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Abstract: HER2 (human epidermal growth factor receptor 2) activation is critical in breast
cancer development. HER2 promotes cell proliferation, angiogenesis, survival, and metastasis
by activation of PI3K/Akt, Ras/MEK/ERK, and JAK/STAT pathways. However, beyond these signaling
molecules, the key proteins underlining HER2-mediated metastasis remain elusive. ATF4 (Activating
transcription factor 4), a critical regulator in unfolded protein response (UPR), is implicated in
cell migration and tumor metastasis. In this study, we demonstrate that HER2 upregulated ATF4
expression at both mRNA and protein levels, resulting in cell migration increased. In addition,
ATF4 "upregulated ZEB1 (Zinc finger E-box-binding homeobox 1) and suppressed E-cadherin
expression resulting in promoting cell migration. Restoration of E-cadherin expression effectively
inhibited HER2- or ATF4-mediated cell migration. In addition, upregulated expression of ATF4 was
found in HER2-positive breast cancer specimens. Together, this study demonstrates that ATF4-ZEB1
is important for HER2-mediated cell migration and suggests that ATF4-ZEB1 may be potential
therapeutic targets for breast cancer metastasis.
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1. Introduction

HER2/Neu (ErbB2) is a member of the ErbB family of receptor tyrosine kinases. HER2 gene is
frequently amplified in various human cancers. Overexpression of HER? is found in approximately
20-30% of breast cancers, 28% of pulmonary adenocarcinoma, 17% of colorectal adenocarcinomas,
and 11% of gastric adenocarcinomas [1]. HER2 overexpression is also found in ovarian and aggressive
forms of uterine cancer [2,3]. HER2 forms homodimers or heterodimers with HER3/HER4 to activate
its receptor tyrosine kinase activity and thereby triggering its downstream cascades involving in
PI3K/Akt, Ras/MEK/ERK, and JAK/STAT in the regulation of a variety of cellular functions. Elevated
HER?2 expression is associated with poor prognosis of breast cancer patients including higher mortality,
relapse, and metastasis [4]. HER2 has been well documented as an important therapeutic target in breast
cancer treatment. Currently, three specific HER2-targeting antibodies, trastuzumab (Herceptin™),
pertuzumab (Perjeta™), and T-DM1 (Kadcyla™), are widely used to treat HER2-positive breast cancer
patients [5].

ATF4, a member of ATF/CREB (activating transcription factor/cyclic AMP response element
binding protein) family, belongs to the basic region-leucine zipper (bZip) transcription factors. ATF
family members play critical roles in tumorigenesis and progression. Overexpression of ATF1 or ATF2
accelerates melanoma growth and metastasis [6,7]. ATF3 has a complex role in cancer development,
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while it binds to and stabilizes p53 thereby promoting apoptosis in untransformed mammary epithelial
cells, it promotes breast cancer cell survival and enhances breast cancer cell mobility [8]. Furthermore,
ATEF3 appears to enhance TGF[3 signaling-mediated EMT [9]. ATF5 enhances malignant glioma survival
by stimulating transcription of MCL1, an antiapoptotic B cell leukemia-2 family member [10]. Similarly,
ATF6 also promotes colorectal tumorigenesis and survival of dormant tumor cells in vivo [11,12].
Conversely, ATF7 suppresses tumorigenesis in mouse lymphoma models [13]. It has been reported
that ATF4 is important in the development of adipogenesis, lipogenesis [14], osteogenesis, and in
fatty acid and amino acid metabolism [15]. In addition, ATF4 plays a critical role in the cellular
response to ER (endoplasmic reticulum) stress and oxidative stress. ER stress triggers unfolded protein
response (UPR) through three parallel signaling branches: PERK/elF2«, IRE1«/XBP1, and ATF6«x [16].
Among these UPR signaling pathways, only PERK/elF2«x signaling upregulates ATF4 expression.
Upon ER stress, PERK is activated through homodimerization and autophosphorylation, which in
turn phosphorylates and inhibits elF2«, a translation initiation factor, leading to a reduction of global
protein synthesis but specifically accelerating the translation of ATF4 mRNA [17]. Expression of ATF4
is upregulated in cancers and has been shown to promote cell proliferation, survival, drug resistance,
migration, and metastasis [18]. Recently, it has been shown that ATF4 stimulates expression of LAMP3
in facilitating breast cancer cell migration [19] and directly transactivates HO-1 (heme oxygenase 1)
gene expression to inhibit anoikis and to promote tumor metastasis [20].

