
10

D
0

A
0 C
00

D
2

C
1

D
0

A
0

D
2

C
01

C
1

D
0

A
1

D
2

C
10

C
1

D
0

D
2 D
0

BT

C
1 A
10

C
0 A
00

BT
BT

C
0 A
01

BT
BT

C
1 A
10

BT
BT

B
2

DT

C
1 A
11

D
2

C
1

B
2

D
1

A
11

D
2

BT

C
1

D
1

A
11

C
1

B
2

A
0

A
11

B
1

C
1

B
2

A
11

A
1

B
1

B
2

D
2

A
1

B
1

C
11

A
1

D
2

C
0

C
11

D
1

A
1

D
2

C
11

C
1

D
1

D
2

C
0

D
1

B
2

A
01

B
2

A
0

D
2

B
1

C
01

D
2

C
0

BT

D
1

A
01

C
1 A
11

BT H
al
t

D
2
C
00

B
0

A
0

D
2

B
0

C
10 A
1

D
2

B
1

C
01 A
1

A
00

A
0
B
0 B
2

A
0
B
0
A
01

B
2

A
0
B
0
A
10

B
2

A
1

A
00

B
0 B
2

B
0
A
01

A
1

B
2

B
0
A
10

A
1

B
2

BT

A
00 C
0
D
0

BT

D
1

A
01 C
1

BT

D
0

A
10 C
1

A
00

D
0

B
2
C
0

D
1

A
01

B
2
C
1

D
0

A
10

B
2
C
1

A
01

B
2

C
1DT

C
01

D
0

C
0

D
2

C
10

D
0

C
0

D
2

C
00

D
0

C
1

D
2

C
01

D
0

C
1

D
2

C
10

D
0

C
1

D
2

C
00

D
0

C
0

D
2

A
0
B
1
A
11

B
2

B
1
A
11

A
1

B
2

C
11

D
1

C
0

D
2

C
11

D
1

C
1

D
2

D
2

B
1

C
11 A
0

D
1

B
2A
11 C
0

B
2
A
11 C
0DT

β

λ

Zi
g

pa
ss

 ←

Za
g

pa
ss

 →

Figure 18. The brick automaton illustrating how Lemmas 1–10 (Supplementary Materials) work
together to prove Theorem 1 by induction.

Proof of Correctness. The proof of Theorem 1 proceeds by induction: it is enough to show
that each module folds into the expected brick in each region. The folding of each module depends
on its environment, i.e., on the bricks already folded nearby and on the current minimum energy
configurations output by the previous step. First, Supplementary Materials Section S.1.1 enumerates
all the possible environments for each module. Then, Supplementary Materials Section S.1.2 shows
that if each module folds as expected, then Theorem 1 is correct. Finally, Supplementary Materials
Section S.2 provides all the folding certificates proving that each module folds as expected in every
possible environment which concludes the proof of correctness of our 60-beads long periodic oritatami
system implementing a binary counter using inertial dynamics.

Int. J. Mol. Sci. 2019, 20, 2259 21 of 28

5. Rule Design Is NP-Hard and FPT

Our second main result concerns the design of a rule for achieving a set of given foldings
depending on the environment.

The rule design problem (RDP) consists in the following:

Input: Two disjoint sets of bead types B and t1, . . . , nu, a delay δ, k seed configurations σ1, . . . , σk

of sequences s1, . . . , sk P B˚ (with possibly different lengths) and k target configurations
c1, . . . , ck of sequence p “ x1, . . . , ny of length n, and a dynamics D P tO , I u.

Output: A rule Ď pB\ t1, . . . , nuq2 such that for all i “ 1..k, the Oritatami system O “ pp, , δq

folds deterministically into the configuration σici from the seed configuration σi according to

dynamics D , i.e., such that: Dn´δ`1
si p

´

pσiq
Źpδ´1q

¯

“ tσiciu for all i “ 1..k.

5.1. NP-Completeness

We begin by showing that the rule design problem is NP-complete:

Theorem 4. For any positive delay and transcript length, the rule design problem is NP-complete.

Proof. We reduce from 3-SAT with q variables x1, . . . , xq and m 3-clauses C1, . . . , Cm to the
rule design problem by designing 3 ` 2q bead types B “ t1, . . . , nu \ tr, z, x1, x1, . . . , xq, xqu,
the (fixed length) transcript p “ x1, . . . , ny, and q ` m pairs of seed-target configurations
pσ1, c1q, . . . , pσq, cqq, pσ11, c11q, . . . , pσ1m, c1mq, such that φ “ C1 ^ ¨ ¨ ¨ ^ Cm is satisfiable if and only if
there is a rule such that p folds into ci starting from σi, and into c1i from σ1i. It will follow that finding
a rule is NP-hard (in the number of pairs of seed-target configuration pairs).

