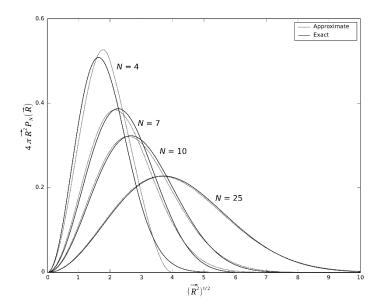
Intrinsically Disordered Linkers Impart Processivity on Enzymes by Spatial Confinement of Binding Domains


4

5 Supplementary material

6 Supplementary methods

7 Statistical-kinetic modeling of disordered linkers

8 To address the statistical-kinetic behavior of a domain-linker-domain (DLD) protein enabled by the 9 linker region, we applied a Gaussian approximation of the Freely Jointed Chain (FJC) model, as 10 described in the literature [1, 2], either for a general DLD enzyme, or for the cellulase enzyme Cel7A. 11 According to recommendation in the literature [3] the Gaussian approximation shows only minor 12 deviation in the distribution probability curves from the exact solution and can be used for most cases 13 (Suppl. Figure S1). For clarity and reproducibility, we recite the major features of this modeling, 14 which allows the computation of the spatial distribution of endpoints of a FJC.

15

16 **Figure S1** Gaussian approximation of the FJC model

17 Comparison between the exact solution (solid line) and the Gaussian approximation (dashed line) of

18 the FJC model of the spatial distribution of the free binding domain around the tethered domain

19 bound to the substrate (at x = 0). The modeling is done at different linker lengths measured in Kuhn

20 segment units (from N = 4 to N = 25). For details, cf. ref [3].

To describe geometrical positions, let us have our Cartesian coordinate system's X axis point along a substrate chain, Y "upwards", while Z completes the XZ plane that would cover a substrate sheet.

25 Let \vec{R} denote the end-to-end vector of the polypeptide chain, the probability density of \vec{R} for an N 26 segment chain is $\rho_N(\vec{R})$. 27 $\rho_N(\vec{R}) = \left(\frac{3}{2\pi N l_k^2}\right)^{\frac{3}{2}} exp\left(\frac{-3\vec{R^2}}{2N l_k^2}\right)$. (Eq. S1) 28

29 If needed, the chain can be calculated as 2 or more subsections as

30

31
$$\rho_{N_1,N_2}(\vec{R}) = \int \rho_{N_1}(\vec{R_1}) \rho_{N_2}(\vec{R} - \vec{R_1}).$$
 (Eq. S2)

32

The time required for computations rises exponentially with the number of segments, which rationalizes the use of the much faster gaussian approximation, despite its minor deviation from the analytical solution of FJC for linkers of very small or very large number of segments. It is to be noted that although in ATP-driven dimeric motors the description has been developed for two linkers, it is adequate for the description of a single linker in the monomeric DLD-type enzymes studied here.

38 As a first approximation, we may consider the two binding elements (domains in the DLD 39 arrangement) as points with no physical extension, but in more realistic modeling we may also take 40 into account the geometry of the protein domains, and positions of the binding sites (targets) on the 41 substrate. While in the FJC model the individual Kuhn segments may freely overlap, we want to

42 restrict R so that it respects the dimensions of the domains and substrate. We approximate the

43 domains as simple spheres, and the substrate as a line or sheet with discrete binding elements.

44 The integral of a probability density function should always be 1.0, therefore if we exclude volumes

45 we need to modify the function as:

Int. J. Mol. Sci. 2019, 20, 2119; doi:10.3390/ijms20092119

47
$$\rho_N^* = \frac{\rho_N(\vec{R})\Theta(\vec{R})}{\int \rho_N(\vec{R})\Theta(\vec{R})d\vec{R}}$$
(Eq. S3)

48

49 where Θ is the exclusion function such as:

50

51
$$\Theta\left(\vec{R}\right) = \begin{cases} 0 & \text{if}\vec{R} < r_{D_1} + r_{D_2} \\ 1 & otherwise \end{cases}$$
 (Eq. S4)
52

53 Θ can be more or less complex as the desired model requires, e.g. when a sheet-like substrate is 54 considered.

