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Abstract: Rapidly developing resistance against different therapeutics is a major stumbling block
in the standardization of therapy. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand
(TRAIL)-mediated signaling has emerged as one of the most highly and extensively studied signal
transduction cascade that induces apoptosis in cancer cells. Rapidly emerging cutting-edge research
has helped us to develop a better understanding of the signaling machinery involved in inducing
apoptotic cell death. However, excitingly, cancer cells develop resistance against TRAIL-induced
apoptosis through different modes. Loss of cell surface expression of TRAIL receptors and imbalance
of stoichiometric ratios of pro- and anti-apoptotic proteins play instrumental roles in rewiring the
machinery of cancer cells to develop resistance against TRAIL-based therapeutics. Natural products
have shown excellent potential to restore apoptosis in TRAIL-resistant cancer cell lines and in mice
xenografted with TRAIL-resistant cancer cells. Significantly refined information has previously been
added and continues to enrich the existing pool of knowledge related to the natural-product-mediated
upregulation of death receptors, rebalancing of pro- and anti-apoptotic proteins in different cancers.
In this mini review, we will set spotlight on the most recently published high-impact research related
to underlying mechanisms of TRAIL resistance and how these deregulations can be targeted by
natural products to restore TRAIL-mediated apoptosis in different cancers.
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1. Introduction

Cancer is a multifaceted and therapeutically challenging disease. Groundbreaking discoveries in
the past few decades have enabled us to develop a sharper understanding of intra- and inter-tumor
heterogeneity, loss of apoptosis, oncogenic overexpression, inactivation of tumor suppressors, and
deregulation of spatio-temporally controlled signal transduction cascades which play a central role
in cancer onset and progression [1–4]. Loss of apoptosis has been, and still remains, a subject of
intense discussion for basic and clinical scientists. Cutting-edge research has sequentially revealed
that the inhibition of cell death in combination with mitogenic oncogenes promoted cancer in animal
models [5]. There were some exciting developments which highlighted that many oncogenic pathways
inhibited apoptosis, whereas tumor suppressors (e.g., p53) played an instrumental role in the induction
of apoptosis [6]. More importantly, approval of BH3 (BCL-2 homology domain-3) mimetics by the
Food and Drug Administration (FDA) for the treatment of 17p-deleted CLL is a milestone in the field of
molecular therapy. Therefore, researchers have focused on the identification of pathways and proteins
that can efficiently induce apoptosis and simultaneously induce regression in xenografted mice. There
has always been a quest to identify molecules that can cause maximum damage to cancer cells while
leaving normal cells intact. In accordance with this concept, TRAIL (TNF-related apoptosis-inducing
ligand) has emerged as a scientifically approved protein that can induce apoptosis, specifically in cancer
cells. Initial findings reported by researchers were tremendously encouraging, and urged cotemporary
scientists to further dissect this intriguing and therapeutically important pathway. Consequently,
substantial excitement encompasses the premium potential of natural products to effectively restore
apoptosis in TRAIL-resistant cancers.

There are some detailed reviews about TRAIL-mediated signaling in different cancers, but we
have exclusively focused on the most recent evidence related to positive and negative regulators of
TRAIL-mediated signaling in this review. We have also summarized how different natural products
effectively restored apoptosis in TRAIL-resistant cancers. Before providing an overview of the natural
product-mediated regulation of the TRAIL-driven pathway, we will discuss some of the most important
advancements in the TRAIL-mediated signaling pathway.