E-cadherin is a well-documented epithelial marker and plays an essential role in cell adhesion.
Loss of E-cadherin is a key initial step in the process of epithelial-to-mesenchymal transition (EMT).
E-cadherin expression is tightly regulated at genetic, epigenetic, transcriptional and post-translational
levels during tumorigenesis [21]. At the transcriptional level, E-cadherin is repressed by several
key EMT-promoting transcription factors (EMT-TFs), including ZEB1, ZEB2, Snail, Slug, Twist1/2,
and E12/47, which directly bind to the E-boxes of E-cadherin gene promoter and repress its
transcription [22]. Notably, ZEB1 interacts with its corepressor CtBP or BRG1 to repress E-cadherin
expression, which in turn promotes tumor cell invasion and metastasis [23,24]. Interestingly, it is
reported that Slug is a direct transcriptional activator at E-boxes of the ZEB1 promoter [25] and that
Snaill and Twist cooperate in the induction of ZEB1 expression [26]. In addition, there is a reciprocal
negative feedback loop between miR-200 family members (miR-200a, miR-200b, miR-200c, miR-141,
and miR-429) and ZEB1. Increasing the expression of ZEB1 results in repression of miR-200 members,
resulting in decreased RNAi on the ZEB1 mRNA. Conversely, increasing the expression of miR-200
family members decreases ZEB1 levels, which in turn increases miR-200 expression [27]. Notably,
TGFf, NF-kB, and hypoxia have been implicated in upregulating ZEB1 expression [28,29].

In this study, we demonstrated that HER2 upregulates ATF4 expression to promote cell migration.
Knockdown of ATF4 completely reverses HER2-induced cell migration. ATF4 upregulates ZEB1,
resulting in increased cell migration. Restoration of E-cadherin effectively inhibits ATF4-induced
cell migration. Together, our findings indicate that ATF4-ZEB1-E-cadherin axis is critical for
HER2-mediated cell migration and that targeting of ATF4-ZEB1 may be a potential therapeutic
strategy for HER2-mediated tumor metastasis.

2. Results

2.1. HER? Induces Cell Migration through Upregulation of ATF4 and Downregulation of E-Cadherin

HER? activation is critical in breast cancer development and ATF4 has been shown to play a role
in breast cancer migration. To investigate whether there is an intrinsic relationship between HER2 and
ATF4, we expressed HER2 in human non-transformed mammary epithelial MCF10A cells. As shown
in Figure 1A,B, expression of HER2 led to spindle-like cell morphology and scattered cell growth
as well as significantly increased cell migration. In addition, HER2 expression led to a markedly
decrease of E-cadherin expression, concomitant with an upregulation of ATF4 protein levels (Figure 1C).
To investigate the role of ATF4 in HER2-induced cell migration, we knocked down ATF4 by shRNA in
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MCF10A cells with HER2 overexpressed. As shown in Figure 1D, knockdown of ATF4 led to restoring
E-cadherin expression which was suppressed by HER2. Notably, knockdown of ATF4 completely
inhibited HER2-induced scattered cell growth (Figure 1E) and effectively suppressed HER2-induced
cell migration (Figure 1F). To address whether cell proliferation contributes to the increased migration,
we detected cell proliferation by using Real-Time Cell Analyzer. As shown in Figure 1G, expression of
HER? significantly enhanced MCF10A cell proliferation only after 32 h seeding, suggesting that cell
proliferation is unlikely to contribute to the increased cell migration at which we performed transwell
assays. Next, we investigated the role of E-cadherin downregulation in HER2-induced cell migration.
As shown in Figure 1H-], restoration of E-cadherin expression completely reversed HER2-induced
scattered cell growth and also significantly inhibited HER2-mediated cell migration. Together, these
data indicate that ATF4 and E-cadherin play a critical role in HER2-induced cell migration.
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Figure 1. HER2 induces scattered cell growth and cell migration through upregulation of ATF4 and
downregulation of E-cadherin expression. MCF10A cells stably expressing HER2 (A-C) were infected
with a recombinant lentivirus expressing specific ShARNA targeting to ATF4 (D-F) or a recombinant
lentivirus expressing E-cadherin (H-J). Cells were then subjected to cell morphology observations
(AEI), transwell assays (B,F,J), and Western blot analyses (C,D,H). MCF10A cells stably expressing
HER?2 or ATF4 were subjected to cell proliferation assays by Real-Time Cell Analyzer (G). Results are

