

Supplementary Materials

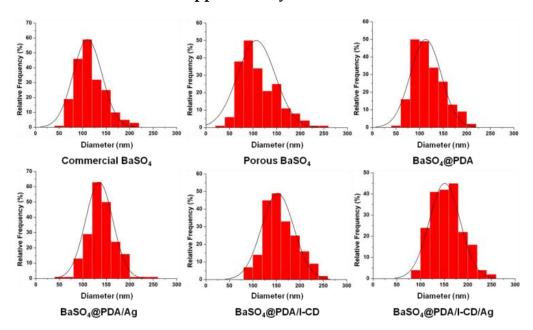
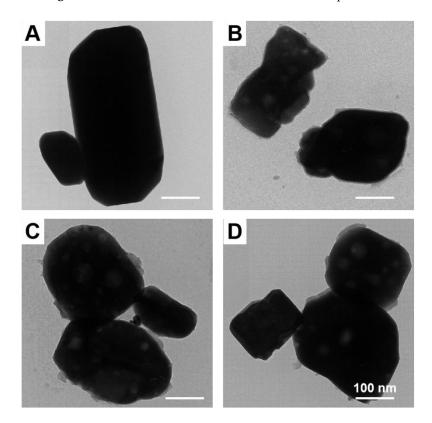
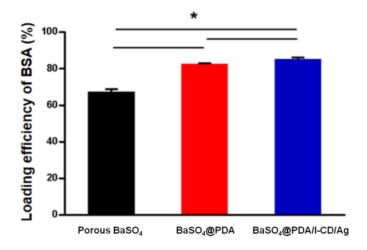
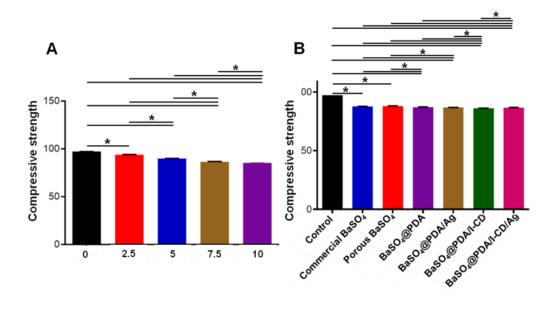




Figure S1. The diameter distribution of different microparticles.


 $\label{eq:figure S2.} Figure S2. \ TEM \ images \ of \ (A) \ BaSO_4; \ (B) \ porous \ BaSO_4@PDA; \ (C) \ porous \ BaSO_4@PDA/Ag \ and \ (D) \ porous \ BaSO_4@PDA/I-CD/Ag \ microparticles.$

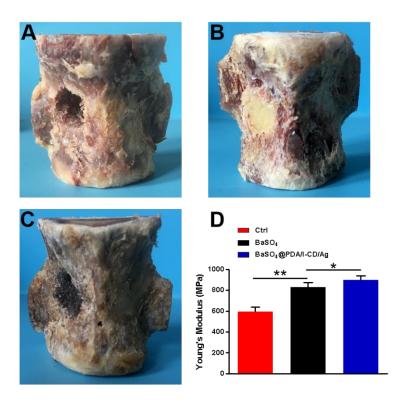

Figure S3. The loading efficiency of BSA in porous BaSO₄, BaSO₄@PDA and BaSO₄@PDA/I-CD/Ag particles. *p < 0.05.

Figure S4. (**A**) SEM images of the PMMA for preparing bone cement. (**B**) The diameter distribution of PMMA particles.

Figure S5. (**A**) Compressive strength of PMMA bone cements containing 0, 2.5 wt%, 5 wt%, 7.5 wt% and 10 wt% porous BaSO₄@PDA/I-CD/Ag microparticles. (**B**) Compressive strength of PMMA bone cement (Control) and PMMA bone cements adding 7.5 wt% commercial BaSO₄, porous BaSO₄, BaSO₄@PDA, BaSO₄@PDA/Ag, BaSO₄@PDA/I-CD and BaSO₄@PDA/I-CD/Ag microparticles. *p < 0.05.

Figure S6. Images of sheep vertebral with defect as Ctrl group (**A**), and defects filled with PMMA bone cement containing commercial BaSO₄ particles (**B**) and BaSO₄@PDA/I-CD/Ag particles (**C**). And Young's modulus of different groups (**D**). *p < 0.05.