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Abstract: A quantitative structure-property relationship (QSPR) study is performed to predict the
auto-ignition temperatures (AITs) of binary liquid mixtures based on their molecular structures. The
Simplex Representation of Molecular Structure (SiRMS) methodology was employed to describe
the structure characteristics of a series of 132 binary miscible liquid mixtures. The most rigorous
“compounds out” strategy was employed to divide the dataset into the training set and test set. The
genetic algorithm (GA) combined with multiple linear regression (MLR) was used to select the best
subset of SiRMS descriptors, which significantly contributes to the AITs of binary liquid mixtures. The
result is a multilinear model with six parameters. Various strategies were employed to validate the
developed model, and the results showed that the model has satisfactory robustness and predictivity.
Furthermore, the applicability domain (AD) of the model was defined. The developed model could
be considered as a new way to reliably predict the AITs of existing or new binary miscible liquid
mixtures, belonging to its AD.

Keywords: quantitative structure-property relationship (QSPR); auto-ignition temperature (AIT);
simplex representation of molecular structure (SiRMS); binary miscible liquid mixtures

1. Introduction

The auto-ignition temperature (AIT) is defined as the lowest temperature at which the substance
spontaneously ignites in ambient air, without an external ignition source, such as a spark or flame. AIT
is one of the most important parameters applied to classify the chemicals based on their degree of
flammability [1]. The experimental AIT values are the main source of the AIT data used in production.
However, the measurement of AITs is expensive and time-consuming. Especially for the mixtures, the
measurement is more difficult, since the AITs of the mixtures are closely related to their compositions
and ratios, which are rather difficult to test one-by-one. Therefore, it is of great significance to develop
theoretical models for predicting the AITs of mixtures.

Many theoretical models for predicting the AITs of pure flammable liquids have been
proposed [2–5]. However, only a few efforts have been made to predict the AITs of mixtures.
Rota et al. [6] developed a kinetic model to predict the AITs of 46 gas mixtures, including ammonia,
hydrogen, methane, and air at high pressure and temperature. The average relative error (ARE) and
the average absolute error (AAE) of the proposed model were about 3.5% and 25 K, respectively.
Peper et al. [7] proposed a simple weighting function formula to predict the AITs of polyurethane raw
material mixtures. However, the results showed that the calculated values of AITs of five mixtures are
20 K higher than the measured values. Lan et al. [8] presented a zero-dimensional model to predict
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the AITs of 24 binary miscible liquid mixtures. Due to the lack of a chemical kinetic mechanism, the
predictive ability of the model for higher hydrocarbons is poor.

The quantitative structure-property relationship (QSPR) method, as a mathematical method,
relates the properties of interest to the molecular structures of chemicals. It can be expected to
capture the relationships between the molecular structures and desired properties without detailed
knowledge of the mechanisms of interaction. In addition, QSPR is considered to be a time-saving
and effective method for prediction of the desired properties. In recent years, several QSPR models
have been successfully developed to predict the physicochemical properties of mixtures, such as
toxicity, boiling point, flash point, and critical parameters, all of which showed satisfactory stability
and predictivity [9–13].

The most challenging problem in QSPR studies for mixtures is the representation of structure
characteristics of mixtures. There are several different descriptor types for mixtures reported in the
literature: descriptors based on the partition coefficient for a mixture, integral additive descriptors,
integral non-additive descriptors of mixtures, and fragment non-additive descriptors [14]. As one of
the typical fragment non-additive descriptors, Simplex Representation of Molecular Structure (SiRMS)
descriptors can be theoretically applied to any investigated activity or property, and could capture the
interaction or joint effect of components. Recently, SiRMS descriptors have been successfully employed
in QSPR studies for mixtures [15–17].

In this work, for the first time, the QSPR method is applied to study the quantitative relationships
between the molecular structures and AITs of binary miscible liquid mixtures. The main purpose
of this study is to develop a new method for predicting the AITs of binary miscible liquid mixtures,
including: (i) development of SiRMS descriptors for mixtures; (ii) establishment of a QSPR model for
the AITs of binary miscible liquid mixtures; (iii) rigorous internal and external model validations; and
(iv) definition of the model applicability domain (AD).

