
 International Journal of 

Molecular Sciences

Article

miR-128 Restriction of LINE-1 (L1) Retrotransposition
Is Dependent on Targeting hnRNPA1 mRNA

Lianna Fung 1, Herlinda Guzman 1, Evgueni Sevrioukov 1, Adam Idica 1, Eddie Park 2,
Aurore Bochnakian 1, Iben Daugaard 1, Douglas Jury 1, Ali Mortazavi 2, Dimitrios G. Zisoulis 1

and Irene M. Pedersen 1,*
1 Department of Molecular Biology and Biochemistry, Francisco J. AyalaSchool of Biological Sciences,

University of California, Irvine, CA 92697, USA; liannaf@uci.edu (L.F.); hguzman@uci.edu (H.G.);
esevriou@uci.edu (E.S.); akidica@gmail.com (A.I.); aurore.bochnakian@gmail.com (A.B.);
ibenld@gmail.com (I.D.); djury@uci.edu (D.J.); dzisoulis@gmail.com (D.G.Z.)

2 Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA;
eddiep@ucla.edu (E.P.); ali.mortazavi@uci.edu (A.M.)

* Correspondence: imp@uci.edu; Tel.: +949-824-2587

Received: 14 March 2019; Accepted: 19 April 2019; Published: 21 April 2019
����������
�������

Abstract: The majority of the human genome is made of transposable elements, giving rise to
interspaced repeats, including Long INterspersed Element-1s (LINE-1s or L1s). L1s are active
human transposable elements involved in genomic diversity and evolution; however, they can
also contribute to genomic instability and diseases. L1s require host factors to complete their life
cycles, whereas the host has evolved numerous mechanisms to restrict L1-induced mutagenesis.
Restriction mechanisms in somatic cells include methylation of the L1 promoter, anti-viral factors and
RNA-mediated processes such as small RNAs. microRNAs (miRNAs or miRs) are small non-coding
RNAs that post-transcriptionally repress multiple target genes often found in the same cellular
pathways. We have recently established that miR-128 functions as a novel restriction factor inhibiting
L1 mobilization in somatic cells. We have further demonstrated that miR-128 functions through a
dual mechanism; by directly targeting L1 RNA for degradation and indirectly by inhibiting a cellular
co-factor which L1 is dependent on to transpose to new genomic locations (TNPO1). Here, we
add another piece to the puzzle of the enigmatic L1 lifecycle. We show that miR-128 also inhibits
another key cellular factor, hnRNPA1 (heterogeneous nuclear ribonucleoprotein A1), by significantly
reducing mRNA and protein levels through direct interaction with the coding sequence (CDS) of
hnRNPA1 mRNA. In addition, we demonstrate that repression of hnRNPA1 using hnRNPA1-shRNA
significantly decreases de novo L1 retro-transposition and that induced hnRNPA1 expression enhances
L1 mobilization. Furthermore, we establish that hnRNPA1 is a functional target of miR-128. Finally,
we determine that induced hnRNPA1 expression in miR-128-overexpressing cells can partly rescue
the miR-128-induced repression of L1′s ability to transpose to different genomic locations. Thus, we
have identified an additional mechanism by which miR-128 represses L1 retro-transposition and
mediates genomic stability.
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1. Introduction

Repetitive sequences make up greater than half of the human genome, of which Long INterspaced
elements-1 (LINE-1 or L1) account for approximately 17% [1–3]. Although the majority of L1 elements
are truncated and inactive, the average human genome retains 80–100 retrotransposition-competent L1
copies. The intact L1 element is approximately 6 kilobase pairs (kb) in length. L1 harbors a 5′UTR,
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with promoter activity in both the sense and anti-sense directions [4–6]. The open-reading frames
encode ORF0, ORF1 and ORF2, which are followed by a short 3′UTR. ORF1 encodes an RNA-binding
protein (40 kDa) with nucleic acid chaperone activity, and ORF2 encodes an endonuclease and reverse
transcriptase protein, which is 150 kDa in size [7–9]. ORF0 is transcribed in the antisense direction
and encodes a protein. However, the mechanism of ORF0 remains unknown [10]. The L1 life cycle
is dependent on replicating the L1 element using a “copy and paste” mechanism with an RNA
intermediate [11,12]. Integration of L1 at new locations in the genome generates mutations that
can create new genes or affect gene expression [13,14]. L1 retro-transposition has been associated
with a variety of diseases including hemophilia, cancer and developmental abnormalities [2,15–18].
As a result, multiple mechanisms have evolved to regulate L1 activity. In germ cells, specific small
RNA subtypes (piRNAs) efficiently counteract L1 activity [19,20]. In somatic cells, L1 transcription
is effectively inhibited by DNA methylation of the L1 promoter [21,22]. In hypomethylated cell
populations such as cancer cells or pluripotent stem cells, the L1 promoter is often de-repressed
allowing for L1 retrotransposition [22–24]. Under these conditions, other mechanisms of L1 restriction
are crucial, including suppression by DNA and RNA editing proteins, including AID, APOBECs and
ADAR [25,26], as well as the microprocessor [27].

