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Abstract: Antibiofilm strategies may be based on the prevention of initial bacterial adhesion,
the inhibition of biofilm maturation or biofilm eradication. N-acetyl-L-cysteine (NAC), widely used in
medical treatments, offers an interesting approach to biofilm destruction. However, many Eubacteria
strains are able to enzymatically decompose the NAC molecule. This is the first report on the action
of two hybrid materials, NAC-Si-1 and NAC-Si-2, against bacteria isolated from a water environment:
Agrobacterium tumefaciens, Aeromonas hydrophila, Citrobacter freundii, Enterobacter soli, Janthinobacterium
lividum and Stenotrophomonas maltophilia. The NAC was grafted onto functional siloxane polymers to
reduce its availability to bacterial enzymes. The results confirm the bioactivity of NAC. However,
the final effect of its action was environment- and strain-dependent. Moreover, all the tested bacterial
strains showed the ability to degrade NAC by various metabolic routes. The NAC polymers were less
effective bacterial inhibitors than NAC, but more effective at eradicating mature bacterial biofilms.
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1. Introduction

When biofilm communities develop on industrial surfaces, they constitute a reservoir of various
bacterial strains, including pathogens and opportunistic pathogens. The formation of biofilms
often results in difficult-to-treat, chronic infections. In the case of technical materials in drinking
water systems, they can lead to secondary contamination of water and biocorrosion processes [1,2].
Moreover, adhered bacterial cells produce extracellular polymeric substances (EPSs) which promote
the development of biofilm structures. Bacterial biofilms usually express starvation phenotypes and
defense mechanisms. As a consequence, they become more resistant to biocids than planktonic cells [3].

Potential antibiofilm strategies may be based on prevention of initial bacterial adhesion, inhibition
of biofilm maturation and biofilm dispersion or eradication [4]. One common approach is to treat
or incorporate surfaces with biocides, such as metal ions or metal nanoparticles (silver, cooper and
mercury) or chemical agents (triclosan, chlorhexidine and quarternary ammonium salts). However,
these approaches are limited, in particular by the short lifetimes and toxicity of such biocides [5].
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An interesting alternative antibiofilm strategy may be the use of N-acetyl-L-cysteine (NAC), which
is widely used in medical treatments. This small molecule shows rather weak antibacterial properties,
but NAC is well known as a strong biofilm inhibitor. As a thiol antioxidant, NAC disrupts disulfide
bonds in EPS as well as inhibiting cysteine utilization. In addition, NAC increases the wettability
of the surface and decreases bacterial adhesion to substrates [3]. It has been shown that NAC can
reduce biofilms formed by some bacteria: Staphylococcus epidermidis, Stenotrophomonas maltophilia
and Burkholderia cepacia [6,7], inhibit biofouling by Moraxella catarrhalis, Streptococcus pneumoniae and
Haemophilus influenzae [8,9] and limit the adhesion of Pseudomonas aeruginosa to polystyrene [10] and of
Helicobacter pylori to various biotic and abiotic surfaces [11,12].

The main barrier to widespread use of NAC as a universal antibiofilm agent may be the ability of
many Eubacteria strains to decompose this molecule via the action of various microbial enzymes [13–16].
Especially in water environments, where the concentration of organic matter is very low, NAC becomes
an attractive substrate for bacteria. Regardless of the mechanism of action, the antibiofilm activity
of NAC may be significantly reduced. Therefore, in many cases, antibiofilm treatment by NAC
should be supported by the additional activity of antibiotics, silver and gold nanoparticles or other
antimicrobials [17–21]. Another strategy could be the incorporation of NAC into the structure of
larger macromolecules, thereby limiting enzymatic degradation. So far, there has been little research
on functional polymeric materials containing NAC or their effects on bacterial biofilms. Interesting
results have been reported for chitosan [22] and polysiloxanes [23] functionalized with NAC. However,
in these studies, bacterial ATTC collection strains of Staphylococcus aureus and Escherichia coli were used
as model microorganisms. This paper marks an extension of studies into NAC grafted onto functional
siloxane polymers using bacterial strains isolated from biofilms formed in industrial drinking water
systems. This is the first report on NAC activity against wild bacterial isolates and the application of
NAC siloxane polymers against mature bacterial biofilms.