2. Molecular Insights of TNF-Related Apoptosis-Inducing Ligand (TRAIL)-Mediated Signaling

Overwhelmingly, increasing and continuously upgrading discoveries in the field of apoptotic
cell death have enabled us to develop a better knowledge of this area. Researchers have extensively
characterized two primary death-signaling cascades, the extrinsic and intrinsic pathways. When
the signaling is “switched on”, it results in the activation of downstream effector molecules for both
pathways that mediate apoptosis. Caspases belong to a group of cysteine proteases which proteolytically
process a variety of cytoplasmic and nuclear substrates [7]. The extrinsic, or death -receptor-mediated,
pathway is activated and functionalized through the binding of death ligands such as TRAIL, TNFα
(tumor necrosis factor α) and Fas ligand (FasL) to specific receptors (e.g., TRAILR1/DR4, TRAIL2/DR5,
TNFR, Fas). Ligand–receptor interaction results in the recruitment of the cytoplasmic adaptor protein
FADD (Fas-associated protein with death domain) to death domains present in the cytoplasmic
segment of the death receptor (shown in Figure 1). Death domains present in death receptors served as
recruiting modules and heterodimerized with the death domains of client proteins. FADD contains
death domains that can link the death receptor to procaspase-8 to form a death-inducing signaling
complex (DISC).



Int. J. Mol. Sci. 2019, 20, 2010 3 of 13

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 3 of 12 

 

multiple inhibitors of apoptotic proteins (IAPs): XIAP, c-IAP1, and c-IAP2. Therefore, it seems clear 

that TRAIL-mediated signaling following the activation of caspase-8 is dichotomously branched. 

Either caspase-8 can activate its downstream effector caspases or it can proteolytically process the 

Bid protein to initialize the intrinsic pathway that routes through mitochondria. It appears to be 

important that the TRAIL-induced intracellular signaling pathway is not as simple as previously 

surmised. A wealth of information points towards myriad signaling pathways which crosstalk with 

different proteins of the TRAIL-mediated signaling pathway, and play a critical role. Therefore, we 

partitioned our review into negative and positive regulators of TRAIL-mediated signaling to 

comprehensively analyze the most recent breakthroughs made in uncovering mechanisms that 

inhibit or potentiate TRAIL-triggered apoptotic cell death.  

 

Figure 1. TRAIL (TNF-related apoptosis-inducing ligand)-mediated signaling. TRAIL transduces the 

signals intracellularly through death receptors. Death-inducible signaling complex (DISC) is formed 

by the interaction of the death receptor Fas-associated protein with death domain (FADD) and 

pro-caspase-8. Formation of DISC is necessary for the activation of caspase-8. Caspase-8 activates its 

downstream effector caspase-3. However, caspase-8 may also proteolytically process Bid to initialize 

the intrinsic pathway. The intrinsic pathway is triggered following entry of truncated Bid into 

mitochondria. Cytochrome c and SMAC are released from mitochondria and an apoptosome was 

formed in the cytoplasm by the assembly of apoptotic protease activating factor (APAF), cytochrome 

c, and pro-caspase-9. The apoptosome is necessary for the activation of caspase-9 and it can further 

activate caspase-3 to induce apoptosis in cancer cells. In healthy cells, APAF is present as an 

autoinhibitory monomer. However, mitochondrial outer membrane permeabilization (MOMP ) and 

subsequent release of cytochrome c unlocks APAF. 

3. Negative Regulators of TRAIL-Mediated Signaling 
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pathway. The overexpression and stabilization of anti-apoptotic proteins is necessary to induce 

Figure 1. TRAIL (TNF-related apoptosis-inducing ligand)-mediated signaling. TRAIL transduces
the signals intracellularly through death receptors. Death-inducible signaling complex (DISC) is
formed by the interaction of the death receptor Fas-associated protein with death domain (FADD) and
pro-caspase-8. Formation of DISC is necessary for the activation of caspase-8. Caspase-8 activates its
downstream effector caspase-3. However, caspase-8 may also proteolytically process Bid to initialize
the intrinsic pathway. The intrinsic pathway is triggered following entry of truncated Bid into
mitochondria. Cytochrome c and SMAC are released from mitochondria and an apoptosome was
formed in the cytoplasm by the assembly of apoptotic protease activating factor (APAF), cytochrome c,
and pro-caspase-9. The apoptosome is necessary for the activation of caspase-9 and it can further activate
caspase-3 to induce apoptosis in cancer cells. In healthy cells, APAF is present as an autoinhibitory
monomer. However, mitochondrial outer membrane permeabilization (MOMP) and subsequent release
of cytochrome c unlocks APAF.

