

Figure S1. A. Callus with several regenerative spots on its surface. B. Number of regenerative spots per 22 replicates (22 culture jars, each one with ~ 1 g of calli) and number of fully regenerated plantlets. C. Root-like formation observed on Y-NEC in N6P with 50% hormones. D. Fully developed root on Y-NEC in N6P with 0% hormones. E. W-NEC in MS showing regeneration of aberrant leaf structures, which do not achieve complete plantlet regeneration.

Figure S2. A. Longitudinal section of the 1st stage of development (X400 magnification). The arrowhead indicates tracheid structures amplified in C. B. Meristematic cells present in the regenerative spot (X1000 magnification). C. Tracheid structures observed at the base of regenerative spots (X1000 magnification). D. Longitudinal section of the 2nd stage of development (X100 magnification). The arrowhead indicates tracheid structures amplified in F. E. Proliferative portion of the 2nd stage showing meristematic cells (X400 magnification). F. Tracheid structures from D (X400 magnification). G. Longitudinal section of a basal leaf portion, 3rd stage of development (X100 magnification). Arrow indicated aligned tracheid. H. Longitudinal section of a tip leaf portion, 3rd stage of development (X100 magnification). The insets show chlorenchyma (right) and amyloplasts (left) observed in the section. I. Aligned tracheid structures highlighted by an arrow are present at the 3rd stage (X400 magnification). J and K. Longitudinal section of a plantlet root at X100 and X400 magnifications, respectively. The root apical meristem (RAM) is observed. L and M. Cross section of a plantlet leaf at X100 and X400 magnifications, respectively. Vascular bundles are appreciated. N. Cross section of a plantlet stem showing no evidence of central vascular bundles. O. SAM and leaf primordium observed in a transversal section of a plantlet. Bar: 100 µm, except in B: 20 µm.

Figure S3. Gene regulatory network for miRNA-targeted transcription factors (TF) analyzed during *in vitro* maize plant regeneration. miRNA targets were tested using a publicly available database for maize tissue-specific gene regulatory networks (Huang et al., 2018; <u>https://www.bio.fsu.edu/mcginnislab/mgrn/</u>). Data for SBP23 (GRMZM2G126018), ARF17 (GRMZM2G159399), CUC2 (GRMZM2G393433) and RLD1 (GRMZM2G109987) targets were successfully retrieved from the database in four tissues: seed, SAM, leaf and root. CUC2 targets were found only for SAM and root tissues. A summary table for all TF targets and screenshots of interactive tissue Venn diagrams for these targets are shown in the upper part. A table showing the top 6 targets in SAM for each

TF is displayed at the bottom.

Figure S4. Tissues used for molecular analysis. (a) Immature Embryo, (b) Y-NEC, (c) EC, (d) 1^{st} stage of development, (e) 2^{nd} stage of development, (f) 3^{rd} stage of development, (g) Plantlet.

	Table	S1 .	Medium	composition.
--	-------	-------------	--------	--------------

Composition of N6P m	edium	Composition of MS medium	
Component	g/L	Component	g/L
KNO ₃	2.83	KNO ₃	1.9
(NH ₄) ₂ SO ₄	0.463	NH ₄ NO ₃	1.65
KH ₂ PO ₄	0.4	CaCl ₂ .2H ₂ O	0.44
MgSO ₄ .7H ₂ O	0.185	MgSO ₄ .7H ₂ O	0.37
CaCl ₂ .2H ₂ O	0.166	Na ₂ MoO ₄ [·] 2H ₂ O	0.25
Na ₂ EDTA.H ₂ O	0.0375	KH ₂ PO ₄	0.17
FeSO _{4.} 7H ₂ O	0.0278	Na ₂ EDTA.2H ₂ O	0.0373
MnSO ₄ .H ₂ O	0.00332	FeSO _{4.} 7H ₂ O	0.0278
H ₃ BO ₃	0.0016	MnSO ₄ .4H ₂ O	0.0223
ZnSO _{4.} 7H ₂ O	0.0015	H ₃ BO ₃	0.0062
KI	0.00083	ZnSO _{4.} 4H ₂ O	0.0086
Adenine	0.1	KI	0.00083
Proline	2.5	CoCl ₂ .2H ₂ O	0.000025
Casein	0.200	CuSO ₄ [·] 5H ₂ O	0.000025
Sucrose	30	Inositol	0.1
2,4 Dichlorophenoxyacetic acid	0.002	Nicotinic acid	0.001
6-BA (6-benzyladenine)	0.0003	Thiamine	0.002
Inositol	0.1	Pyridoxine	0.001
Nicotinic acid	0.0005	Glycine	0.002
Thiamine	0.0001	Sucrose	30
Pyridoxine	0.0005	Agargel	7
Agargel	7		

Table S2. Oligonucleotides used in this study. miRNA sequences were retrieved from miRBase (http://www.mirbase.org) and Target cDNA sequences from Maize Genetics and Genomic Database (https://www.maizegdb.org/).

ID		SEQUENCE $(5' \rightarrow 3')$	
	Primer stem loop	GTGCAGGGTCCGAGGTTTTGGACCATTTCTCGAT	
U6 SNKNA	Forward primer	GGAACGATACAGAGAAGATTAGCA	
zma-miR156a-5p* Primer stem loop		GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACG ACGTGCTC	
	Forward primer	TGCTCGTGACAGAAGAGAGT	
zma-miR160a-5p	Primer stem loop	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGA CTGGCAT	
	Forward primer	TTTGCCTGGCTCCCTGT	
zma-miR164a-5p	Primer stem loop	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACG ACTGCACG	
-	Forward primer	CTACTGGAGAAGCAGGGCA	
zma-miR166h-3n	Primer stem loop	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGA CGGGAAT	
ľ	Forward primer	CGTCGCTCGGACCAGGCTTCA	
zma-miR394a-5p	Primer stem loop	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGA CGGAGGT	
	Forward primer	TTCGTTTGGCATTCTGTCCA	
Universal reverse primer		GTGCAGGGTCCGAGGTA	
SPB23 (GRMZM2G126018_T01)**		Forward ACACCAACGCGATGAATTGG Reverse ACCCTGAAAAACCAGAACGG	
ARF17 (GRMZM2G159399_T01)		Forward TTTCTCGGACATCGCTCCTG Reverse CCTTGGATATACGGGGGCGTC	
ARF19 (AC207656.3_FGT002)		Forward TCCCACTGTACCCGGAGCTT Reverse GCATGCCTGGCTCCCTGTAT	
CUC2 (GRMZM2G393433_T01)		Forward TTCGCTGCACTACATGGTTG Reverse AACGACGACCCAGTCACTTAC	
RDL1 (GRMZM2G109987_T01)		Forward GCGATTGCAGAGGAGACCTT Reverse TGGCCACGATACCAACTGAA	
F-BOX (GRMZM2G064954 _T01)		Forward GATGACATGCCTGGGCAACA Reverse GCTTTTTGCGGCTGTATGGTA	
WUS2 (GRMZM2G02862)		Forward TTTACAGCAACAGCACCCAG Reverse CAGGGTAAGGGGAGCACCAT	
18S (XM_020546348.1)		Forward TCCTATTGTTGGCCTTCGG Reverse TCCTTGGCAAATGCTTTCGC	