Figure 19 shows the seed-target configuration pairs for delay δ “ 1. Here, p “ x1y of
length n “ 1. This reduction verifies the following property: there is a rule that folds every one
of them deterministically iff there is a rule such that 1 is attracted by at least one literal of each clause,
and at most one of each variable or its negation. It follows that such a rule exists if and only if φ is
satisfiable (by setting to true every literal to which 1 is attracted).

`i

`j

`k

1

z
z

(a)

xi

xi

1 r
r

zz

z z

(b)

Figure 19. The polynomial-time reduction for 3-SAT to the rule design problem for delay δ “ 1.
The seed configurations are linked in orange, and the target configurations are linked in turquoise.
(a) The seed-target configuration pair for clause `i _ `j _ `k: it is deterministically foldable iff 1
is attracted by at least one of `i, `j, `k; (b) The seed-target configuration pair for variable xi: it is
deterministically foldable iff 1 is attracted by r and 1 is attracted by at most one of z, xi and xi.

Finally, extending this proof to a larger delay time δ ě 2 can be done as shown in Figure 20 by
setting p “ x1, . . . , δy (of length n “ δ) and augmenting in the seed configurations with a tunnel of
length δ´ 1 that funnels the δ´ 1 first beads of the transcript p. This reduces to the delay 1 case.

Int. J. Mol. Sci. 2019, 20, 2259 22 of 28

zz

¨ ¨
¨ 1

¨ ¨
¨

¨ ¨
¨

δ´1

z z
z

z
z

z
z

`i

`j

`k

δ

(a)

z

z

¨ ¨
¨ 1

¨ ¨
¨

¨ ¨
¨

z

z

xi

xi

δ r
r

zz

z δ´1

(b)

Figure 20. The reduction for 3-SAT to the rule design problem for delay δ ě 2. (a) The seed-target
configuration pair for clause `i _ `j _ `k: it is deterministically foldable iff δ is attracted by at least one
of `i, `j, `k. (b) The seed-target configuration pair for variable xi: it is deterministically foldable iff δ is
attracted by r and δ is attracted by at most one of xi and xi.

5.2. An Efficient Algorithm in Practice

As can be observed in the proof of Theorem 4, the NP-hardness of the Rule Design Problem
depends on the number of desired configurations (k) and not on the length of the transcript (n).
As Theorem 3 will show next, the problem is indeed linear-time in the length n of the transcript when
the number of desired configuration is a constant, and exponential-time only in k and δ. Such a problem
is said fixed parameter tractable (FPT) as it can be solved in polynomial time when some parameters (here
k and δ) are small constants. As one usually only desires a small number of different configurations
for every given part of the transcript, the algorithm described below is very efficient in practice and
allowed us to solve various key parts of our design in spite of its NP-hardness in general!

Theorem 5. thm:fpt The rule design problem (RDP) with k seed-target configurations, each of length n,
and delay time δ is fixed-parameter tractable, as it can be solved in time and space complexity Ok,δpnq.
More precisely . Algorithm 1 solves RDP for the oblivious dynamics O in time Opn ¨ 5δ23kpδ3`δ2`4δ`1qq

time and uses Opn ¨ δ223kpδ3`δ2`4δ`1qq space; and Algorithm 2 solves RDP for the inertial dynamics I in
Opn ¨ 5δ2k5δ´1`3kpδ3`δ2`4δ`1qq time and uses Opn ¨ δ25δ2k5δ´1`3kpδ3`δ2`4δ`1qq space.

The bounds given on the memory use seem to indicate that the algorithm might be impractical
even if its time complexity is linear in the length of the transcript. However, we implemented lazily
(i.e., allocating memory only when needed) and then, its memory usage remains modest because the
number of output nascent configurations remains small. We have used this procedure successfully
to solve key parts of our design. Indeed, note that in our design, there are only very few input
configurations (most of the time just one) which makes the potentially heavy extension step very fast
in practice, at least for this design.