Activation of the mitochondrial or intrinsic pathway is induced either through radiation or
chemotherapy. Caspase-8-mediated truncation of Bid also played a dominant role in activating
the mitochondrially driven pathway. Translocation of truncated Bid into mitochondria caused
mitochondrial permeabilization and release of apoptogenic proteins, including cytochrome c and
second mitochondrial-derived activator of caspases (SMAC) from the mitochondria into the cytosol.
Cytosolic cytochrome c interacted with apoptotic protease activating factor-1 (APAF1) and formed a
multimeric complex termed the apoptosome (shown in Figure 1). The apoptosome recruited, cleaved,
and activated caspase-9 and -3. SMAC promoted apoptosis by binding to and degrading multiple
inhibitors of apoptotic proteins (IAPs): XIAP, c-IAP1, and c-IAP2. Therefore, it seems clear that
TRAIL-mediated signaling following the activation of caspase-8 is dichotomously branched. Either
caspase-8 can activate its downstream effector caspases or it can proteolytically process the Bid protein
to initialize the intrinsic pathway that routes through mitochondria. It appears to be important that the
TRAIL-induced intracellular signaling pathway is not as simple as previously surmised. A wealth
of information points towards myriad signaling pathways which crosstalk with different proteins of
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the TRAIL-mediated signaling pathway, and play a critical role. Therefore, we partitioned our review
into negative and positive regulators of TRAIL-mediated signaling to comprehensively analyze the
most recent breakthroughs made in uncovering mechanisms that inhibit or potentiate TRAIL-triggered
apoptotic cell death.

3. Negative Regulators of TRAIL-Mediated Signaling

Because TRAIL-based therapies have entered into various phases of clinical trials, it is essential
to drill down deep into TRAIL-mediated signaling and further unfold the mysterious aspects of
this pathway. The overexpression and stabilization of anti-apoptotic proteins is necessary to induce
resistance against TRAIL. Various lines of evidence have revealed that cancer cells developed resistance
against TRAIL mainly through the overexpression and stabilization of anti-apoptotic proteins. We
have partitioned this section into modes and strategies used by cancer cells to develop resistance
against TRAIL. (1) Stabilization of anti-apoptotic proteins; (2) Noncoding RNAs also play their role in
rewiring cell-signaling pathways to potentiate TRAIL resistance; (3) Ubiquitination is a very critical
mechanism in the context of anti-apoptotic and pro-apoptotic protein degradations. It has been seen
that pro-apoptotic proteins are degraded but anti-apoptotic proteins escape from these death-tagging
molecules in TRAIL-resistant cancer cells; (4) Recent discoveries have unmasked unique locations
and functionalities of death receptors. Death receptors not only activate classical pathways to induce
apoptosis, but their movement has also been tracked in the nucleus to modulate miRNA biogenesis.
Therefore, we will discuss these interesting topics in the upcoming section and try to critically evaluate
their implications.

GADD34 (growth arrest and DNA damage-inducible protein 34) overexpression resulted in an
increase in MCL-1 levels. Knockdown of GADD34 resulted in marked reduction in MCL-1 levels in
both SMMC-7721 and HepG2 cells [8]. GADD34 suppressed proteasomal degradation of MCL-1 mainly
through promoting extracellular signal-regulated kinase (ERK1/2)-mediated phosphorylation of proline
(P), glutamic acid (E), serine (S), and threonine (T) (PEST) domains in MCL-1 (shown in Figure 2). TNF
receptor associated factor 6 (TRAF6) played a central role in directing ERK1/2 phosphorylation and the
enhancement of the stability of MCL-1 levels in HepG2 cells. GADD34 knockdown exerted repressive
effects on the levels of MCL-1 in SMMC-7721 and HepG2 cells. Furthermore, TRAF6 knockdown also
enhanced TRAIL-mediated apoptosis, as evidenced by considerably reduced levels of p-ERK1/2 and
MCL-1 [8].