2. Results and Discussion

2.1. Results of Prediction

According to the “Compounds out” strategy, the dataset is divided into a training set with 99
mixtures and a test set with 33 mixtures. By performing the GA-MLR procedure on the training set,
starting with the calculated 434 simplex descriptors, a best subset of six descriptors was obtained. The
definitions and types of these selected descriptors are shown in Table 1. The corresponding best model
is presented as follows:

AIT = 700.630 + 36.735X1 − 56.130X2 + 70.943X3 + 52.446X4 − 111.781X5 − 92.718X6

range : 496.15 K ≤ AIT ≤ 798.15 K
R2 = 0.958, Q2

LOO = 0.950, s = 15.411, F = 345.869, n = 99
(1)

where n is the number of mixtures in the training set, s is the standard error of the model, and F is the
Fischer F-ratio.

Table 1. Descriptors selected in the presented model for prediction of the Auto-ignition Temperature
(AIT).

Symbol Descriptor Definition Type Mixing Rule ME Value

X1 |S|n|||4|||CHARGE|A.A-A-B
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where n is the number of mixtures in the training set, s is the standard error of the model, and F is the 
Fischer F-ratio. 

Table 1. Descriptors selected in the presented model for prediction of the Auto-ignition 
Temperature (AIT). 

Symbol Descriptor Definition Type Mixing Rule ME Value 

X1 
|S|n|||4|||CHARGE|

A.A-A-B   
x1D1 + x2D2 −66.821 

X2 
|S|n|||4|||REFRACTI

VITY|B-B-B-B   
x1D1 + x2D2 155.161 
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x1D1 + x2D2 −66.821

X2 |S|n|||4|||REFRACTIVITY|B-B-B-B
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where MEj represents the mean effect for the descriptor j, βj is the coefficient of the descriptor j, dij 
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main statistical parameters of the model are presented in Table 2. As can be seen from Table 3, the 
AAE and RMSE values were as low as possible, which indicated that the presented model has 
acceptable predictive capability. A plot of the predicted AIT values versus the observed ones for both 
the training and test sets is presented in Figure 1. Thus, this showed a reasonable agreement between 
the predicted and observed AIT values across the whole dataset. The predicted percentage error of 
all the 132 mixtures was also calculated, which is shown in Figure 2. The obtained average percentage 
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Table 2. The main statistical parameters of the obtained Multiple Linear Regression (MLR) 
model. 

Statistical Parameters Training Set Test Set 
R2 0.958 0.942 

Q2LOO 0.950 - 
Q2EXT - 0.942 

RMSE 15.333 15.740 
AAE 12.395 12.531 
ARE 1.9% 1.8% 

n 99 33 

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 3 of 10 

 

X3 |S|n|||4|||elm|C-C(-

C)=O   
x1D1+x2D2 -54.633 

X4 
|S|n|||4|||elm|C-C(-

O)=O   
x1D1+x2D2 -14.773 

X5 
|M|n|||4|||CHARGE

|A-A.B-C   
2x1D1+2 21.835 

X6 
|M|n|||4|||REFRACT

IVITY|B-B.B-C   
2x1D1+2 59.231 

Moreover, the relative significance and contribution of each descriptor on the AIT were 
determined by the mean effect (ME) analysis, which is calculated as follows: 

MEj=
βj

∑ dij
i=n
i=1∑ βj

m
j ∑ dij

n
j

 (2)

where MEj represents the mean effect for the descriptor j, βj is the coefficient of the descriptor j, dij 
is the value of the descriptors of interest for each mixture, m is the number of descriptors in the model, 
and n is the number of dataset members. The symbol (positive or negative) of ME represents the trend 
of the impact of each descriptor on the AIT. The greater the absolute value of the coefficient is, the 
more important the descriptor is. 