2. Results

2.1. Bacterial Isolates

In total, 40 bacterial monocultures were isolated from the biofilm samples, using the plate
reduction technique on PCA agar. The bacterial morphotypes varied, with beige, cream, colorless or
dark-violet colonies of regularly shaped small (2 mm) and irregular larger (4–5 mm) colonies, all with
a characteristic slimy appearance. In general, the morphotypes were Gram-negative bacteria. The
mixed bacterial populations were very difficult to separate. Therefore, the streak plate procedure was
performed several times on PCA agar to obtain each morphotype as a pure culture. Finally, six bacterial
morphotypes with the ability to form characteristic slimy colonies on agar plates were selected for
genetic identification. The bacterial monocultures were identified at the species level by sequencing
their 16S rRNA genes, which were amplified through PCR. The nucleotide sequences were compared
with those obtained from the National Center for Biotechnology Information (NCBI) and deposited
in the GenBank database with accession numbers. The isolated bacterial strains were identified as
Agrobacterium tumefaciens, Aeromonas hydrophila, Citrobacter freundii, Enterobacter soli, Janthinobacterium
lividum and Stenotrophomonas maltophilia (Table 1).

Some of these isolates were typical water microbiota. According to the literature, Gram-negative
bacteria are commonly found in water systems. Studies conducted by Penna et al. [24] on water
samples collected from public distribution installations confirmed the presence of the Gram-negative
bacteria Pseudomonas sp., Flavobacterium sp., Acinetobacter sp. and Enterobacteriaceae, C. freundii and
E. soli (coliforms) are opportunistic pathogens often found in water, sewage and the intestinal tracts
of animals and humans [25–27]. A. tumefaciens originates in plants and soil [28,29]. S. maltophilia
frequently colonizes humid abiotic surfaces in water installations, mechanical ventilation systems
and medical devices [30], as do A. hydrophila [31–33] and J. lividum, which are often isolated from
water and water-living animals [34]. S. maltophilia is closely related to Pseudomonas and Xanthomonas
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genera. They are opportunistic pathogens that cause human respiratory tract infections, endocarditis,
bacteremia, meningitis and urinary tract infections, which are often difficult to treat [35]. Despite their
different taxonomic characteristics and biochemical features, the bacterial isolates were able to form
slime on the PCA agar plates, often in colonies with compact structures. It seems that this feature helps
them to adhere to or coaggregate with other cells and surfaces, while strengthening the structures of
the biofilms.

Table 1. Bacterial strains isolated from biofilms formed in drinking water systems.

Bacterial
Isolate Origin Cell

Shape
Gram

Staining
Aminopeptidase

L-Alanine Oxidase
GenBank
Accession
Number

A.tumefaciens A rods negative positive positive KJ719245
A.hydrophila B rods negative positive positive KC756842
C. freundii A rods negative positive negative KJ995856

E. soli A rods negative positive negative KJ995858
J. lividum C rods negative positive positive MF777041

S. maltophilia D rods negative positive weak KJ719248

A: bottled mineral water; B: unchlorinated drinking water; C: flavored mineral water; D: brewery water.

2.2. Growth Inhibition of Bacteria by NAC

Six bacterial strains, A. tumefaciens, A. hydrophila, C. freundii, E. soli, J. lividum and S. maltophilia, were
used to evaluate the antibacterial activity of NAC. The influence of this compound was determined by
the standard two-fold dilution method in two kinds of culture media: minimal M1 (50-fold diluted
buffered peptone water, BPW) and rich M2 (Triptic Soy Broth, TSB). No significant reduction in bacterial
density was observed after 48 h of incubation for any of the strains in M2 medium, except A. tumefaciens.
The NAC concentrations at which bacterial growth [◦McF] was slightly inhibited were similar for all
the studied strains, at 0.25% (w/v). However, at this concentration, the inhibition of bacterial growth
by NAC was significantly higher in the minimal M1 medium (Figure 1). These results show that the
antibacterial activity of NAC depends on the availability of organic compounds which in effect can
protect planktonic bacterial cells.
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Figure 1. Growth [◦McF] of bacterial strains in minimal M1 and rich M2 culture media in the presence
of 0.25% (w/v) NAC in comparison to that for control samples (without NAC). Values show the mean
± standard deviation (SD, n = 3). The results are compared to those of the control samples (without
NAC). Values with different letters are statistically different: a, p ≥ 0.05; b, 0.005 < p < 0.05; c, p < 0.005.