representative of three independent experiments. Data were presented as means + SD; scale bars:
100 um; NS: Not significant; **: p < 0.01.



Int. ]. Mol. Sci. 2019, 20, 2223 40f11

2.2. HER2 Upregulates ATF4 Transcription and Promotes its Protein Expression in an
mTOR-Dependent Manner

To investigate the mechanism in which HER2 upregulates ATF4, we measured steady-state levels
of ATF4 mRNA by Q-PCR and protein half-life by cycloheximide (CHX) treatment. As shown in
Figure 2A-C, HER?2 significantly upregulated steady-state ATF4 mRNA levels, but there was little
effect on ATF4 protein half-life. In addition, inhibition of mTOR by rapamycin, as evidenced by the
reduction of phosphorylated S6K, completely blocked HER2-induced upregulation of ATF4 protein
expression (Figure 2D), suggesting that HER2 promotes ATF4 protein expression via mTOR signaling.
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Figure 2. HER2 upregulates ATF4 expression at both transcriptional and translational levels.
MCF10A-HER?2 cells were subjected to Q-PCR analyses (A), protein half-life assay and the relative
ATF4 protein expression levels were quantitated as described in the Materials and Methods (B—C), or
were treated with or without rapamycin (100 nM) prior to Western blot analyses (D). The Q-PCR data
were derived from three independent experiments; *: p < 0.05.

2.3. ATF4 Promotes Cell Migration via Suppressing E-Cadherin Expression

Our aforementioned data indicate that knockdown of ATF4 inhibited HER2-induced cell migration,
concomitant with upregulated E-cadherin protein expression. We then investigated whether there is a
causative relationship between ATF4 and E-cadherin. As shown in Figure 3A-C, ectopic expression of
ATF4 in MCF10A cells led to a marked decrease of E-cadherin protein (Figure 3A) and accelerated
cell migration (Figure 3C). Expression of ATF4 also downregulated E-cadherin expression in breast
cancer MCF7 cells (Figure 3B). On the contrary, the knockdown of ATF4 significantly upregulated
E-cadherin protein expression (Figure 3D), resulting in cell migration significantly inhibited (Figure 3E).
Furthermore, restoration of E-cadherin expression effectively reversed ATF4-induced cell migration
(Figure 3EG).

We then investigated the molecular mechanism in which ATF4 downregulates E-cadherin
expression. As shown in Figure 3H, expression of ATF4 significantly downregulated steady-state
E-cadherin mRNA levels. Notably, ATF4 markedly increased ZEB1 expression at both mRNA and
protein levels (Figure 31]), and decreased E-cadherin expression, in keeping with the well-documented
role of ZEB1 in the suppression of E-cadherin [24]. In addition, knockdown of ZEB1 significantly
increased E-cadherin expression which was suppressed by ATF4 (Figure 3K). Taken together, these
results indicate that ATF4 promotes cell migration via upregulation of ZEB1, which in turn inhibits
E-cadherin expression.
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Figure 3. ATF4 promotes cell migration via suppression of E-cadherin expression. MCF10A-ATF4
cells were subjected to Western blot analyses (A,I), transwell assays (C), and Q-PCR assays (H,J).
MCEF7-ATF4 cells were subjected to Western blot analyses (B). MCF10A cells stably expressing specific
shRNA targeting ATF4 or a control (shC), were subjected to Western blot analyses (D) or transwell
assays (E). (F,G) MCF10A-ATF4 cells infected with a lentivirus expressing E-cadherin were subjected
to Western blot analyses (F) or transwell assays (G). MCF10A-ATF4 cells infected with a lentivirus
expressing shZEB1-#1, shZEB1-#2 or a control (shC), were subjected to Western blot analyses (K). Data
were analyzed from three independent experiments and were presented as means + SD; scale bars:

100 pm; **: p < 0.01.