55 A further refinement of the model is that part of the linker may also bind to the domain from which 56 it originates (termed the tethering domain). In this case the probability density function changes to 57

58
$$\rho_{N_D}^* = \frac{\rho_{N_D}(\vec{R} - \vec{R_D}) \Theta(\vec{R})}{\int \rho_{N_D}(\vec{R} - \vec{R_D}) \Theta(\vec{R}) d\vec{R}}$$
(Eq. S5)
59

60 Probability of docked and undocked states are denoted as $P(N_D)$, and P(N) respectively. Then

61

62
$$\frac{P(N_D)}{P(N)} = e^{(-\Delta G/k_B T)}$$
 (Eq. S6)

63

64 gives the ratio of bound and unbound states. A Δ G of -2k_BT, as in the case of kinesin, used as a 65 reference, yields roughly 85% bound state. The approximation is rationalized by the notion that the 66 amino acid composition and the length of the linker segments <u>in the DLD type enzymes are roughly</u> 67 <u>comparable to the same parameters in kinesin</u>.

68 The probability density function then describes the local concentration of the free end of the chain as:69

70 1particle *
$$\rho_N(\vec{R})nm^{-3}$$
 (Eq. S7)
71

72 which can be converted to molar concentration:

S4 of S13

73

74
$$1 particle * nm^{-3} = 1.6605M$$
 (Eq.S8)

75

76 Let c_N be the local molar concentration of the undocked chain, and c_{N_D} that of the docked ones, then 77 the time of binding to a target (binding) site is:

78

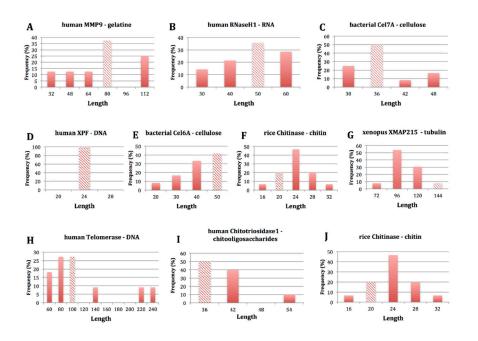
79
$$t_{on} = \frac{1}{k_{on}(P(N)c_N + P(N_D)c_{N_D})}$$
 (Eq.S9)

80

81 To calculate binding times for several discrete targets, we can calculate the individual local 82 concentration at each site as c_{N_1} , c_{N_2} ... c_{N_n} . Let us define $c_{N_1} \equiv c_1$ and $c_{N_{D_1}} \equiv c_1^*$. Then the 83 aggregate binding time is:

84

85
$$t_{on} = \frac{1}{k_{on} \left(P(N)[c_1 + c_2 + c_3 \dots + c_n] + P(N_D)[c_1^* + c_2^* + c_3^* \dots + c_n^*] \right)}$$
 (Eq. S10)

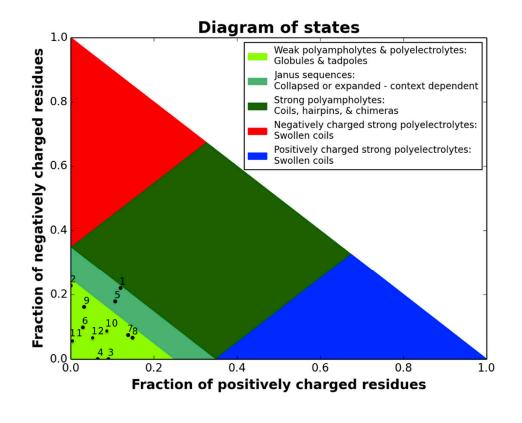

86

By calculating the average binding times, we can demonstrate processivity of the enzyme by showing that the free domain will find a new substrate binding site in significantly shorter time than it takes for the tethered domain to dissociate or catalyze a reaction. As (re)binding at a new binding site will in this case be preferred over dissociation, the enzyme will behave processively, and its level of processivity (the number of steps taken before falling off the substrate) can be approximated as the ratio of times of binding vs. dissociation (tb/td).

93

94 Calculation of charge distribution of linkers

95 Charge distribution (Figure S3) of linkers was calculated using the Classification of Intrinsically 96 Disordered Ensemble Regions (CIDER) webserver developed by the Pappu lab 97 (http://pappulab.wustl.edu/CIDERinfo.html) [4]. The diagram is generated by the algorithm by 98 plotting the fraction of negatively charged residues vs. the fraction of positively charged residues, 99 giving a simple way to classify IDPs according to their conformational properties.



102 Figure S2 Length distribution of linkers in DLD processive enzymes

103 Length distribution was calculated for every DLD processive linker in Table 1, considering their 104 homologues used for evolution and conservation studies (Suppl. Table S2). Length is shown in the 105 number of amino acids. The striped column represent the linker length of the actual processive 106 enzyme listed in Table 1, whereas columns of full colors give distribution of homologues.