CIB1 (calcium and integrin-binding protein 1) played a contributory role in the development of
resistance against chemotherapeutics and TRAIL [9]. Intriguingly, expression levels of DR5 were noted
to be dramatically enhanced in CIB1-depleted MDA-436 breast cancer cells [9]. These findings appear
to be exciting, but scientists have not provided a comprehensive pathway opted by CIB1 to inhibit DR5.
There is an urgent need to put the missing pieces of information together to uncover the underlying
mechanisms which inhibit, repress, or degrade death receptors.

Ovarian adenocarcinoma-amplified lncRNA (OVAAL) has been shown to play an instrumental
role in the development of resistance against TRAIL [10]. OVAAL interacted with STK3
(serine/threonine-protein kinase-3), which consequently enhanced the structural association between
Raf-1 and STK3. Studies have shown that the ternary complex OVAAL/STK3/Raf-1 activated rapidly
accelerated fibrosarcoma/mitogen-activated protein kinase kinase (RAF/MEK/ERK signaling pathway
and promoted Mcl-1-mediated survival and c-Myc-driven proliferation of the ME4405 and HCT116 cells.
c-Myc has also been noted to transcriptionally upregulate OVAAL (Figure 2). However, expectedly,
TRAIL-mediated apoptosis was considerably enhanced in OVAAL-silenced ME4405 cells [10]. These
findings clearly indicate that non-coding RNAs stabilize anti-apoptotic proteins via the rewiring of
signaling pathways.
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Figure 2. Negative regulation of the TRAIL-driven pathway. (A) OVAAL, a long non-coding RNA, has
been shown to promote interaction between STK3 and Raf-1. STK3 and Raf-1 work synchronously
and activate the MEK/ERK pathway; (B) ERK has also been shown to stabilize MCL-1. ERK is also
activated by TRAF6 and GADD34 to stabilize MCL-1. OVAAL is transcriptionally upregulated by
c-Myc; (C) Post-translational modifications have been shown to effectively regulate caspase-8 and
FADD. FADD is negatively regulated by C terminus HSC70-interacting protein (CHIP); (D) Caspase-8
is negatively regulated by Cullin-7; (E) ITCH involved in the negative regulation of c-FLIP.

Detailed mechanistic insights revealed that cytoplasmic PARP-1 was recruited into the
TRA-8-activated DISC and sustained Src-mediated pro-survival signals [11]. However, the knockdown
of PARP-1 not only interfered with the activation of Src but also improved TRA-8-mediated apoptotic
cell death in BxPc-3 and MiaPaCa-2 cells [11].

Cullin-7 has recently been shown to physically interact with caspase-8 [12]. CUL7 prevented the
activation of caspase-8 by promoting post-translational modifications of caspase-8 by the addition of
non-degradative polyubiquitin chains at the 215th lysine (shown in Figure 2). Knockdown of CUL7
re-sensitized cancer cells to TRAIL-triggered apoptotic cell death. Tumor growth was significantly
inhibited in mice xenografted with CUL7-silenced MDA-MB-231 cells [12]. CHIP (C terminus
HSC70-interacting protein) induced the K6-linked polyubiquitylation of FADD and suppressed the
formation of the DISC (Figure 2) [13].

Monocyte chemotactic protein-induced protein-1 (MCPIP1), a deubiquitinating enzyme, promoted
the lysosomal degradation of DR5 [14]. MCPIP1 knockdown facilitated DISC formation [14]. At a
more basic level, it would be extremely interesting to see how different proteins sort death receptors as
well as pro-apoptotic and anti-apoptotic proteins for degradation in different cancers.