Int. J. Mol. Sci. 2019, 20, 2259 23 of 28

Algorithm 1 Rule Design Problem FPT Algorithm—Oblivious dynamics

1: function EXTENDOBLIVIOUS(i, a partial rule R)
2: Ź This procedure computes all the possible extensions of rule R s.t. bead pi is placed at its desired location in all k

target configurations
3: Let Σ “ H
4: Let N be the bead types reachable by the pi` δ´ 1q-th beads of the transcript p in any of the δ-elongations

of the pi´ 1q-prefixes of the target configurations σ1c1
1..i´1, . . . , σkck

1..i´1
5: for all partial rule ρ : tpi`δ´1u ˆN Ñ ttrue, falseu do
6: Let R1 “ RY ρ

7: try
8: for j “ 1..k do

9: let Sj “
`

σjcj
1..i´1

˘Źpδ´1q

10: let S1j “ OR1pSjq “
Ť

γ P σjc
j
1..i´1

arg min
c P γŹδ

ER1pcq

11: if S1j “ H or Dc1 P S1j s.t. c1i ‰ cj
i then

12: throw rejectRule Ź The rule R1 fails to place the bead pi at its desired position

13: Σ :“ ΣY tR1u Ź Add R1 to Σ
14: catch rejectRule: continue Ź Do not add R1 to Σ

15: return Σ

16: function PROJECTOBLIVIOUS(i, SetR of partial rules R))
17: Ź This procedure retains only one representative partial rule for every possible subrule of the last δ´ 1 nascent beads
18: Let Π :“ H
19: Let N be the bead types reachable by the δ ´ 1 nascent beads pi`1, . . . , pi`δ´1 in any of the pδ ´

1q-elongations of the i-prefixes of the target configurations σ1c1
1..i, . . . , σkck

1..i
20: for all partial rule ρ : tpi`1, . . . , pi`δ´1u ˆN Ñ ttrue, falseu do
21: Let Rρ be the subset of all partial rules R inRmatching with ρ.
22: if Rρ ‰ H then
23: Pick one rule R P Rρ to be the representative of set Rρ and add it to Π: Π :“ ΠY tRu

24: return Π

25: function FINDRULEOBLIVIOUS()
26: LetN be the bead types reachable by the δ´ 1 nascent beads p1, . . . , pδ´1 in any of the pδ´ 1q-elongations

of the k seed configurations σ1, . . . , σk

27: InitializeR as the set of all partial rules R : tp1, . . . , pδ´1u ˆN Ñ ttrue, falseu
28: for i “ 1..n´ δ` 1 do Ź Extend the rule to place correctly the bead pi
29: Let Σ “ H
30: for all partial rule R P R do
31: Σ :“ ΣY EXTENDOBLIVIOUS(i, R)

32: UpdateR := PROJECTOBLIVIOUS(i, Σ)

33: for all R P R and j “ 1..k do Ź Check the positions of the last δ´ 1 nascent beads

34: if ORpσ
jpcjq

Ÿ1
q ‰ tσjcju then

35: Remove R fromR: R :“ RztRu

36: ifR ‰ H then
37: Pick a rule R P R and return R
38: else
39: return “There is no rule building the k target configurations together obliviously”

Int. J. Mol. Sci. 2019, 20, 2259 24 of 28

Algorithm 2 Rule Design Problem FPT Algorithm—Inertial dynamics

1: function EXTENDINERTIAL(i, a partial rule R, the k sets of nascent configurations S1, . . . , Sk up to bead pi`δ´2
favored by R in each of the k target environments)

2: Ź This procedure computes all the possible extensions of rule R s.t. bead pi is placed at its desired location in all k
target configurations

3: Let Σ “ H
4: Let N be the bead types reachable by the pi` δ´ 1q-th bead of the transcript p in any of the 1-elongations

of the favored nascent configurations in S1, . . . , Sk

5: for all partial rule ρ : tpi`δ´1u ˆN Ñ ttrue, falseu do
6: Let R1 “ RY ρ

7: try
8: for j “ 1..k do

9: let S1 j “ I R1pSjq “
Ť

γ P SjŸpδ´1q arg min
c P γŹδ X SjŹ1

ER1pcq

10: if S1 j “ H or Dc1 P S1 j s.t. c1i ‰ cj
i then

11: throw rejectRule Ź The rule R1 fails to place the bead pi at its desired position

12: Σ :“ ΣY txR1, S11, . . . , S1kyu Ź Add R1 and its favored nascent configurations to Σ
13: catch rejectRule: continue Ź Do not add R1 to Σ

14: return Σ

15: function PROJECTINERTIAL(i, Set S of tuples xpartial rule R, the k sets of nascent configurations S1, . . . , Sk up
to bead pi`δ´1 favored by R in each of the k target environmentsy)