As can be concluded from Table 2, the |S|n|||4|||REFRACTIVITY|B-B-B-B descriptor has the 
greatest influence on AIT. In addition, the relative importance and contribution of each descriptor in 
the model was determined and ranked as follows based on the ME values: 
|S|n|||4|||REFRACTIVITY|B-B-B-B > |S|n|||4|||CHARGE|A.A-A-B > 
|M|n|||4|||REFRACTIVITY|B-B.B-C > |S|n|||4|||elm|C-C(-C)=O > |M|n|||4|||CHARGE|A-
A.B-C > |S|n|||4|||elm|C-C(-O)=O.  

The developed model was then employed to predict the AIT values of mixtures in the test set 
for external validation. The predicted AIT values are presented in the Supplementary Table S1. The 
main statistical parameters of the model are presented in Table 2. As can be seen from Table 3, the 
AAE and RMSE values were as low as possible, which indicated that the presented model has 
acceptable predictive capability. A plot of the predicted AIT values versus the observed ones for both 
the training and test sets is presented in Figure 1. Thus, this showed a reasonable agreement between 
the predicted and observed AIT values across the whole dataset. The predicted percentage error of 
all the 132 mixtures was also calculated, which is shown in Figure 2. The obtained average percentage 
error for these mixtures was 1.8% and the maximum percentage error was 7.9%. 

Table 2. The main statistical parameters of the obtained Multiple Linear Regression (MLR) 
model. 

Statistical Parameters Training Set Test Set 
R2 0.958 0.942 

Q2LOO 0.950 - 
Q2EXT - 0.942 

RMSE 15.333 15.740 
AAE 12.395 12.531 
ARE 1.9% 1.8% 

n 99 33 

x1D1+x2D2 −54.633

X4 |S|n|||4|||elm|C-C(-O)=O

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 3 of 10 

 

X3 |S|n|||4|||elm|C-C(-

C)=O   
x1D1+x2D2 -54.633 

X4 
|S|n|||4|||elm|C-C(-

O)=O   
x1D1+x2D2 -14.773 

X5 
|M|n|||4|||CHARGE

|A-A.B-C   
2x1D1+2 21.835 

X6 
|M|n|||4|||REFRACT

IVITY|B-B.B-C   
2x1D1+2 59.231 

Moreover, the relative significance and contribution of each descriptor on the AIT were 
determined by the mean effect (ME) analysis, which is calculated as follows: 

MEj=
βj

∑ dij
i=n
i=1∑ βj

m
j ∑ dij

n
j

 (2)

where MEj represents the mean effect for the descriptor j, βj is the coefficient of the descriptor j, dij 
is the value of the descriptors of interest for each mixture, m is the number of descriptors in the model, 
and n is the number of dataset members. The symbol (positive or negative) of ME represents the trend 
of the impact of each descriptor on the AIT. The greater the absolute value of the coefficient is, the 
more important the descriptor is. 

As can be concluded from Table 2, the |S|n|||4|||REFRACTIVITY|B-B-B-B descriptor has the 
greatest influence on AIT. In addition, the relative importance and contribution of each descriptor in 
the model was determined and ranked as follows based on the ME values: 
|S|n|||4|||REFRACTIVITY|B-B-B-B > |S|n|||4|||CHARGE|A.A-A-B > 
|M|n|||4|||REFRACTIVITY|B-B.B-C > |S|n|||4|||elm|C-C(-C)=O > |M|n|||4|||CHARGE|A-
A.B-C > |S|n|||4|||elm|C-C(-O)=O.  

The developed model was then employed to predict the AIT values of mixtures in the test set 
for external validation. The predicted AIT values are presented in the Supplementary Table S1. The 
main statistical parameters of the model are presented in Table 2. As can be seen from Table 3, the 
AAE and RMSE values were as low as possible, which indicated that the presented model has 
acceptable predictive capability. A plot of the predicted AIT values versus the observed ones for both 
the training and test sets is presented in Figure 1. Thus, this showed a reasonable agreement between 
the predicted and observed AIT values across the whole dataset. The predicted percentage error of 
all the 132 mixtures was also calculated, which is shown in Figure 2. The obtained average percentage 
error for these mixtures was 1.8% and the maximum percentage error was 7.9%. 