107

108

111

112 **Figure S3** Graphical representation of the charge distribution of the DLD linkers

The charge distribution of linkers was calculated by the CIDER server as described in Suppl. methods. The light green area corresponds to weak polyampholytes or weak polyelectrolytes that form rather compact conformations. The dark green area corresponds to strong polyampholytes that form coilor hairpin-like structures. The boundary between the two green regions represents a continuum of possibilities between these two states that lends a context-dependent nature to the sequences. Areas of blue and red correspond to either positively (blue) or negatively (red) charged strong polyampholytes that form swollen coil structures. The numbers correspond to the DLD type processive enzyme linkers in Table 1.

121

122 Table S1

- 123 Processive proteins and enzymes have been identified by text search in literature for "processive"
- 124 and "processivity". In principle, the proteins can be grouped into two major categories and four
- 125 substrate-categories, as follows. 1) Enzymes relying on structural confinement, such as: i) complexes
- 126 with subunits that surround the substrate and ii) enzymes with asymmetric active-site cavities, and
- 127 2) enzymes relying on spatial confinement, such as: iii) dimeric mechanochemical motors and iv)

128 monomeric processive enzymes of domain-linker-domain (DLD) architecture. As these categories

129 cannot always be clearly separated, they are not indicated, but important parameters relating to the

130 possible mechanism, such as subunit structure, the presence of active-site cleft, length and disorder

131 of linker, the measure of processivity (average number of rounds of modification/steps taken before

132 dissociation) are given.

		S	racteristics					
Protein Name	ATP	Complex	Channel	Groove	Domain- Linker- Domain	Partner	Linker length	Processivity
Yeast 40S Ribosome	+	+	+	-	-	RNA	-	>1700 nucleotids
<i>T. acidophilum</i> 20S Proteasome	+	+	+	-	-	Polypepti de	-	~140
Yeast RNAP II	+	+	+	-	-	dsDNA	-	1000000
T7 gp4 helicase	+	+	+	-	-	dsDNA	-	40000
E1 helicase	+	+	+	-	-	dsDNA	-	>3000 nucleotids
T7 DNA helicase	+	+	+	-	-	dsDNA	-	75000 bp
T7 DNA polymerase		dimer (gp5 and trx prot)	+	+	-	dsDNA	-	17±3 kb
Human Upf1	+	+	-	-	-	mRNA	-	>10 kb
PCNA (in <u>DNA</u> polymerase δ)	-	homotrimer	+	-	-	dsDNA	-	>13000
V. Virus Uracil DNA glycosylase	-	3 subunit	-	+	-	dsDNA	-	1500-2000 nucleotids
E. Coli β-protein	÷	+	+	-	-	dsDNA	-	>5000
T4 gp45	+	+	+	-	-	dsDNA	-	>20000
Human Pol γ	-	3 subunit	+	-	-	ssDNA	-	2250±162
Bacteriophage λ exonuclease	-	3 subunit	+	-	-	dsDNA	-	~3000
<i>E.Coli</i> PNPase (in RNA degradosome)	-	+	+	-	-	ssRNA	-	
S. antibioticus PNPase	-	+	+	-	-	ssRNA	-	
T. reesei Cel7A	-	-	-	+	+	cellulose	24 aa	20-90 acts
H. insolens Cel6A	-	-	_	+	+	cellulose	52 aa	
C. cellulolyticum Cel48F	-	-	-	+	+	cellulose	49 aa	
C. phytofermentans Cel48	-	-	-	+	n.a.	cellulose		3,5-6 acts