Int. J. Mol. Sci. 2019, 20, 2011 4 of 14

Numerous studies have confirmed that organic matter interferes with the activity of
antimicrobials [36–38]. The interaction between organic matter and antimicrobial substance leads
to reduced antimicrobial activity. Therefore, the antimicrobial activity of NAC can be obscured by
the environment and depends strongly on its chemical composition. Similarly, Yin et al. [39] suggest
that NAC may be unsuitable as an antibacterial agent in the presence of high concentrations of
organic matter.

2.3. Adhesion Abilities in the Presence of NAC

Bacterial attachment to the native glass surface in M1 culture medium was assessed by luminometry
throughout the 6-day incubation period. This minimal medium was used because, according to the
literature, both biofilm formation and biofilm resistance to antimicrobials may be stimulated in a water
environment poor in carbon sources. Myszka and Czaczyk [40] report that starvation has a greater
impact on the process of cell attachment. Other studies conducted by Rochex and Lebeaultthe [41]
have shown that the extent of biofilm accumulation increases as the nitrogen concentration falls from
C/N = 90 to C/N = 20. In our study, for culture media M1 and M2, the C/N ratios were likewise very
low, at 3.63/3.95. However, in the M1 medium, the availability of organic compounds was very limited
(0.2 g/L) (Table 2).

Table 2. Chemical characteristics of culture media used in the study.

Kind of Medium pH C [g/L] N [g/L] S [g/L] C/N

M1 6.9 0.08 0.02 0.01 3.63
M2 7.2 8.42 2.13 0.24 3.95

Figure 2 presents the results of luminescence studies in Relative Light Units per cm2 (RLU/cm2) for
the tested bacterial strains. Various levels of cell adhesion may be observed. For A. hydrophila, C. freundii,
J. lividum and S. maltophilia, the RLU values in the control samples are higher, at 121–143 RLU/cm2. The
presence of 0.25% (w/v) NAC significantly reduced the bacterial adhesion of J. lividum and S. maltophilia,
to 2–3 RLU/cm2. For other strains, the RLU values increased from 26 to 56 RLU/cm2.
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medium M1 with 0.25% (w/v) NAC in comparison to that of control samples (without NAC). Values
show the mean ± standard deviation (SD, n = 3). Values with different letters are statistically different:
a, p ≥ 0.05; b, 0.005 < p < 0.05; c, p < 0.005.

According to the literature, NAC can reduce the formation of biofilms by S. epidermidis [6],
P. aeruginosa [10], H. pylori [11], S. maltophilia and B. cepacia [7] on various biotic and abiotic surfaces.
Biofilms have been reported to be more affected by NAC than planktonic cultures, suggesting specific
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antibiofilm activity against the tested bacteria [7]. The results of our study confirmed the antibiofilm
action of NAC. However, the final effect was strain-dependent. The variable activity of NAC may be
due to the chemical nature of the EPS, as well as to the enzymatic activity of the bacterial strains capable
of NAC degradation. The chemical characteristics of bacterial EPS are strain-dependent, and also
depend on the age of the biofilms [42]. Therefore, it was decided to evaluate the capacity of the tested
bacteria to degrade NAC.