Table 2. The main statistical parameters of the obtained Multiple Linear Regression (MLR) 
model. 

Statistical Parameters Training Set Test Set 
R2 0.958 0.942 

Q2LOO 0.950 - 
Q2EXT - 0.942 

RMSE 15.333 15.740 
AAE 12.395 12.531 
ARE 1.9% 1.8% 

n 99 33 

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 3 of 10 

 

X3 |S|n|||4|||elm|C-C(-

C)=O   
x1D1+x2D2 -54.633 

X4 
|S|n|||4|||elm|C-C(-

O)=O   
x1D1+x2D2 -14.773 

X5 
|M|n|||4|||CHARGE

|A-A.B-C   
2x1D1+2 21.835 

X6 
|M|n|||4|||REFRACT

IVITY|B-B.B-C   
2x1D1+2 59.231 

Moreover, the relative significance and contribution of each descriptor on the AIT were 
determined by the mean effect (ME) analysis, which is calculated as follows: 

MEj=
βj

∑ dij
i=n
i=1∑ βj

m
j ∑ dij

n
j

 (2)

where MEj represents the mean effect for the descriptor j, βj is the coefficient of the descriptor j, dij 
is the value of the descriptors of interest for each mixture, m is the number of descriptors in the model, 
and n is the number of dataset members. The symbol (positive or negative) of ME represents the trend 
of the impact of each descriptor on the AIT. The greater the absolute value of the coefficient is, the 
more important the descriptor is. 

As can be concluded from Table 2, the |S|n|||4|||REFRACTIVITY|B-B-B-B descriptor has the 
greatest influence on AIT. In addition, the relative importance and contribution of each descriptor in 
the model was determined and ranked as follows based on the ME values: 
|S|n|||4|||REFRACTIVITY|B-B-B-B > |S|n|||4|||CHARGE|A.A-A-B > 
|M|n|||4|||REFRACTIVITY|B-B.B-C > |S|n|||4|||elm|C-C(-C)=O > |M|n|||4|||CHARGE|A-
A.B-C > |S|n|||4|||elm|C-C(-O)=O.  

The developed model was then employed to predict the AIT values of mixtures in the test set 
for external validation. The predicted AIT values are presented in the Supplementary Table S1. The 
main statistical parameters of the model are presented in Table 2. As can be seen from Table 3, the 
AAE and RMSE values were as low as possible, which indicated that the presented model has 
acceptable predictive capability. A plot of the predicted AIT values versus the observed ones for both 
the training and test sets is presented in Figure 1. Thus, this showed a reasonable agreement between 
the predicted and observed AIT values across the whole dataset. The predicted percentage error of 
all the 132 mixtures was also calculated, which is shown in Figure 2. The obtained average percentage 
error for these mixtures was 1.8% and the maximum percentage error was 7.9%. 

Table 2. The main statistical parameters of the obtained Multiple Linear Regression (MLR) 
model. 

Statistical Parameters Training Set Test Set 
R2 0.958 0.942 

Q2LOO 0.950 - 
Q2EXT - 0.942 

RMSE 15.333 15.740 
AAE 12.395 12.531 
ARE 1.9% 1.8% 

n 99 33 

x1D1+x2D2 −14.773



Int. J. Mol. Sci. 2019, 20, 2084 3 of 10

Table 1. Cont.

Symbol Descriptor Definition Type Mixing Rule ME Value
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where MEj represents the mean effect for the descriptor j, β j is the coefficient of the descriptor j, di j is
the value of the descriptors of interest for each mixture, m is the number of descriptors in the model,
and n is the number of dataset members. The symbol (positive or negative) of ME represents the trend
of the impact of each descriptor on the AIT. The greater the absolute value of the coefficient is, the
more important the descriptor is.