Cellulase E4	-	_	_			cellulose		
D. melanogaster						microtubu		
Kinesin-1	+	-	-	-	+	le	31 aa	1747 ± 199 ni
Mouse Kinesin-2	+	-	-	-	+	microtubu le	17 aa	449 ± 30 nm
Neurospora crassa Kin- 3	+	-	-	-	+	microtubu le	22 aa	2.14±0.29 μm
Mouse Dynein	+	-	-	-	+	microtubu le	204 aa	339 ± 33 nm
Gallus gallus Myosin V	+	-	-	-	+	actin	64 aa	2.2±0.2 μm
Human Myosin VI	+	-	-	-	+	actin	62 aa	796±639 nm
Xenopus Centrosome protein E	+	-	-	-	+	microtubu le	12 aa	2.6± 0.2 μm
Human XPF	-	-	-	-	+	DNA	22 aa	60 nt
Sulf. solfataricus XPF	-	-	-	-	+	DNA	19 aa	12 nt
<u>Staph. aureus</u> Helicase PcrA	+	-	-	+	-	dsDNA	-	20
E.Coli Exonuclease I	-	-	+	-	-	ssDNA	-	>900
S. cerevisiae Mip1	-	-				ssDNA		480±20 nt
HIV Reverse	-	_	-	+	-	ssDNA,	_	<50
transcriptase						ssRNA		
Human Telomerase	-					DNA	94 aa	
AP-endonuclease-1	-	-	-	+	-	dsDNA	-	200 nucl.
Human MMP9	-					gelatine	76 aa	
T7 RNA polymerase		-		+		dsDNA		thousands
Mouse Formin (mDia1)	-					actin	23 aa	2600 subunits
S. cerevisiae Formin (Bni1)	-					actin	17 aa	12000 subunits
Xenopus XMAP215	-					tubulin		25 tub. dimer
C. thermocellum 1,4- beta-glucanase	-					cellulose	103 aa	
Human Chitotriosidase-1	-					chitooligo saccharide s	31 aa	8.6±1.1
Bacillus circulans Chitinase A1	-					crystalline -chitin	23 aa	
Oryza sativa subsp. Japonica Chitinase 2	-					chitin	17 aa	

Human Nedd4-1	-			protein	322 aa	
Human RNAse H1	-			RNA	64 aa	

135

136 Table S2

Orthologues of the proteins in Table 1 were selected in different species where similar proteins were
annotated. In each case the protein with highest similarity (at least 90 % homology) was chosen for
analysis. Please note that for two enzymes from Table 1 (C. cellulolyticum Cel48F and C.
thermocellum 1,4-beta-glucanase) are omitted because we did not found a sufficient number of
homologues to carry out proper conservation analysis.

Human	Human	Human XPF	Bacterial cellulase	Bacterial
MMP9	RNaseH1		7A	cellulase 6A
Homo sapiens	Homo sapiens	Homo sapiens	Hypocrea jecorina	Humicola insolens
Pan troglodytes	Pan troglodytes	Pan troglodytes	Penicillium marneffei	Corynascus sepedonium
Canis familiaris	Canis familiaris	Canis familiaris	Fusarium oxysporum	Chaetomium thermophilum
Mus musculus	Mus musculus	Bos taurus	Talaromyces stipitatus	Valsa mali
Bos taurus	Bos taurus	Mus musculus	Magnaporthiopsis poae	Nectria haematococca
Danio rerio	Gallus gallus	Gallus gallus	Neosartorya fischeri	Colletotrichum graminicola
Gallus gallus	Xenopus tropicalis	Xenopus tropicalis	Gibberella moniliformis	Trichoderma atroviride
Takifugu rubripes	Tetraodon nigroviridis	Takifugu rubripes	Aspergillus niger	Hypocrea jecorina
	Danio rerio	Danio rerio	Hypocrea virens	Trichoderma virens
	Nematostella vectensis		Necteria haematococca	Talaromyces leycettanus

Anopheles	Gaeumannomyces	Oidiodendron
gambiae	graminis	maius
Caenorhabditis	Gibberella zeae	Pleurotus
elegans		ostreatus
Ciona		
intestinalis		
Drosophila		
melanogaster		

Human	Bacterial	Human	Amphihian	
Telomerase	ChitinaseA1	Chitotriosidase1	Amphibian XMAP215	Rice Chitinase
Teromerase	CintinaseA1	Cintotnosidasei		
Homo coniona	Bacillus circulans	Homo conjona	Yananus laguis	5
Homo sapiens		Homo sapiens	Xenopus laevis	subsp. Japonica
Canis lupus	Paenibacillus		Xenopus	
familiaris	polymyxa	Pan troglodytes	tropicalis	Ananas comosus
Pan	Paenibacillus			
troglodytes	pabuli	Mus musculus	Homo sapiens	Citrus sinensis
	Paenibacillus		Pan	Bambusa
Bos taurus	taichungensis	Bos taurus	troglodytes	oldhamii
	Paenibacillus	Canis lupus		
Mus musculus	xylanexedens	familiaris	Gallus gallus	Daucus carota
			Anolis	Arachis
Gallus gallus	Kurthia zopfii	Gallus gallus	carolinensis	duranensis
Anolis	Paenibacillus		Canis	
carolinensis	tuaregi	Danio rerio	familiaris	Camellia sinensis
Xenopus	Paenibacillus	Xenopus		Corchorus
tropicalis	barengoltzii	tropicalis	Bos taurus	olitorius
Takifugu	Paenibacillus			
rubripes	rubinfantis	Takifugu rubripes	Mus musculus	Drosera adelae
	Paenibacillus			
Tetraodon	senegalimassilien	Anolis		Hevea
nigroviridis	sis	carolinensis	Danio rerio	brasiliensis
	Brevibacillus		Takifugu	
Danio rerio	brevis		rubripes	Brassica rapa
	Brevibacillus		Branchiostoma	
	laterosporus		floridae	Vitis vinifera
	*		Tetraodon	Arabidopsis
			nigroviridis	halleri
			0	Coffea
				canephora