2.4. HER2, ZEB1, and ATF4 Expression is Correlated in Human Breast Cancers

To examine the clinical relevance of HER2, ATF4, and ZEB1, we analyzed the expression of these
genes in invasive breast carcinoma using TCGA databases. As shown in Figure 4A, ATF4 expression
was significantly upregulated in HER2-positive breast cancers. In addition, ZEB1 expression also
substantially increased in HER2-positive breast specimens (Figure 4B). Together, these clinical data
indicate that ATF4 plays an important role in HER2-positive breast cancer patients.
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Figure 4. HER2, ZEB1, and ATF4 expression were analyzed in human breast cancers. mRNA levels of
ATF4 or ZEB1 in HER2-positive or -negative breast cancer biopsy samples were analyzed using TCGA
databases (A,B). A schematic model for the role of ATF4 in HER2-mediated cell migration (C).

3. Discussion

It has been well documented that activation of HER2, as exemplified by gene amplification, is a
major driving force for the development of breast cancer, lung cancer, colorectal cancer, gastric cancer,
ovarian cancer and uterine cancer. HER2 promotes cell proliferation, survival, migration, invasion,
and angiogenesis by the activation of PI3K/Akt, Ras/MEK/ERK, and JAK/STAT pathways. We have
previously demonstrated that HER2 targets and suppresses ANp63c gene transcription to promote
tumor metastasis [30]. In this study, we found that ATF4, a critical regulator in ER stress response,
is a novel target of HER?2, as evidenced by: (1) expression of HER2 upregulates ATF4 expression at
both mRNA and protein levels; (2) knockdown of ATF4 inhibits HER2-induced cell migration; and
(3) expression of ATF4 is correlated with HER2-positive breast cancer specimens. Notably, PI3KCA
hotspot mutation (H1047R and E545K) activated PDK1-RSK2 pathway, resulting in USP8 binding to
ATF4 and stabilizing its protein to reprogram glutamine metabolism [31]. In addition, activation of
PI3BK/AKT by K-Ras stimulates expression of NRF2, which in turn transactivates ATF4 in promoting
cancer cell survival and growth upon amino acid deprivation [32]. It is, therefore, worth to investigate
whether HER?2 activates ATF4 through RSK2 and NRF2. Recently, it has been reported that PI3K
activates mMTORC1 and mTORC2 to upregulate ATF4 [33,34]. Consistently, our data showed that
blocking mTORC1 by rapamycin inhibits HER2-induced ATF4 upregulation, indicating that HER2
likely activates PI3K-mTORCT1 to facilitate ATF4 protein expression.

In this study, we found that downregulation of E-cadherin is pivotal in ATF4-induced cell
migration, in keeping with numerous reports that loss of E-cadherin expression is critical for cell
migration and tumor metastasis [35]. Our data clearly demonstrated that ATF4 promotes cell
migration through repressing E-cadherin expression at both mRNA and protein levels. Restoration
of E-cadherin completely reversed ATF4-mediated cell migration. Thus, E-cadherin is a novel target
of ATF4 responsible for HER2-induced cell migration. At the molecular level, we showed that ATF4
significantly upregulates the mRNA and protein levels of ZEB1, which is a critical transcriptional
repressor of E-cadherin and promotes EMT and cancer metastasis [24]. Therefore, our study reveals a
novel regulatory mechanism with which HER2-ATF4-ZEB1-E-cadherin signaling axis regulates cancer
cell migration and tumor metastasis.

Over the course of tumorigenesis, tumor cells can only proliferate and metastasize if they can
cope with the challenge of limited sources of oxygen, glucose, and amino acids. These limitations
often lead to ER stress to activate unfolded protein response (UPR). ATF4 is a critical transcriptional
factor of UPR [36] and is frequently upregulated in various human tumors and cancers. Oncogenic
signals, including Myc, PIK3CA hotspot mutations (H1047R and E545K) and KRAS hotspot mutation
(G12V), upregulate ATF4 to promote cancer survival. In this study, we showed that upregulated ATF4
expression is correlated with HER2-positive breast cancer specimens, suggesting that the ATF4 may
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play a role in HER2-mediated breast cancer development. It is conceivable that ATF4-ZEB1 could be a
potential therapy target for breast cancer treatment.