2.4. Bacterial Capacity for NAC Degradation

A comparison of the HPLC chromatograms and MS spectra for solutions obtained after the
incubation of bacterial cells with the control NAC solution reveals that all the tested bacterial strains
showed ability to degrade NAC in water, when other potential sources C and N were absent. Figure 3A
presents examples of chromatograms for three tested bacterial strains: A. hydrophila, C. freundii and
E. soli. These chromatograms have slight differences from each other, but present definite differences
from that of the control sample.
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Figure 3. (A) HPLC chromatograms of solutions obtained after 4 h of incubation with 0.25% (w/v)
NAC for three bacterial strains. The control was 0.5% NAC solution without bacterial incubation; (B)
structure of the main NAC metabolite; (C) MS spectrum and structure of the polar metabolite of NAC
from supernatant after 4 h incubation of A. tumefaciens with NAC, (D) MS spectrum and structure of
polar metabolite of NAC from supernatant after 4 h incubation of E. soli with NAC.
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The LC–MS spectra for all the analyzed supernatants show a peak at the retention time of 9.1 min,
for which m/z is 325.1. This signal corresponds to the [M + H]+ product of NAC oxidation to the
disulfide derivative. More polar compounds were found in the supernatants in comparison to those in
the NAC solution without bacterial incubation (Figure 3B). Small amounts of alanine (visible as a peak
at m/z = 90.5 on the MS spectra, corresponding to [M + H]+ alanine) were present in the supernatants.
Surprisingly, the supernatants did not contain cysteine, which is the product of deacetylation of NAC.
The peak retention time of A. tumefaciens was 2.7 min (m/z = 283.1) (Figure 3C). The m/z corresponds
to the disulfide derivative formed from the NAC and cysteine. A compound of m/z = 118.1 with a
retention time of 2.4 min was observed among the metabolites of E. soli. This was tentatively assigned
to N,N-dimethylalanine (Figure 3D).

Several enzymes may be responsible for the degradation of cysteine to different metabolites,
namely cysteine desulfurase (CDS) (EC 2.8.1.7) [13,16], cysteine desulfhydrase (CDSH) (EC 4.4.1.15) [15]
or cysteine dioxygenase (CDO) (EC 1.13.11.20) [14]. For example, CDS and CDSH activities have
been found in Salmonella enterica and E. coli, and CDO is common among species within the phyla of
Actinobacteria, Firmicutes and Proteobacteria. These enzymes differ in terms of action: CDO irreversibly
oxidizes the sulfhydryl group of cysteine to cysteinesulfinic acid, whereas CDS and CDSH, which
appear to be the major cysteine-degrading agents, are sulfide-producing enzymes [14,15].

Due to the ability of the tested bacterial strains to degrade NAC, subsequent studies were
conducted on NAC polymer derivatives with different structures: ladder-like (NAC-Si-1) and linear
(NAC-Si-2). Two bacterial strains were used, A. hydrophila and C. freundii. These exhibited the best
adhesive abilities, comparable resistance to NAC as well as a capacity for NAC degradation.

2.5. Growth Inhibition by NAC and NAC-Grafted Polymers

The antibacterial activities of NAC and of the polymers NAC-Si-1 and NAC-Si-2 were evaluated
in two kinds of culture media: minimal M1 and enriched M2 (Figure 4).
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presence of NAC and its derivatives NAC-Si-1 and NAC-Si-2 in comparison to that in control samples
(without NAC and its polymer derivatives). Values show the mean ± standard deviation (SD, n = 3).
Values with different letters are statistically different: a, p ≥ 0.05; b, 0.005 < p < 0.05.

Aqueous solutions of NAC and NAC-Si-1 were used at concentrations of 0.25% (w/v). Due to its
limited solubility, NAC-Si-2 was applied at 0.05% (w/v). After 48 h incubation in minimal M1 medium,
a significant reduction in bacterial growth was observed only in the case of native NAC. In enriched M2
medium, the strains were inhibited only slightly in the presence of NAC and its derivatives. Growth
inhibition was similar for both tested strains. These results show that the wild-bacterial isolates are
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more resistant to NAC, NAC-Si-1 and NAC-Si-2 in M2 medium than the model collection strains
E. coli and S. aureus described in our previous report [23]. Nevertheless, in M2 medium, the activity of
NAC-Si-2 was similar to that of NAC-Si-1 at a 5-fold lower concentration.