16: Ź This procedure retains only one representative partial rule for every possible subrule and resulting favored nascent
configurations of the last δ´ 1 nascent beads in every environments

17: Let Π :“ H
18: LetN be the bead types reachable by the δ´ 1 nascent beads pi`1, . . . , pi`δ´1 in any of the δ´ 1 elongations

of the partial target configurations σ1c1
1..i, . . . , σkck

1..i
19: for all partial rule ρ : tpi`1, . . . , pi`δ´1u ˆ N Ñ ttrue, falseu and all subsets Γ1, . . . , Γk of

pδ´ 1q-elongations of the partial target configurations σ1c1
1..i, . . . , σkck

1..i do
20: Let Rρ,Γ be the subset of all partial rules R in S which match with ρ and whose favored nascent

configurations are the sets Γ1, . . . , Γk, i.e.:

let Rρ,Γ “ tR : R matches with ρ and xR, Γ1, . . . , Γky P Su
21: if Rρ,Γ ‰ H then
22: Pick one rule R P Rρ,Γ to be the representative of set Rρ,Γ and add it to Π:

Π :“ ΠY txR, Γ1, . . . , Γkyu
23: return Π

24: function FINDRULEINERTIAL()
25: LetN be the bead types reachable by the δ´ 1 nascent beads p1, . . . , pδ´1 in any of the pδ´ 1q-elongations

of the k seed configurations σ1, . . . , σk

26: Initialize S as the set of all tuples xR, σ1Źδ´1, . . . , σkŹδ´1
y for all partial rules

R : tp1, . . . , pδ´1u ˆN Ñ ttrue, falseu
27: for i “ 1..n´ δ` 1 do Ź Extend the rule to place correctly the bead pi
28: Let Σ “ H
29: for all tuple xR, S1, . . . , Sky P S do
30: Σ :“ ΣY EXTENDINERTIAL(i, R, S1, . . . , Sk)

31: Update S := PROJECTINERTIAL(i, Σ)

32: if D xR, tσ1c1u, . . . , tσkckuy P S then Ź Check the positions of the last δ´ 1 nascent beads
33: return R
34: else
35: return “There is no rule building the k target configurations together inertially”

Int. J. Mol. Sci. 2019, 20, 2259 25 of 28

Proof sketch (complete proof in Supplementary Materials Section S.3). The key is that every step
of the folding is computed locally in a fixed and known environment: at each step i, the δ beads to be
folded look for their best positions by interacting with beads with fixed and known positions within
a radius δ` 1. It follows that one can compute the set of all suitable subrules, considering these Opδ2q

bead types only (i.e., that place the i´ δ` 1-th bead of the molecule at the correct position). Oblivious
O and inertial I dynamics differ as I only consider input nascent configurations which are output
by the previous step, whereas O does not use any information from the previous step. This implies
that one need to remember some information to connect one step to the next in I , whereas O needs
no memory at all.

Formally, a subrule R : B2 Ñ ttrue, false,Ku is a symmetric function that states for each pair
of beads if they attract each other (true) or not (false), or if this is undefined (K). We denote by
dom R “ tpa, bq P B2 : Rpa, bq ‰ Ku the domain of R. Two subrules R1 and R2 are compatible, denoted by
R1 „ R2 if they agree for every pair where they are both defined, i.e., if for all a, b P dom R1 X dom R2,
R1pa, bq “ R2pa, bq. We say that R1 matches with R2 if for all pa, bq P dom R2, R1pa, bq “ R2pa, bq.
If R1 „ R2, we denote by R1 Y R2 the subrule obtained by merging R1 and R2, i.e. defined by
R1 Y R2 pa, bq “ R1pa, bq if pa, bq P dom R1, and “ R2pa, bq otherwise.

For all 0 ď 1 ď |c|, we denote by c1..i the prefix of length i of a configuration c. Algorithm 1 solves
RDP for the oblivious dynamics in time linear in the length of the sequence as follows. It incrementally
constructs a set of rules that place each bead at its desired position in each of the k environments.
It proceeds by maintaining a setR of candidate subrules that place correctly the first i beads in every
of the k environments. At the i-th step, the main procedure FINDRULEOBLIVIOUS() first extends each
candidate subrule R in R by calling procedure EXTENDOBLIVIOUS() which scans all the possible
attraction rule extensions of R for the new nascent bead (the pi` δ´ 1q-th) with the bead types it can
reach in each of the k configurations, and retains only the ones that place the i-th bead at its correct
position for all k configurations. Note that this extension of the rule does not change the positioning of
the pi´ 1qth first beads since the pi` δ´ 1q-th bead is not yet produced when they are placed. Now,
in order to keep the processing time constant for each bead, main procedure FINDRULEOBLIVIOUS()
calls procedure PROJECTOBLIVIOUS() which retains only one representative of each subset of rules
that define the same attractions for the δ´ 1 nascent beads (indexed from i` 1 to i` δ´ 1), i.e., for the
only bead types for which the rule matters in order to determine the positions of the upcoming beads.
Once the n´ δ-th bead is placed, the main procedure concludes by checking that the surviving rules
place the last δ´ 1 beads at their desired positions.