As can be concluded from Table 2, the |S|n|||4|||REFRACTIVITY|B-B-B-B descriptor has
the greatest influence on AIT. In addition, the relative importance and contribution of each
descriptor in the model was determined and ranked as follows based on the ME values:
|S|n|||4|||REFRACTIVITY|B-B-B-B > |S|n|||4|||CHARGE|A.A-A-B > |M|n|||4|||REFRACTIVITY|B-B.B-C
> |S|n|||4|||elm|C-C(-C)=O > |M|n|||4|||CHARGE|A-A.B-C > |S|n|||4|||elm|C-C(-O)=O.

Table 2. The main statistical parameters of the obtained Multiple Linear Regression (MLR) model.

Statistical Parameters Training Set Test Set

R2 0.958 0.942
Q2

LOO 0.950 -
Q2

EXT - 0.942
RMSE 15.333 15.740
AAE 12.395 12.531
ARE 1.9% 1.8%

n 99 33

The developed model was then employed to predict the AIT values of mixtures in the test set for
external validation. The predicted AIT values are presented in the Supplementary Table S1. The main
statistical parameters of the model are presented in Table 2. As can be seen from Table 3, the AAE
and RMSE values were as low as possible, which indicated that the presented model has acceptable
predictive capability. A plot of the predicted AIT values versus the observed ones for both the training
and test sets is presented in Figure 1. Thus, this showed a reasonable agreement between the predicted
and observed AIT values across the whole dataset. The predicted percentage error of all the 132
mixtures was also calculated, which is shown in Figure 2. The obtained average percentage error for
these mixtures was 1.8% and the maximum percentage error was 7.9%.

Table 3. Basic types of simplexes.

Basic Type 1 2 3 4 5 6 7 8 9 10 11

simplex
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used to describe pure compounds, while unbounded simplexes can describe both the pure 
compounds and the mixtures. Thus, during descriptor generation, a special mark is used to 
distinguish them. The details of the procedure for calculation of 2D simplex descriptors for mixtures 
in this study are as follows. Firstly, the 2D chemical structures of each pure substance were drawn in 
MarvinSketch (version 15.6.29.0, ChemAxon, Budapest, Hungary) [19], and optimized based on the 
“clean in 2D” method by this software. For binary mixtures, the program generated the simplexes of 
individual species and mixture simplexes with atoms from two compounds. Then, each atom of the 
fragment obtained a calculated value by the cxcalc tool [19] and the atoms were divided into the 
corresponding groups: (i) partial charge A ≤ −0.05 < B ≤ 0 < C ≤ 0.05 < D; (ii) lipophilicity A ≤ −0.5 < B 
≤ 0 < C ≤ 0.5 < D; and (iii) refraction A ≤ 1.5 < B ≤ 3 < C ≤ 8 < D. Three characteristics of atom H-bond 
formation ability were specified: A (acceptor of hydrogen in H-bond), D (donor of hydrogen in H-
bond), and I (indifferent atom). In this work, fragments with four atoms were considered to reduce 
the probability of the model over-fitting and ensure its predictivity and AD [20]. The described SiRMS 
descriptors can be implemented in the open-source software (version 1.1.2, GitHub, San Francisco, 
California, America) [21] written on Python 3, which is available on the Github repository. 

Descriptors of constituent parts (compounds 1 and 2) are weighted according to their molar 
fraction, which was calculated as follows: 

Ds = x1D1 + x2D2. (3)

Meanwhile, mixture descriptors are multiplied on the doubled minimal weight according to 
Equation 4. 

DM = 2x1D1+2 (4)

where x1 and x2 are molar fractions of compounds 1 and 2 (x1 < x2 and x1 + x2 = 1), respectively, and D1, 
D2, and D1+2 are descriptor values for individual compounds 1 and 2, and for their mixtures, 
respectively. Furthermore, the volume ratio obtained from the literature [8] needs to be converted to 
a molar ratio first, since the calculation rules are based on the molar ratio. 