			Pinus contorta
145			

140

147 Table S3

148

149 Typical catalysis times of processive cellulases (which limits dissociation time of the enzyme, given 150 in s) were collected from the literature (references are given in the main text). Parameters are given 151 for different types of substrates (e.g. amorphous cellulose or oligosaccharide) where the 152 corresponding values were available. CD: Catalytic domain, CBM: cellulose binding module. 153

UniProt ID	Name	CD family	Substrate type					
			Amorphous <u>Cellulose</u>	Bacterial <u>Cellulose</u>	Plant Crystal- line <u>Cellulose</u>	Oligosaccharides		
P62694	TrCel7A	GH7	0.556 s	0.357s	9.836 s (0.2 μM Cellulose Iα)			
					2.985 s (0.2 µM Cellulose III1)			
					3.209 s (0.1 μM Cellulose I _α)			
					3.774 s (0.1 μM Cellulose III1)			
P07987	TrCel6A	GH6			0.323 s (Cellu- lose I _α)	16.216 s (Glc3)		
						0.269 s (Glc4)		
Q09431	PcCel7D	GH7	0.5 s	0.385 s				
A7WNT9	ActCbh1	GH7				0.531 s (CNPLac)		
						21.429 s (MULac)		
Q9C1S9	Avi2	GH6	0.019 s (pH 8.5)			0.012 s (Cellohexaose pH 8.5)		
			0.167 s (pH 9.5)			0.125 s (Cellohexaose pH 9.5)		

155

156 Table S4

157 DLD processive enzymes move along different polymeric substrate and take various steps. The

158 length of the elementary unit that is covered by one step of the processive enzyme is named (in

- 159 parentheses) and its typical length (unit size) is calculated from the geometry of the substrate; this
- 160 length is taken as the step size for the given enzyme. The linker length distribution (mean ± SD, cf.
- 161 Suppl. Figure S2) is calculated for the enzyme family (cf. Suppl. Table S2 for species considered).
- 162
- 163

Substrate (unit)	Enzyme	Linker length	Unit size
		(mean±SD)	
RNA (nucleotide)	Human RNAse H1	44.9±10.8	0.34 nm
DNA (nucleotide)	Human XPF	22.2±0.4	0.34 nm
Cellulose (cellobiose)	T. reesei Cel7A	33.9±5.4	1 nm
	H. insolens Cel6A	38.6±10.3	
Telomer (hexanucleotide)	Human Telomerase	107.0±57.6	2.04 nm (0.34 nm/base
			pair)
Tubulin (tubulin dimer)	Xenopus XMAP215	94.1±17.3	4 nm
Chitin (trisacharid)	Human	36.1±6.6	1.5 nm (derived from
	Chitotriosidase-1		cellobiose)
	Bacillus circulans	22.3±0.9	
	Chitinase A1		
	Oryza sativa subsp.	21.9±3.9	
	Japonica Chitinase 2		
Collagen (decapeptide*)	Human MMP9	69.6±23.7	2.8 nm

165 *for MMP9, the frequency of the consensus cleavage motif (P..HyS/T) in the substrate collagen is

166 found to occur at about every tenth residue

167

168 References

169 1. Czovek, A., G.J. Szollosi, and I. Derenyi, The relevance of neck linker docking in the motility of

170 kinesin. *Biosystems*, **2008.** 93: 29-33.

- 171 2. Gao, D., et al., Increased enzyme binding to substrate is not necessary for more efficient cellu-
- 172 lose hydrolysis. *Proc Natl Acad Sci U S A*, **2013.** *110*: 10922-7.
- 173 3. Bois, J., Rudiments of polymer physics. 2002: http://www.citeulike.org/user/norris/article/2086610.
- 174 4. Holehouse, A.S., et al., CIDER: Resources to Analyze Sequence-Ensemble Relationships of In-
- trinsically Disordered Proteins. *Biophys J*, **2017.** *112*: 16-21.