Karyopherin β1 (KPNB1) played an instrumental role in the nuclear import of DR5. KPNB1
transported DR5 into the nucleus, while inhibition of KPNB1 restored DR5 levels on the cell surface of
glioblastoma cells [15]. These findings are exciting, and it needs to be seen how DR5 behaves in the
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nucleus. Certain hints have emerged which have scratched the surface of regulatory role of DR5 in
the biogenesis of microRNAs. Nuclear DR5 inhibited the maturation of a miRNA, let-7, in pancreatic
cancer cells and increased their proliferation abilities [15]. Astonishingly, two functional nuclear
localization signal (NLS) sequences have previously been identified in DR5 [16]. Additionally, it was
shown that importin-β1 interacted with DR5 and shipped it to the nucleus in HeLa cells [16]. It will not
be invalid if we say that shuttling of death receptors in the nucleus is the “tip of the iceberg” and needs
detailed and in-depth research. At the moment, we have a segmented view about the internalization
of death receptors from the cell surface and “moonlight activity” of death receptors in the nucleus.

It has recently been convincingly revealed that circulating tumor cells (CTCs) demonstrated
rapid autophagic flux, characterized by an accumulation of autophagosome organelles [17]. Notably,
there was substantial evidence highlighting the presence of DR5 in the autophagosomes, followed
by degradation by lysosomes [17]. Overall, these findings clearly suggest that CTCs escape from
TRAIL-mediated killing activities by reducing the cell surface expression of DR5.

4. Positive Regulators of TRAIL-Mediated Signaling

RUNX3 (RUNT-related transcription factor-3) played a central role in stimulating the expression
of DR5 [18]. DR5 was markedly increased in RUNX3-overexpressing HT29 cells. RUNX3-mediated
reactive oxygen species (ROS) can lead to an enhanced ER stress in cancer cells. Therefore, the
overexpression of RUNX3 induced DR5 via IRE1α-JNK-CHOP pathway. Treatment of the cells with an
ROS scavenging chemical, N-acetyl-l-cysteine, severely compromised TRAIL-mediated apoptosis in
RUNX3-overexpressing cancer cells [18]. Superoxide dismutases (SODs) constitute the antioxidant
defense grid. RUNX3 has been shown to transcriptionally repress SOD3 to induce ROS generation
and upregulate DR5. Mechanistically it has been shown that RUNX3 occupied RUNX3 binding sites
present within the promoter region of SOD3 and inhibited its transcription [18]. The findings of this
study are exciting, and future studies must converge on the analysis of the role of RUNX3 in different
cancers. It will be informative to see if RUNX3 is functionally active in other TRAIL-resistant cancers.

Fucosylation is a post-translational modification of critical importance that plays a crucial role
in improving TRAIL-mediated apoptosis [19]. Stably and transiently overexpressed FUT3 and FUT6
dramatically enhanced TRAIL-mediated apoptosis in HCT116 and DLD-1 cells. Activation and cleavage
mechanisms of caspase-8 and PARP-1 were noted to be more pronounced in cells overexpressing FUT6
and FUT3. More importantly, a significantly higher fraction of signalosomes was noticed, as evidenced
by highly increased DISC-associated caspase-8 complexes in FUT3-overexpressing cells [19]. Harakiri
(HRK), a BH3-only protein of the Bcl-2 family, has been shown to promote TRAIL-mediated apoptosis
in glioblastoma cells [20].

ITCH, a homologous to the E6AP carboxyl terminus (HECT) domain E3 ligase, is reportedly
involved in the negative regulation of c-FLIP [21]. JNK phosphorylation sites have been mapped in the
protein sequence of ITCH. Levels of phosphorylated ITCH (p-ITCH) were found to be enhanced in
MCF-7- and T47D-derived tamoxifen-resistant and faslodex-resistant cells. Moreover, inhibition of
JNK resulted in the inactivation of ITCH and reduced p-ITCH levels, and consequently c-FLIP levels
were restored in cancer cells [21,22]. Therefore, in future studies it will be paramount to investigate if
additional kinases are involved in the activation of ITCH and if ITCH can post-translationally modify
various other negative regulators of apoptosis in different cancers.