4. Materials and Methods

4.1. Cell Culture, Cell Morphology, and Cell Proliferation Assays

MCF10A cells were maintained in 1:1 mixture of DMEM and F12 medium (Invitrogen, Carlsbad,
CA, USA), 5% horse serum, 100 ng/mL cholera toxin (Sigma, St Louis, MO, USA), 10 ug/mL insulin
(Sigma, St Louis, MO, USA), 20 ng/mL epidermal growth factor (Invitrogen, Carlsbad, CA, USA),
and 500 ng/mL (95%) hydrocortisone (Sigma). MCF?7 cells were maintained in MEM supplemented with
10% fetal bovine serum (Hyclone, Logan, UT, USA) and 5 ug/mL insulin (Sigma, St Louis, MO, USA).
All cells were grown in media containing 100 U/mL penicillin and 100 ug/mL streptomycin (GIBCO,
Rockville, MD, USA) at 37 °C in a humidified incubator under 5% CO,. To assess cell morphology,
cells were seeded at low confluence and grew for 7-10 day, then fixed with 4% paraformaldehyde and
stained with 0.1% Crystal violet in 70% ethanol, and photographed by light microscope. To test cell
proliferation, MCF10A cells were seeded at a density of 5000 cells/well in Real-Time Cell Analyzer
(RTCA, ACEA Biosciences, Inc., San Diego, CA, USA), the cell index signals were recorded every 1 h
for 48 h.

4.2. Plasmid Construction and Lentivirus Infection

Human ATF4 and E-cadherin (encoded by CDH1 gene) were obtained by PCR with specific primers
(ATF4-F:5-ATGACCGAAATGAGCTTCCTG-3’/, ATF4-R: 5'-CCCTAGGGGACCCTTTTCTTC-3';
CDHI1-F: 5-TGCTCTAGAGCCACCATGGGCCCTTGGAGCCGC-3, CDH1-R:
5-CCGCTCGAGCTAGTCGTCCTCGCCGCCTC-3’), then cloned into the pLVX-puro vector. Human
HER?2 was subcloned into Plenti-M3 vector from pEnter-HER? construct (CH805581, Vigene Biosciences,
Jinan, China) with the forward primer: 5’-TGCTCTAGAATGGAGCTGGCGGCCTTGTG-3’ and reverse
primer: 5’-CCGCTCGAGTTACACTGGCACGTCCAGAC-3’. shRNA lentiviral constructs were cloned
in the pLKO.1 vector. shRNA targeting sequences used are: shC, 5'-GAAGCAGCACGACTTCTTC-3;
shATF4-#1, 5-GTCCTCCACTCCAGATCATTC-3’; shATF4-#2, 5’ -TGGATGCCCTGTTGGGTATAG-3';
shZEB1-#1, 5'-CCTACCACTGGATGTAGTAAA-3’; shZEB1-#2, 5 -CCTCTCTGAAAGAACACATTA-3'.
All plasmids were confirmed by DNA sequencing. Lentivirus were generated by transfectingHEK-293T
cells at 80-90% confluence with pMD2.G and psPAX2 packaging plasmids using Lipofectamine 2000
(Invitrogen). Virus was harvested after 48 h post-transfection, filtered, and used for cell infection at
30% confluence with 10 pg/mL polybrene.