Algorithm 2 works similarly for the inertial dynamics I . In fact, we just extend the subrule
technics by testing subrules for each possible input and corresponding output nascent configurations
set, for each seed-target configurations pair and each time step.

5.3. Comparison with Related Works

A variant of the rule design problem was studied by Ota and Seki [43] with one single seed/target
configurations pair and where the transcript can be arbitrary (any bead type can be used, including
repetition and one from the seed). In the oblivious dynamics, they fully characterize for all possible
combinations of delay δ and arity α for which this variant either can be solved in a polynomial time or
is NP-hard. This problem remains as hard even if the transcript is required to be periodic.

The uniqueness of the bead types used in the transcript is thus crucial for the FPT algorithm
to exist. Thus, it is not clear whether their variant admits an FPT algorithm or not. Note that other
algorithms were proposed, such as the heuristic rule set optimization algorithm by Han and Kim [45].

6. Perspectives

The purpose of our new model is not to be entirely accurate with respect to phenomena observed
in nature, but instead to start developing an intuition about the kind of problem that need to be solved
in order to engineer RNA shapes, and later, even proteins.

Int. J. Mol. Sci. 2019, 20, 2259 26 of 28

In the future, a number of extensions of this model seem natural. In particular, extending it with
a more realistic notion of thermodynamics and molecular agitation. Using existing works in molecular
dynamics [47], would allow to explore stochastic optimization processes. It would be of highest interest
if one could come up with a stochastic extension of this model that is still able of Turing-complete
computation as was shown in [42] for the present model.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/20/9/2259/
s1.

Author Contributions: All authors contributed to: conceptualization, methodology, validation, formal analysis,
investigation, resources, writing–original draft preparation and review and editing, supervision, project
administration. Software and visualization, P.-É.M. and N.S.

Funding: C. Geary is a Carlsberg Postdoctoral Fellow supported by the Carlsberg Foundation. N. Schabanel is
supported by Grants ANR-12-BS02-005 RDAM, IXXI MOLECAL, IXXI CALCASMOL, CNRS MoPrExProgMol
and CNRS AMARP grants. S. Seki is in part supported by the Academy of Finland, Postdoctoral Researcher
Grant 13266670/T30606, JST Program to Disseminate Tenure Tracking System, MEXT, Japan, No. 6F36 and JSPS
KAKENHI Grant-in-Aid for Young Scientists (A) No. 16H05854 and for Challenging Research (Exploratory)
No. 18K19779.

Acknowledgments: The authors thank Abdulmelik Mohammed, Andrew Winslow, Damien Woods for discussions
and encouragements.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rothemund, P.W.K. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297–302.
[CrossRef] [PubMed]

2. Yurke, B.; Turberfield, A.J.; Mills, A.P.; Simmel, F.C.; Neumann, J.L. A DNA-fuelled molecular machine
made of DNA. Nature 2000, 406, 605–608. [CrossRef]

3. Evans, C.G. Crystals that Count! Physical Principles and Experimental Investigations of DNA Tile
Self-Assembly. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 2014.

4. Seeman, N.C. Nucleic-acid junctions and lattices. J. Theor. Biol. 1982, 99, 237–247. [CrossRef]
5. Winfree, E. Algorithmic Self-Assembly of DNA. Ph.D. Thesis, Caltech, Pasadena, CA, USA, 1998.
6. Cannon, S.; Demaine, E.D.; Demaine, M.L.; Eisenstat, S.; Patitz, M.J.; Schweller, R.; Summers, S.M.;

Winslow, A. Two Hands Are Better Than One (up to constant factors). In Proceedings of the 30th
International Symposium on Theoretical Aspects of Computer Science, Kiel, Germany, 27 February–2
March 2013; pp. 172–184.

7. Chen, H.L.; Doty, D. Parallelism and Time in Hierarchical Self-Assembly. In Proceedings of the 23rd Annual
ACM-SIAM Symposium on Discrete Algorithms, Kyoto, Japan, 17–19 January 2012; pp. 1163–1182.