5. Natural-Product-Mediated Restoration of TRAIL-Mediated Apoptosis in Different Cancers

Natural products have captivated tremendous attention because of their premium pharmacological
properties. There has been a longstanding quest to identify products that can be combined with TRAIL
to maximize the apoptosis in TRAIL-resistant cancers. Therefore, in this specific section, we provide
an update about products obtained from natural sources which can restore apoptosis in resistant
cancer cells.
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Auriculasin, a prenylated isoflavone, was highly effective when used in combination with
TRAIL [23]. Auriculasin and TRAIL combinatorially increased the expression of Bax, AIF, endo
G, and cytochrome c. Auriculasin triggered the upregulation of DR5 but levels of DR4 remained
unchanged [23]. Cannabidiol, pharmacologically potent cannabinoid isolated from the Cannabis plant,
induced the upregulation of the protein and cell surface expression of TRAIL-R2/DR5 [24].

Andrographolide isolated from Andrographis paniculata enhanced the expression of DR4 and DR5
mainly through increasing the levels of p53 [25]. As expected, andrographolide-mediated upregulation
of DR4 and DR5 was not observed in p53 knockdown T24 cells [25].

Periplocin obtained from Cortex Periplocae led to a dose-dependent enhancement of the expression
levels of DR4 and DR5 on the surface of MGC-803 and SGC-7901 cells [26]. Periplocin and TRAIL
combinatorially enhanced the levels of p-ERK1/2 and EGR1 (early growth response-1). However, as
expected, treatment with an inhibitor of MEK (PD98059) severely interfered with the upregulation of
DR4 and DR5 in cancer cells. EGR1 overexpression induced the stimulation of DR4 and DR5, while
EGR1 knockdown exerted repressive effects on the expression levels of DR4 and DR5 [26]. Weights
and volumes of tumors from mice treated combinatorially with TRAIL and periplocin were found to
be significantly reduced as compared to mice treated with periplocin or TRAIL alone [26].

In combination with TRAIL, the sesquiterpene coumarin galbanic acid, worked effectively against
non-small-cell lung cancer cells [27]. Galbanic acid and TRAIL induced the upregulation of DR5 and
simultaneously suppressed DcR1. Galbanic acid and TRAIL attenuated the expression of Bcl-2 (B-cell
lymphoma-2), Bcl-xL (B-cell lymphoma-extra-large) and XIAP (X-linked inhibitor of apoptotic proteins)
in H460/R cells (Figure 3) [28].
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Diallyl disulfide (DADS) and TRAIL jointly repressed Bcl-2 in colorectal cancer cells [28].
Bufalin, a cardiotonic steroid isolated from the secretion of parotid glands and skin of Chansu
and black-spectacled toad has recently been shown to restore apoptosis in TRAIL-resistant cancer
cells by the regulation of pro- and anti-apoptotic proteins [29]. Bufalin increased ER stress associated
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proteins (GRP78, caspase-4, IRE-1α, IRE-1β, ATF-6α, GADD153, and Calpain 1). Bufalin increased Bax;
cytochrome c; caspase-3, -8, and -9; AIF; and Endo G, but simultaneously reduced Bcl-2 in NPC-TW
076 cells. Furthermore, bufalin elevated the expression levels of TRAIL, FADD, DR4, and DR5 [29].

Shikonin is a medicinally important product isolated from the root of Lithospermum erythrorhizon
that was shown to work effectively with TRAIL against A549 cells [30]. Shikonin and TRAIL
synergistically reduced Mcl-1, Bcl-2, Bcl-xL, XIAP, and c-FLIP and upregulated the levels of Bid
(Figure 3) [30]. Celastrol, a triterpenoid isolated from Tripterygium wilfordii worked effectively with
TRAIL and inhibited autophagic influx in A549 cells [31].