4.3. Western Blot Analysis

Cells were lysed in EBC250 lysis buffer (250 mM NaCl, 25 mM Tris, 50 mM NaF, 0.5% Nonidet
P-40, and supplemented with 0.5 mM NazVOy, 0.2 mM PMSE, 20 pg/mL aprotinin, and 10 ug/mL
leupeptin, pH 8.0). Equal amounts of total proteins were separated by SDS-PAGE and transferred to
PVDF membrane (Millipore, Darmstadt, Germany). The membrane was blocked in 4% milk in TBST
for 1 h, hybridized to an appropriate primary antibody at 4 °C for overnight and HRP-conjugated goat
anti-rabbit IgG (1:3000, sc-2004, Santa Cruz Biotech, Shanghai China) for 1 h at room temperature, then
detected by chemiluminescence (WBKLS0500, Millipore, Darmstadt, Germany). Specific antibodies
against ATF4 (1:1000, Cat. no. 11815), HER2 (1:1000, Cat. no. 2242), Vimentin (1:1000, Cat. no. 5741),
GAPDH (1:3000, Cat. no. 5174), p-S6K (1:1000, Cat. no. 2211), S6K (1:1000, Cat. no. 2317), ZEB1 (1:1000,
Cat. no. 3396) were purchased from Cell Signaling Technology (Danvers, MA, USA). E-cadherin (1:1000,
ab40772) and N-cadherin (1:1000, ab2247-1) were purchased from Abcam (Cambridge, MA, USA).
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4.4. Transwell Assays

Transwell assays for cell migration were performed in transwell inserts with a 6.5mm, 8.0 um-pore
polycarbonate membrane (BD Biosciences, San Jose, CA, USA). Cells were suspended in serum-free
medium and seeded into the upper chamber (MCF10A, 5 x 10* cells per chamber). The lower chamber
contained 600 pL complete medium. Cells were incubated for 24 h at 37 °C in a humidified incubator
under 5% CO;, then removed the non-migration cells on the inside of the chamber carefully with
cotton swabs. The chambers were fixed with 4% paraformaldehyde and stained with 0.1% Crystal
violet in 70% ethanol for 15 min, and photographed by light microscope and analyzed by Image J.

4.5. Q-PCR

Total RNA was extracted from cells by RNeasy Plus Mini Kit (cat# 74134,
QIAGEN, Hilden, Germany) according to the manufacturer’s protocol. RNA
was reverse-transcribed into cDNAs. Q-PCR was performed for E-cadherin (F:

5-GGATGTGCTGGATGTGAATG-3’, R: 5-CACATCAGACAGGATCAGCAGAA-3’); ATF4 (F:
5-GCAAAAGTAAAGGGTGAGAAACTGG-3/, R: 5-CTCGTTCTTCTTTTCCAGCTCTTTG-3'); ZEB1
(F: 5-ACCCTTGAAAGTGATCCAGC-3, R: 5’-CATTCCATTTTCTGTCTTCCGC-3’), and GAPDH (F:
5-GGGGAGCCAAAAAGGGTCATCATCT-3, R: 5- GAGGGGCCATCCACAGTCTTCT-3'). Q-PCR
assays performed in CFX96 Real-Time System (Bio-Rad, Hercules, CA, USA) using SYBR Green
Supermix (Bio-Rad, Saint-Laurent, QC, Canada) at 95 °C for 3 min, followed by 40 cycles at 95 °C
for 5s and 60 °C for 15 s. Transcriptional levels of genes were normalized to GAPDH which were
expressed stable and similar in all samples. The results were analyzed using 2-22Ct method.

4.6. Protein Half-life

Cells were treated with 20 pg/mL cycloheximide (Sigma) and collected at the indicated time
intervals. ATF4 protein levels were determined by Western blot analyses, quantified by densitometry
from three independent experiments, and normalized to GAPDH.

4.7. Bioinformatics Analysis

TCGA database (cBioPortal, www.cbioportal.org) were used to analyze breast invasive
carcinoma (TCGA Provisional, 1105 samples) for ATF4 and ZEB1 expression in HER2-positive
and negative samples.

4.8. Statistical analysis

All statistical analyses were performed using SPSS 16 software (SPSS Inc., Chicago, IL, USA).
The data were presented as means + SD. Comparisons between two groups were performed using
the two-tailed unpaired Student’s t-test. The differences between clinical data were compared after
homogeneity tests. p-values less than 0.05 were considered statistically significant.
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Abbreviations

ATF4 activating transcription factor

ER stress  endoplasmic reticulum stress

UPR unfolded protein response

EMT epithelial-to-mesenchymal transition
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