A concatenation of DS and DM represents the mixture descriptors of the whole dataset. Finally, a 
total set of 434 simplex descriptors was achieved. 
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2.2. Model Stability Validation and Results Analysis

In this study, the Y-randomization test was performed on the training set 100 times. The obtained
R2 of randomization versus the frequency of occurrence of the randomized models are presented in
Figure 3. The resulting maximum, minimum, and average values of the achieved highest random R2

were 0.173, 0.004, and 0.055, respectively, while the value of SD was 0.035. The difference between the
R2 of the original MLR model and the mhr R2 is higher than 3 SD. It can be concluded that there is no
chance correlation in the proposed model.
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The predicted residuals and observed values for the developed model are shown in Figure 4.
It can be seen that the calculated residuals are randomly distributed on both sides of the zero baseline,
which demonstrates that no systematic errors exist in the proposed model.
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From all of the above validation results, it can reasonably be concluded that the proposed MLR
model has satisfactory robustness and predictability. So, it can be reliably and conveniently employed
to predict the AITs of binary miscible liquid mixtures, solely from their molecular structures and
mole fractions.

2.3. Applicability Domain of the Proposed Model

A Williams plot for the proposed QSPR model is shown in Figure 5. The AD is established inside
a squared area within ±3 standard deviations and a leverage threshold h* of 0.212. In Figure 5, there are
three possible outliers (namely, #63, #78, and #110) in the dataset with higher leverage values (h > h*).
The structures of these mixtures are obviously different from the others. However, their AITs can still
be satisfactorily predicted by the present model within the standard deviation. Thus, the predictions
are considered to be acceptable. Therefore, the developed model can be expected to reliably predict
the AITs for the binary miscible liquid mixtures falling within the corresponding applicability ranges.
However, it should be stated that there is also a limitation to the AD of the model in terms of chemical
diversity, since the studied dataset only contained 10 different pure compounds. However, it is rather
difficult to find a further larger set of AIT data for binary mixtures in the open literature that contains
more and different pure compounds.
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3. Materials and Methods

3.1. Dataset

The dataset consists of 132 binary miscible liquid mixtures and originates from Lan et al.’s work [8],
the detail of which can be found in the Supplementary Table S1. The pure compound components
include alcohols, acids, esters, benzenes, ketones, and alkanes. All of the AIT values were obtained by
experimental tests according to the ASTM E659-78 test standard (American Society for Testing and
Materials). The AIT values of the whole dataset range from 496.15 K to 798.15 K. As is well-known,
with a larger dataset, a better predictive model could be developed; however, it is rather difficult to
find a larger set of AIT data for binary mixtures in the open literature in terms of chemical diversity.

3.2. Descriptor Calculation and Reduction

An important step in a QSPR study is the characterization of the molecular structures. In this
study, the binary mixtures were represented by a variety of SiRMS descriptors. In the framework
of SiRMS, any molecule can be represented as a system of different fragments (simplexes) of fixed
composition, structure, chirality, and symmetry simplexes [18]. All of the possible topological structure
types of simplexes are shown in Table 3.

Bounded and unbounded two-dimensional (2D) simplexes were used. Bounded simplexes were
used to describe pure compounds, while unbounded simplexes can describe both the pure compounds
and the mixtures. Thus, during descriptor generation, a special mark is used to distinguish them.
The details of the procedure for calculation of 2D simplex descriptors for mixtures in this study are
as follows. Firstly, the 2D chemical structures of each pure substance were drawn in MarvinSketch
(version 15.6.29.0, ChemAxon, Budapest, Hungary) [19], and optimized based on the “clean in 2D”
method by this software. For binary mixtures, the program generated the simplexes of individual
species and mixture simplexes with atoms from two compounds. Then, each atom of the fragment
obtained a calculated value by the cxcalc tool [19] and the atoms were divided into the corresponding
groups: (i) partial charge A ≤ −0.05 < B ≤ 0 < C ≤ 0.05 < D; (ii) lipophilicity A ≤ −0.5 < B ≤ 0 < C ≤ 0.5
< D; and (iii) refraction A ≤ 1.5 < B ≤ 3 < C ≤ 8 < D. Three characteristics of atom H-bond formation
ability were specified: A (acceptor of hydrogen in H-bond), D (donor of hydrogen in H-bond), and I
(indifferent atom). In this work, fragments with four atoms were considered to reduce the probability
of the model over-fitting and ensure its predictivity and AD [20]. The described SiRMS descriptors
can be implemented in the open-source software (version 1.1.2, GitHub, San Francisco, California,
America) [21] written on Python 3, which is available on the Github repository.