Remarkable advancements have been made in the molecular biology of autophagy, and scientists
are focusing on solving questions regarding how this pathway can be harnessed to improve clinical
outcomes [32,33]. In 2016 the scientific community acknowledged the true potential of autophagy in
health and disease, and Yoshinori Ohsumi was awarded the Nobel Prize for Physiology or Medicine
for his outstanding work, which elevated our understanding about intricate mechanisms of autophagy
to the next level. Autophagy plays a central role in the maintenance of homeostasis. Autophagy begins
when double-membrane autophagosomes engulf fractions of the cytoplasm, which is followed by the
fusion of these vesicles with lysosomes, and autophagic contents are consequently degraded [33,34].
Phosphatidylethanolamine (PE) is conjugated to cytoplasmic LC3I to generate the lipidated form,
LC3II, and consequently LC3II is incorporated into the growing membrane [34].

Celastrol treatment induced an increase in the levels of LC3II and p62. However, authors did
not report the effects induced by combinatorial treatment with celastrol and TRAIL [31]. It was only
suggested that celastrol and TRAIL synergistically enhanced ROS generation in cancer cells. Various
other natural products, particularly 6-shogaol, were also found to increase the levels of LC3II and p62
in Huh7 cells [35].

2-Deoxy-d-glucose potentiated TRAIL-triggered apoptotic cell death, in part through suppressing
JNK-mediated cytoprotective autophagic signaling in SGC7901 and MGC803 cells [36]. Chloroquine
and TRAIL synergistically enhanced LC3II levels in pancreatic cancer cells [37].

Excitingly, flow cytometry analyses revealed that toosendanin induced a reduction of membrane
DR5 [38]. However, these effects were prevented by inhibitors of autophagy (3-methyladenine).
3-Methyladenine increased the basal level of membrane DR5, which clearly indicated that autophagy
centrally regulated the membrane distribution of DR5 [38,39].

It is important to mention that autophagy has a dualistic role in TRAIL-mediated apoptosis. There
is also sufficient evidence related to the positive regulation of TRAIL-mediated apoptosis by autophagy.
Different natural products have also been shown to potentiate TRAIL-mediated apoptosis through the
induction of autophagy. Ginsenosides are biologically active constituents of ginseng, and potentiate
TRAIL-mediated apoptosis through the induction of autophagy [40]. Juglanin also induced autophagy
and consequently enhanced TRAIL-mediated apoptosis in cancer cells. Juglanin induced the regression
of tumors in mice subcutaneously injected with A549 cells [41].

Ursolic acid stimulated the expression of DR4 and DR5 and simultaneously downregulated
c-FLIPL and re-sensitized TRAIL-resistant triple-negative breast cancer cells to apoptosis [42].

Cepharanthine, a biscoclaurine alkaloid isolated from Stephania cepharantha, has been shown
to be effective against renal carcinoma cells [43]. Cepharanthine time-dependently induced
the downregulation of survivin protein levels. It has been mechanistically demonstrated that
cepharanthine promoted c-FLIP degradation. It was observed that use of proteasome inhibitor
reversed cepharanthine-induced c-FLIP degradation. STAMBPL1 is one of the JAB1/MPN/Mov34
metalloenzymes (JAMM) deubiquitin enzymes, and is reportedly involved in the regulation of
different processes. Cepharanthine dose-dependently downregulated STAMBPL1 and increased
USP53 expression. Ectopic expression of STAMBPL1 significantly inhibited cepharanthine-induced
reduction in the levels of survivin [43]. Overall, these findings clearly suggest that cepharanthine
enhances TRAIL-induced apoptosis by promoting the degradation of survivin through STAMBPL1
downregulation in renal carcinoma cells (Figure 3).
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C-27-carboxylated oleanolic acid derivatives have been shown to stimulate the expression of DR5
through CHOP [44]. Treatment of glioma U251MG and LN428 cells with 3β-hydroxyolean-12-en-27-oic
acid (C27OA-1) induced an increase in the expression of CHOP. C27OA-1 considerably activated
p38 and ERK (extracellular signal regulated kinase). Treatment of U251MG cells with p38 inhibitors
(SB203580) severely abrogated C27OA-1-mediated increase in expression levels of CHOP and DR5 [44].