8. Fujibayashi, K.; Zhang, D.Y.; Winfree, E.; Murata, S. Error suppression mechanisms for DNA tile
self-assembly and their simulation. Nat. Comput. 2009, 8, 589–612. [CrossRef]

9. Cook, M.; Fu, Y.; Schweller, R.T. Temperature 1 Self-Assembly: Deterministic Assembly in 3D and
Probabilistic Assembly in 2D. In Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete
Algorithms, San Francisco, CA, USA, 23–25 January 2011.

10. Woods, D.; Doty, D.; Myhrvold, C.; Hui, J.; Zhou, F.; Yin, P.; Winfree, E. Diverse and robust molecular
algorithms using reprogrammable DNA self-assembly. Nature 2019, 567, 366–372. [CrossRef] [PubMed]

11. Afonin, K.A.; Bindewald, E.; Yaghoubian, A.J.; Voss, N.; Jacovetty, E.; Shapiro, B.A.; Jaeger, L. In vitro
Assembly of Cubic RNA-Based Scaffolds Designed in silico. Nat. Nanotechnol. 2010, 5, 676–682. [CrossRef]

12. Afonin, K.A.; Kireeva, M.; Grabow, W.W.; Kashiev, M.; Jaeger, L.; Shapiro, B.A. Co-transcriptional Assembly
of Chemically Modified RNA Nanoparticles Functionalized with siRNAs. Nano Lett. 2012, 12, 5192–5195.
[CrossRef]

13. Li, M.; Zheng, M.; Wu, S.; Tian, C.; Weizmann, Y.; Jiang, W.; Wang, G.; Mao, C. In vivo production of RNA
nanostructures via programmed folding of single-stranded RNAs. Nat. Commun. 2018, 9, 2196. [CrossRef]

14. Schwarz-Schilling, M.; Dupin, A.; Chizzolini, F.; Krishnan, S.; Mansy, S.S.; Simmel, F.C. Optimized Assembly
of a Multifunctional RNA-Protein Nanostructure in a Cell-Free Gene Expression System. Nano Lett. 2018,
18, 2650–2657. [CrossRef] [PubMed]

http://www.mdpi.com/1422-0067/20/9/2259/s1
http://www.mdpi.com/1422-0067/20/9/2259/s1
http://dx.doi.org/10.1038/nature04586
http://www.ncbi.nlm.nih.gov/pubmed/16541064
http://dx.doi.org/10.1038/35020524
http://dx.doi.org/10.1016/0022-5193(82)90002-9
http://dx.doi.org/10.1007/s11047-008-9093-9
http://dx.doi.org/10.1038/s41586-019-1014-9
http://www.ncbi.nlm.nih.gov/pubmed/30894725
http://dx.doi.org/10.1038/nnano.2010.160
http://dx.doi.org/10.1021/nl302302e
http://dx.doi.org/10.1038/s41467-018-04652-4
http://dx.doi.org/10.1021/acs.nanolett.8b00526
http://www.ncbi.nlm.nih.gov/pubmed/29564885

Int. J. Mol. Sci. 2019, 20, 2259 27 of 28

15. Zuker, M.; Sankoff, D. RNA secondary structures and their prediction. Bull. Math. Biol. 1984, 46, 591–621.
[CrossRef]

16. Mathews, D.H.; Disney, M.D.; Childs, J.L.; Schroeder, S.J.; Zuker, M.; Turner, D.H. Incorporating chemical
modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure.
Proc. Natl. Acad. Sci. USA 2004, 101, 7287–7292. [CrossRef]

17. Mathews, D. Revolutions in RNA secondary structure prediction. J. Mol. Biol. 2006, 359, 526–532. [CrossRef]
18. Rivas, E. The four ingredients of single-sequence RNA secondary structure prediction. A unifying

perspective. RNA Biol. 2013, 10, 1185–1196. [CrossRef]
19. Jabbari, H.; Condon, A. A fast and robust iterative algorithm for prediction of RNA pseudoknotted secondary

structures. BMC Bioinform. 2014, 15, 147. [CrossRef]
20. Dill, K. Theory for the folding and stability of globular proteins. Biochemistry 1985, 24, 1501–1509. [CrossRef]

[PubMed]
21. Unger, R.; Moult, J. Finding the lowest free energy conformation of a protein is an NP-hard problem: Proof

and implications. Bull. Math. Biol. 1993, 55, 1183–1198. [CrossRef]
22. Paterson, M.; Przytycka, T. On the complexity of string folding. In Proceedings of the 23rd International

Colloquium on Automata, Languages, and Programming, Paderborn, Germany, 8–12 July 1996; Meyer, F.,
Monien, B., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; Volume 1099, pp. 658–669.