Descriptors of constituent parts (compounds 1 and 2) are weighted according to their molar
fraction, which was calculated as follows:

Ds = x1D1 + x2D2. (3)

Meanwhile, mixture descriptors are multiplied on the doubled minimal weight according to
Equation (4).

DM = 2x1D1+2 (4)

where x1 and x2 are molar fractions of compounds 1 and 2 (x1 < x2 and x1 + x2 = 1), respectively, and
D1, D2, and D1+2 are descriptor values for individual compounds 1 and 2, and for their mixtures,
respectively. Furthermore, the volume ratio obtained from the literature [8] needs to be converted to a
molar ratio first, since the calculation rules are based on the molar ratio.

A concatenation of DS and DM represents the mixture descriptors of the whole dataset. Finally, a
total set of 434 simplex descriptors was achieved.
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3.3. Descriptor Selection and Model Development

The key step in QSPR modeling is to find the optimal descriptors that make a significant
contribution to the AITs of binary miscible liquid mixtures. The well-known genetic algorithm (GA) is
a powerful optimization method to solve this problem and has been successfully applied to feature
selection in previous QSPR studies [22–24]. In this study, genetic algorithm along with multiple linear
regression (GA-MLR) was used to find the optimal subset that accurately represented the relationships
between molecular structures and AITs of binary liquid mixtures. The GA-MLR was performed by the
MATLAB M-file written in our laboratory. The fitness function of this method corresponds to the root
mean square error of cross-validation (rmsecv).

The selection program is started with one descriptor, and the best one-parameter regression
model, with the minimal rmsecv value, should be obtained. Then, the number of desired variables
should be increased to two, three, four, etc. and the corresponding best multi-parameter regression
models with the desired number of descriptors should be found. When the number of descriptors was
increased and the rmsecv did not significantly improve, it can be determined that the optimum subset
of descriptors that produce the best MLR model has been achieved [25].

3.4. Model Validation

Model validation is a necessary step to ensure the reliability of the developed QSPR models. In
this study, both internal and external validation methods were employed to validate the developed
QSPR model.

Cross-validation (CV) is one of the most common methods for internal validation. A good CV
result often represents a good robustness and high internal predictive capability of QSPR models. In
this study, leave-one-out (LOO) cross-validation (Q2

LOO) was employed, which is calculated with the
following equation:

Q2
LOO = 1−

∑training
i=1 (yi − y0)

2∑training
i=1 (yi − y)2

(5)

where yi, y0, and y are respectively the observed, predicted, and mean observed AIT values of the
mixtures in the training set.

External validation is significant and necessary to determine both the predictive capability and
generalizability of a developed model for new mixtures. There are three widely used strategies,
including “Points out”, “Mixtures out”, and “Compounds out” for dataset partition. Among these
three strategies, the “Compounds out” strategy is the most rigorous one and it will fully reflect the
ability of models to predict mixtures with a new compound [14,17]. Thus, in this study, the external
validation was carried out by randomly splitting the available dataset into a training set (75% of the
dataset), and an external test set (25% of the dataset) based on the “Compounds out” partition strategy.
The training set is used for descriptor selection and model development, while the test set is used for
model validation. The predictive capability of a QSPR model can be judged by an external Q2

EXT,
which is defined as follows:

Q2
EXT = 1−

∑test
i=1(yi − y0)

2∑test
i=1

(
yi − ytr

)2 (6)

where yi and y0 are the observed and predicted AIT values of the mixtures in the test set, respectively,
and ytr is the mean observed AIT values of the mixtures in the training set.