2.6. Biofilm Formation on Glass Modified with NAC Polymers

A significant reduction in bacterial biofilm formation after 6 days of incubation in minimal M1
medium was observed only in the case of polymer NAC-Si-2. A similar, 10-fold reduction was observed
with both tested strains (Figure 5).Int. J. Mol. Sci. 2019, 20, x 7 of 14 
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Figure 5. Effects of polymers NAC-Si-1 and NAC-Si-2 on biofilm formation by A. hydrophila and C.
freundii after 6 days of incubation in M1 medium. The results are compared to those of the control glass
carrier (glass without NAC polymers). Values show the mean ± standard deviation (SD, n = 3). Values
with different letters are statistically different: b, 0.005 < p < 0.05; c, p < 0.005.

The NAC-Si-1 polymer proved less effective at reducing bacterial adhesion. This may be due to the
differences in wettability of the polymers. Numerous publications have investigated the relationships
between the surface properties of materials and biofilm colonization, although some details remain
unclear. Bacterial adhesion depends not only on the bacterial strain but also on the surface free energy
of the colonized support. Generally, larger specific surface areas and better wetting qualities have been
found to favor bacterial adhesion [43]. Therefore, evaluating polymer wettability can give important
information regarding the antibiofilm properties of materials.

The surface free energies of thin films of NAC-Si-1 and NAC-Si-2 on glass were compared to
that of native glass. The surfaces covered with polymers were more hydrophilic than that of the
native glass support, which had a surface free energy of 180 mJ/m2, in comparison to 240 mJ/m2 and
380 mJ/m2 for NAC-Si-1 and NAC-Si-2, respectively. The specific structure of NAC-Si-2 is responsible
for its particular properties in thin films and great hydrophilicity, despite the presence of hydrophobic
methyl groups on Si atoms. Moreover, the solubility of NAC-Si-2 in water is poorer than that of
NAC-Si-1. As we have seen, the greater flexibility of the single siloxane chain of NAC-Si-2 facilitates
the rearrangement of macromolecules in the coating, so the hydrophilic groups in the topmost layer
of the film may be exposed to the polar environment. In our previous studies, it was shown that
NAC-Si-2 ‘catches and holds’ bacterial cells, and this can impede biofilm development [23].

2.7. Biofilm Eradication by NAC and NAC-Grafted Polymers

The ability of the tested polymers to eradicate biofilms was equally interesting. We studied
eradication using different kinds of biofilm treatment: distilled water, 1% (w/v) solutions (NAC,
NAC-Si-1) and suspensions (NAC-Si-2) (Figure 6). It was noted that the treatment of bacterial biofilms
with NAC or its polymers at a concentration of 1% (w/v) led to a significant decrease in RLU values
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formed by A. hydrophila and C. freundii. Results after 1 h treatment compared to that of the control
sample (10-day biofilm without NAC or polymer derivatives). Values show the mean ± standard
deviation (SD, n = 3). Values with different letters are statistically different: b, 0.005 < p < 0.05; c,
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However, microscopic observations (Figure 7) suggest that the process of eradication is based on
interactions at the interface between the biofilm and the macromolecules. Analysis using SEM of the
glass surface following eradication processes showed that the less water-soluble polymer, NAC-Si-2,
has a tendency to ‘clump and hold’ bacterial cells, which may result in very low luminometric
measurements (due to lack of cell availability for intracellular ATP testing). Moreover, this effect was
probably the cause of the lack of cell fluorescence when we attempted to determine the metabolic
state of the bacterial cells by fluorescence microscopy. Groups of tightly packed bacterial cells were
also noticed (Figure 7B-4). This particular feature of the polysiloxane explains the lack of fluorescence
emission from bacterial cells eradicated with NAC-Si-2. Therefore, it can be concluded that the polymer
NAC-Si-1, with better water solubility, is more effective against mature bacterial biofilms.
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3. Materials and Methods

3.1. Isolation of Bacterial Biofilms Formed in Drinking Water Systems

In total, 20 samples of biofilms formed in industrial drinking water systems were subjected to
microbiological analysis. For each biofilm sample, at least three plates with Plate Count Agar (PCA,
Merck, Darmstadt, Germany) were inoculated by swabbing. All the plates were incubated at 25 ◦C for
5 days. At least two characteristic colonies representing each morphotype were picked up from the
agar plates, restreaked several times to ensure purity and then maintained as pure cultures at 4 ◦C on
wort agar slants.