23. Atkins, J.; Hart, W.E. On the Intractability of Protein Folding with a Finite Alphabet of Amino Acids.
Algorithmica 1999, 25, 279–294. [CrossRef]

24. Berger, B.; Leighton, T. Protein folding in the hydrophobic-hydrophilic (HP) model is NP-complete.
J. Comput. Biol. 1998, 5, 27–40. [CrossRef]

25. Crescenzi, P.; Goldman, D.; Papadimitriou, C.; Piccolboni, A.; Yannakakis, M. On the complexity of protein
folding. J. Comput. Biol. 1998, 5, 423–465. [CrossRef]

26. Aichholzer, O.; Bremner, D.; Demaine, E.D.; Meijer, H.; Sacristán, V.; Soss, M. Long proteins with unique
optimal foldings in the H-P model. Comput. Geom. 2003, 25, 139–159. [CrossRef]

27. Boyle, J.; Robillardl, G.; Kim, S. Sequential folding of transfer RNA. A nuclear magnetic resonance study of
successively longer tRNA fragments with a common 51 end. J. Mol. Biol. 1980, 139, 601–625. [CrossRef]

28. Frieda, K.L.; Block, S.M. Direct observation of cotranscriptional folding in an adenine riboswitch. Science
2012, 338, 397–400. [CrossRef]

29. Geary, C.; Rothemund, P.W.K.; Andersen, E.S. A Single-Stranded Architecture for Cotranscriptional Folding
of RNA Nanostructures. Science 2014, 345, 799–804. [CrossRef]

30. Geary, C.; Chworos, A.; Verzemnieks, E.; Voss, N.R.; Jaeger, L. Composing RNA Nanostructures from
a Syntax of RNA Structural Modules. Nano Lett. 2017, 17, 7095–7101. [CrossRef] [PubMed]

31. Jepsen, M.D.E.; Sparvath, S.M.; Nielsen, T.B.; Langvad, A.H.; Grossi, G.; Gothelf, K.V.; Andersen, E.S.
Development of a Genetically Encodable FRET System using Fluorescent RNA Aptamers. Nat. Commun.
2018, 9, 18. [CrossRef]

32. Doty, D.; Lutz, J.H.; Patitz, M.J.; Schweller, R.T.; Summers, S.M.; Woods, D. The tile assembly model is
intrinsically universal. In Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer
Science, New Brunswick, NJ, USA, 20–23 October 2012 ; pp. 439–446.

33. Meunier, P.E.; Patitz, M.J.; Summers, S.M.; Theyssier, G.; Winslow, A.; Woods, D. Intrinsic universality in tile
self-assembly requires cooperation. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete
Algorithms, Portland, OR, USA, 5–7 January 2014.

34. Rothemund, P.W.K.; Papadakis, N.; Winfree, E. Algorithmic Self-Assembly of DNA Sierpinski Triangles.
PLoS Biol. 2004, 2, e424. [CrossRef] [PubMed]

35. Fujibayashi, K.; Hariadi, R.; Park, S.H.; Winfree, E.; Murata, S. Toward Reliable Algorithmic Self-Assembly
of DNA Tiles: A Fixed-Width Cellular Automaton Pattern. Nano Lett. 2008, 8, 1791–1797. [CrossRef]

36. Wei, B.; Dai, M.; Yin, P. Complex shapes self-assembled from single-stranded DNA tiles. Nature 2012,
485, 623–626. [CrossRef]

37. Geary, C.; Meunier, P.E.; Schabanel, N.; Seki, S. Programming Biomolecules That Fold Greedily During
Transcription. In Proceedings of the 41st International Symposium on Mathematical Foundations of
Computer Science, Krakow, Poland, 22–26 August 2016; Volume 58, p. 43.