Additionally, a Y-randomization test was employed to further ensure the robustness of the
model. The dependent-variable vector (Y vector) was scrambled randomly, while all independent
data variables were unchanged, and the robustness of the developed model was tested. The process
was repeated 50–100 times. In each model, the highest R2 value obtained by descriptor selection is
recorded as the highest random R2 of randomization. In addition, the mean highest random (mhr) R2

and its standard deviation (SD) were calculated by averaging over the repetitions. If all R2 values of
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the randomized models are lower than that of the original model, and the difference between R2 of the
original model and mhr R2 is higher than 2.3 SD for significance at the 1% level, then higher than 3 SD
for the 0.1% level. It can be concluded that there is no chance correlation in the model development,
and the model can be considered as an acceptable model [26].

The squared correlation coefficient (R2) is used to determine the calibration capability of the model.
The average absolute error (AAE) and root mean square error (RMSE) were employed to evaluate the
predictive capability of the developed models, which are calculated as follows:

AAE =

∑n
i = 1

∣∣∣yi−y0

∣∣∣
n

(7)

RMSE =

√∑n
i= 1

(
yi−y0

)2

n
(8)

where yi is the observed value, y0 is the predicted value, and n is the number of mixtures in the dataset.

3.5. Applicability Domain

According to Organization for Economic Cooperation and Development (OECD) principle 3 [27],
the AD should be defined once a QSPR model is obtained. The AD of the model is a theoretical region
of the chemical space, which is defined by the descriptors and modeled response. Statistical models
can provide reliable predictions for the mixtures in this region. If all of the AIT values are within the
AD range, it can be considered that the model is reliable. In this study, the Williams plot was depicted
to analyze the AD.

For the x-axis, the leverage value (hi) describes the impacts of the objects on the model, which is
defined as:

hi = xi
(
XTX

)−1
xT

i , (9)

where xi is the descriptor column-vector of the considered mixtures and X is the descriptor matrix
derived from the training set descriptor values. The warning leverage value (h*) is calculated as follows:

h∗ =
3(p + 1)

n
(10)

where p is the number of model parameters and n is the number of training mixtures.
If the hi of a mixture is greater than the h*, it can be considered as outside of the AD range of the

model. For the y-axis, a Williams plot presented the Euclidean distances of the mixtures to the model
measured by the cross-validated standardized residuals. The mixture is classified as an outlier when
the cross-validated standardized residual is greater than 3 standard deviation units.

4. Conclusions

In this work, for the first time, a QSPR model has been developed for predicting the AITs of
binary miscible liquid mixtures from the molecular structures. To the best of our knowledge, the
largest existing database of AITs for binary mixtures was employed for modeling. The most rigorous
“compounds out” method was used to divide the training set and the test set. The SiRMS methodology
was employed to describe the structure characteristics of binary mixtures. The best-resulted QSPR
model was a six-parameter linear equation. The model validation results showed the satisfactory
robustness and predictivity of the model. The developed model would be expected to provide a new
way to reliably predict the AIT values of existing or new binary miscible liquid mixtures, belonging to
their AD. Furthermore, the method provides some guidance for prioritizing the design of safer liquid
mixtures with desired properties.
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Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/9/2084/
s1. Table S1: A complete list of the compositions of the 132 binary miscible liquid mixtures and their predicted
and observed AIT values, as well as the values of the six employed SiRMS descriptors in the model.
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Abbreviations

QSPR Quantitative structure-property relationship
AIT Auto-ignition temperature
SiRMS Simplex representation of molecular structure
GA Genetic algorithm
MLR Multiple linear regression
AD Applicability domain
ARE Average relative error
AAE Average absolute error
GA-MLR Genetic algorithm along with multiple linear regression
rmsecv root mean square error of cross-validation
CV Cross-validation
Q2

LOO Leave-one-out cross-validation
mhr mean highest random
RMSE Root mean square error
hi Leverage value
h* Warning leverage value
ME Mean effect
SD Standard deviation
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