3.2. Identification of Microorganisms

The bacterial cultures were analyzed first by light microscopy BX41 (Olympus, WA, USA), and then
by using molecular methods and the following standard methods: Gram staining, the L-aminopeptidase
test (Bactident® Aminopeptidase, Merck, Germany), the oxidase test (Bactident® Oxidase, Merck,
Germany). The 16S rRNA genes were amplified through PCR, according to a technique described
previously [44]. The nucleotide sequences were compared with 16S rRNA gene sequences obtained
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from the NCBI using the program BLASTN 2.2.27 + (https://blast. ncbi.nlm.nih.gov/Blast.cgi). The
sequences were deposited in the GenBank database and assigned accession numbers.

3.3. Culture Media

Certified liquid media were prepared for the shake cultures. The minimal medium M1 (50-fold
diluted BPW (Merck, Germany)) and enriched medium M2 (TSB (Merck, Germany)) were sterilized at
121 ◦C for 15 min. These media were chosen due to their sharp differences in nutrient content. The
composition of the granulates used to prepare the M1 and M2 media was determined by elemental
analysis (%wt of C, N and S) using a varioMICRO CUBE elemental analyzer (Elementar, Langenselbold,
Germany). Table 2 presents the chemical characteristics of the culture broths used. The values are the
means of two independent measurements (n = 2).

3.4. Polymeric Materials

Polymers, labelled NAC-Si-1 and NAC-Si-2, were prepared by grafting NAC onto the vinyl groups
of their precursors, LPSQ-Vi and Silo-Vi, respectively, following a method described elsewhere [23,45,46].
The polymers with side vinyl groups were poly(vinylsilsequioxanes) (LPSQ-Vi, MnGPC = 1000 g/mol,
PDI = 1.4) or poly(vinylmethylsiloxanes) (Silox-Vi, Gelest, MnGPC = 1800 g/mol, PDI = 1.3) terminated
with trimethylsilyl groups (Figure 8). To study biofilm growth on surfaces coated with NAC grafted
onto siloxane polymers, the surface energy of the polymers was estimated using the sessile droplet
technique and the Owens–Wendt method. The polymers were cast on bare glass supports (commercially
available microscopic slides) using a slit applicator (film thickness: 100 µm). The static, advancing
and receding contact angles were measured immediately after the deposition of a liquid (water or
anhydrous glycerol) onto the surface of the film. The values and their standard deviations were
estimated for the average of at least three measurements taken in different areas of the same sample [23].
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3.5. Bacterial Growth in the Presence of NAC or NAC-Grafted Polymers

The influence of NAC and its derivatives on the tested bacteria were determined using the
standard two-fold dilution method [23]. One milliliter of cell suspension (1◦McF) was mixed with
1 mL of M1 or M2 culture media with serial dilutions of the tested compounds. The concentrations
of NAC (Merck, Germany) and its polymeric derivatives NAC-Si-1 and NAC-Si-2 (Figure 8) were in
the range of 0.0125–0.5% (w/v). Incubation was conducted for 48 h at 30 ◦C. Bacterial growth in the
two types of culture media, M1 and M2, was measured densitometrically in McF units (densitometer
DEN-1, Merck, Germany).

3.6. Capacity of Bacteria to Degrade NAC

The capacity of the tested bacteria to degrade NAC was evaluated after incubation of the bacterial
cells with 0.5% (w/v) NAC solution in water. Two milliliters of NAC solution was mixed with two



Int. J. Mol. Sci. 2019, 20, 2011 11 of 14

full loops of bacterial biomass from 24 h slant cultures. The suspensions were standardized (1◦McF)
and then incubated for 4 h at 30 ◦C. After incubation, the samples were centrifuged (6800× g, 4 ◦C)
and the supernatants were collected. Solutions of the supernatants diluted with water (Milli-Q water)
at 1:1 (v:v) were used for LC–MS analysis. High-performance liquid chromatography (HPLC) was
performed on an LC Dionex UltiMate 3000 (ThermoFisher Scientific, Waltham, USA), using a Kinetex
Reversed Phase C18 column (100 × 4.6 mm). The analysis was performed with a gradient of 0.1%
TFA in H2O (B) and 0.1% TFA in CH3CN (A), at a flow rate of 0.4 mL/min, with UV detection at 214,
220, 254 and 330 nm. Microscopic analysis was performed on an MS Bruker microOTOF-QIII (Bruker,
Leipzig, Germany).