Lambertianic acid is a biologically active product isolated from Pinus koraiensis that was efficient
against non-small-cell lung cancer. Lambertianic acid and TRAIL upregulated DR4. Furthermore,
lambertianic acid and TRAIL markedly reduced p-NF-κB, p-IκB, and c-FLIP in A549 and H1299
cells [45].

6. Concluding Remarks

The cancer genome atlas (TCGA) network groups have comprehensively reported the genomic
landscape for over 30 different cancer types [46]. More importantly, many of these malignancies have a
subset of cases which harbored genomic alterations in components of extrinsic or intrinsic pathways,
including overexpression and amplification of FADD and IAP (inhibitor of apoptotic proteins), as well
as the identification of mutations in caspase-encoding genes [47,48].

It seems surprising to note that although scientists have uncovered tremendous information
about the TRAIL-mediated signaling pathway, we have not sufficiently investigated the
natural-product-mediated regulation of the TRAIL-driven pathway. Even though we have seen
that natural products triggered the upregulation of death receptors and induced the re-balancing of
pro- and anti-apoptotic proteins, we still have unanswered questions and visible knowledge gaps
in our understanding related to the realization of products derived from medicinally important
natural sources.

Different ubiquitin ligases (e.g., MARCH8) have been shown to ubiquitinate DR4 at 273rd lysine
and induce degradation [49]. CHIP (C terminus HSC70-interacting protein) induced the K6-linked
polyubiquitylation of FADD and suppressed the formation of the DISC [13]. CUL7 prevented the
activation of caspase-8 mainly by promoting the modification of caspase-8 with non-degradative
polyubiquitin chains [12]. However, the natural-product-mediated targeting of ubiquitin ligases to
restore TRAIL-mediated apoptosis is an insufficiently studied area of research. There is a need to focus
on the ubiquitin-ligase-targeting abilities of natural products which can later be used effectively in
TRAIL-resistant cancers.

Another important and exciting area of research that needs detailed research is the microRNA
regulation of the TRAIL-driven pathway. Rapidly emerging scientific reports have started to shed light
on the central role of microRNAs in the modulation of the TRAIL-mediated pathway. Certain pieces of
evidence have suggested that maritoclax, isolated from marine bacteria, promoted miR-708-mediated
targeting of c-FLIP and restored apoptosis [50]. Interestingly, α-mangostin, a xanthone isolated from
the mangosteen fruit, restored apoptotic death in TRAIL-resistant colon cancer DLD-1 cells [51].
A-Mangostin effectively promoted DR5 oligomerization. A-Mangostin exerted repressive effects on
miR-133b and stimulated the expression of DR5 [51].

However, we have not yet witnessed considerable experimental work related to the
natural-product-mediated regulation of miRNAs to restore apoptosis in TRAIL-resistant cancers.
Likewise, different xenografted mice model studies are necessary for an effective evaluation of the
potential of natural products in inducing tumor regression.
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Abbreviations

APAF1 apoptotic protease activating factor-1
Bcl-2 B-cell lymphoma-2
Bcl-xL B-cell lymphoma-extra-large
CHIP C terminus HSC70-interacting protein
CIB1 calcium and integrin-binding protein 1
CTCs circulating tumor cells
DISC death-inducing signaling complex
EGR1 early growth response-1
FADD Fas-associated protein with death domain
GADD growth arrest and DNA damage-inducible protein
IAP inhibitor of apoptotic proteins
OVAAL ovarian adenocarcinoma-amplified lncRNA
RUNX3 RUNT-related transcription factor-3
SMAC second mitochondrial-derived activator of caspases
SOD superoxide dismutase
TNFα tumor necrosis factor α
TRAIL TNF-related apoptosis-inducing ligand
XIAP X-linked inhibitor of apoptotic proteins
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