http://dx.doi.org/10.1007/BF02459506
http://dx.doi.org/10.1073/pnas.0401799101
http://dx.doi.org/10.1016/j.jmb.2006.01.067
http://dx.doi.org/10.4161/rna.24971
http://dx.doi.org/10.1186/1471-2105-15-147
http://dx.doi.org/10.1021/bi00327a032
http://www.ncbi.nlm.nih.gov/pubmed/3986190
http://dx.doi.org/10.1007/BF02460703
http://dx.doi.org/10.1007/PL00008278
http://dx.doi.org/10.1089/cmb.1998.5.27
http://dx.doi.org/10.1089/cmb.1998.5.423
http://dx.doi.org/10.1016/S0925-7721(02)00134-7
http://dx.doi.org/10.1016/0022-2836(80)90051-0
http://dx.doi.org/10.1126/science.1225722
http://dx.doi.org/10.1126/science.1253920
http://dx.doi.org/10.1021/acs.nanolett.7b03842
http://www.ncbi.nlm.nih.gov/pubmed/29039189
http://dx.doi.org/10.1038/s41467-017-02435-x
http://dx.doi.org/10.1371/journal.pbio.0020424
http://www.ncbi.nlm.nih.gov/pubmed/15583715
http://dx.doi.org/10.1021/nl0722830
http://dx.doi.org/10.1038/nature11075

Int. J. Mol. Sci. 2019, 20, 2259 28 of 28

38. Masuda, Y.; Seki, S.; Ubukata, Y. Towards the Algorithmic Molecular Self-assembly of Fractals by
Cotranscriptional Folding. In Proceedings of the 23rd International Conference on Implementation and
Application of Automata, Charlottetown, PE, Canada, 30 July–2 August 2018; Volume 10977, pp. 261–273.

39. Demaine, E.; Hendricks, J.; Olsen, M.; Patitz, M.J.; Rogers, T.A.; Nicolas, S.; Seki, S.; Thomas, H. Know
When to Fold ’Em: Self-assembly of Shapes by Folding in Oritatami. In Proceedings of the 24th
International Conference on DNA Computing and Molecular Programming, Jinan, China, 8–12 October
2018; Volume 11145, pp. 19–36.

40. Han, Y.S.; Kim, H. Construction of Geometric Structure by Oritatami System. In Proceedings of the
International Conference on DNA Computing and Molecular Programming, Jinan, China, 8–12 October
2018; Volume 11145, pp. 173–188.

41. Han, Y.S.; Kim, H.; Ota, M.; Seki, S. Nondeterministic seedless oritatami systems and hardness of testing
their equivalence. Nat. Comput. 2018, 17, 67–79. [CrossRef]

42. Geary, C.; Meunier, P.E.; Schabanel, N.; Seki, S. Proving the Turing Universality of Oritatami
Co-Transcriptional Folding. In Proceedings of the 29th International Symposium on Algorithms and
Computation, Taiwan, China, 16–19 December 2018; Volume 123, p. 23.

43. Ota, M.; Seki, S. Rule Set Design Problems for Oritatami Systems. Theor. Comput. Sci. 2017, 671, 26–35.
[CrossRef]

44. Han, Y.S.; Kim, H.; Seki, S. Transcript Design Problem of Oritatami Systems. In Proceedings of the
International Conference on DNA Computing and Molecular Programming, Jinan, China, 8–12 October
2018; Volume 11145, pp. 139–154.

45. Han, Y.S.; Kim, H. Ruleset Optimization on Isomorphic Oritatami Systems. In Proceedings of the 23rd
International Conference on DNA Computing and Molecular Programming, Austin, TX, USA, 24–28
September 2017; Volume 10467, pp. 33–45.

46. Rogers, T.A.; Seki, S. Oritatami System: A Survey and the Impossibility of Simple Simulation at Small Delays.
Fund. Inform. 2017, 154, 359–372. [CrossRef]

47. Woods, D.; Chen, H.L.; Goodfriend, S.; Dabby, N.; Winfree, E.; Yin, P. Active Self-Assembly of Algorithmic
Shapes and Patterns in Polylogarithmic Time. In Proceedings of the ITCS 2013: Innovations in Theoretical
Computer Science, Berkeley, CA, USA, 10–12 January 2013; pp. 353–354.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11047-017-9661-y
http://dx.doi.org/10.1016/j.tcs.2016.09.010
http://dx.doi.org/10.3233/FI-2017-1571
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Main Contributions
	Related Work

	Model and Main Results
	Model
	Oritatami System
	Oritatami Dynamics

	Folding a Binary Counter
	General Idea of The Construction
	The First Two Passes of The Folding
	How Does Computation Take Place: Modules, Functions, States and Environment

	Proof of Correctness (Theorem 1)
	Overview
	Description of the Final Configuration (I.e., the Resulting Folding)
	Input and Output Nascent Configurations

	Rule Design Is NP-Hard and FPT
	NP-Completeness
	An Efficient Algorithm in Practice
	Comparison with Related Works

	Perspectives
	References