3.7. Bacterial Adhesion in the Presence of NAC or Polymers-Grafted with NAC

Minimal medium M1 (20 mL) was poured into sterile 25 mL Erlenmeyer flasks, into which sterile
glass carriers (Star Frost 76 9 26 mm, Knittel Glass, Braunschweig, Germany) were placed vertically
in such a way that half of the carrier was immersed in the medium while the other part remained
outside [33]. The amount of inoculum was standardized [1◦McF] to obtain a cell concentration in
the culture medium approximately equal to 5000–10,000 CFU/mL at the start of each experiment.
The samples were incubated at 25 ◦C on a laboratory shaker (135 rpm) for 6 days. Analysis of the
extent of cell adhesion to the glass carriers was performed using luminometry. For luminometric tests,
the carrier was removed from the culture medium, rinsed with sterile distilled water and swabbed
using free ATP sampling pens (Merck, Germany). The measurements were reported in RLU/cm2 using
a HY-LiTE 2 luminometer (Merck, Germany) [47,48].

3.8. Biofilm Eradication by NAC and NAC-Grafted Polymers

Glass carriers with 10-day old biofilms were rinsed with sterile distilled water and transferred
into flasks containing 1% (w/v) NAC or its polymeric derivatives, NAC-Si-1 or NAC-Si-2. The control
sample was transferred directly into sterile water. The bacterial biofilms were then incubated at 25 ◦C
for 1 h using a laboratory shaker at 130 rpm. The glass plates were removed from the incubation
emulsions, rinsed with sterile distilled water and swabbed using sterile swabs for surface testing. The
number of cells in the biofilm that had formed on the glass surface was determined using luminometry.
The results were expressed in RLU/cm2 [23]. The surface was also analyzed using scanning electron
microscopy (SEM). Images were taken with a JSH 5500 LV scanning electron microscope (JEOL Ltd.,
Tokyo, Japan) in high-vacuum mode at an accelerated voltage of 10 kV or 15 kV. The samples were
splutter-coated with a fine layer of gold, about 20 nm thick, using an ion coating JFC 1200 apparatus
(JEOL Ltd., Japan) [49].

3.9. Statistical Methods for Biological Samples

Means with standard deviations were calculated from the data obtained from three independent
experiments. The mean values of the adhesion results were compared using one-way repeated
measures analysis of variance (ANOVA; OriginPro 8.1, OriginLab Corp., Northampton, MA, USA).
The results were compared to those for the control samples. Values with different letters presented in
the figures show statistically significant differences: a, p ≥ 0.05; b, 0.005 < p < 0.05; c, p < 0.005.

4. Conclusions

In this study, NAC was confirmed to have antimicrobial and antibiofilm activity against the
Gram-negative strains A. tumefaciens, A. hydrophila, C. freundii, E. soli, J. lividum and S. maltophilia,
which are increasingly identified as opportunistic pathogens. Interestingly, these bacterial strains
showed the ability to degrade NAC in water, suggesting that the action of NAC may be significantly
limited in this environment, due to bacterial enzymatic activities. It is therefore hypothesized that the
antibacterial and antibiofilm properties of NAC are multifactorial (i.e., dependent on the bacterial strain
and crucial conditions in the environment). New hybrid polymers obtained by grafting NAC onto
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poly(vinylsilsesquioxanes) and poly(methylvinylsiloxanes) showed rather low antibacterial activity.
However, they showed significant ability to eradicate mature biofilms. These novel antibacterial
polymers are promising agents for antibiofilm strategies in industrial installations of water.
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