The human transcriptome is subjected to miR regulation, emphasizing the importance of the
post-transcriptional control of gene regulation by non-coding RNA (ncRNA) in regulating multiple
genetic pathways [28,29]. miRs are endogenously encoded 21–23-nucleotide (nt) RNAs that regulate
the expression of mRNAs containing complementary sequences. After transcription and processing
in the nucleus, the mature miR is loaded onto specific Argonaute (Ago) proteins—referred to as an
miR-induced silencing complex (miRISC)—in the cytoplasm. The miRISC then binds to partially
complementary mRNA sequences and mediates mRNA degradation or translational inhibition [29,30].
Complementarity between the miR (5′ position 2–7) and an mRNA target “seed” site usually results in
reduced protein expression through a variety of mechanisms that involve mRNA degradation and
translational repression [30,31].

We have previously established that miR-128 represses L1 retrotransposons in somatic cells
through a dual mechanism, namely by direct targeting of L1 ORF2 mRNA and indirectly through the
regulation of a required cellular co-factor, Transportin 1 (TNPO1) [32,33]. It is well established that
miRs repress multiple cellular mRNAs by binding to homologous target seed sequences; the proteins
of these target mRNAs frequently function in the same pathway, suggesting that miRs act to fine-tune
specific cellular networks [34–37].

In this study, we wished to identify additional cellular targets of miR-128 that may be involved in
the L1 retrotransposition pathway. Here, we report that miR-128 also represses retrotransposition by
targeting a key cellular co-factor required for L1 retrotransposition, namely hnRNPA1. hnRNPA1 is
one of the most abundant proteins in the nucleus and is expressed in all cell types and tissues [38]. The
hnRNPA1 proteins are involved in both DNA and RNA metabolism including genomic stability and
telomere binding [39,40]. hnRNPA1 is bound to poly (A) sequences of RNA in both the cytoplasm
and nucleus [41] and accompanies mature transcripts through the Nuclear Pore Complex, supporting
its proposed role in mRNA shuttling [42]. The nuclear localization of hnRNPA1 depends on a 38 aa
long nuclear localization sequence known as M9 [43–45], which binds to TNPO1 to mediate shuttling
through the nuclear pore complex [40,46–50]. It has been described that hnRNPA1 interacts with L1
ORF1p through an RNA bridge, as part of the L1-RNP complex [51]. In this study, we show that
miR-128 significantly decreases hnRNPA1 protein levels, by directly binding to hnRNPA1 mRNA,
and that miR-128-induced L1 restriction is partly dependent on targeting hnRNPA1. Thus, we have
discovered another key player in the L1 life cycle, which is subjected to miR-128 regulation.
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2. Results

2.1. Identification of miR-128 Targets Which Function As Co-Factors for L1 Retrotransposition

We have previously demonstrated that miR-128 directly targets L1 RNA and represses de novo
retrotransposition and genomic integration in somatic cells [32]. Furthermore, we recently determined
that miR-128 also regulates cellular co-factors, some of which L1 may be dependent on. It has previously
been debated whether L1-RNP is only dependent on cell division to access host DNA [52–54]. However,
the hypothesis could not account for how L1 integrates back into the genome in non-dividing cells such
as neurons [55]. For this reason, we were excited to determine that miR-128 also targets the nuclear
import factor Transportin 1 (TNPO1), resulting in reduced nuclear import of L1 Ribonuclear Protein
(L1-RNP) complexes [33]. However, as TNPO1 does not contain a nuclear localization signal (NLS),
many questions were left unanswered.

In order to identify additional miR-128 targets potentially involved in the regulation of L1
retrotransposition, and add to our understanding of the L1 life cycle, we performed a screen for
potential miR-128 targets utilizing DGCR8−/− mouse embryonic stem cells (mESCs) (a kind gift from
Dr. Blelloch). The DGCR8 knockout ES cells were generated by removing exon 3, resulting in the
formation of several premature stop codons downstream of the targeted region). DGCR8 is a critical
component of the microprocessor involved in processing pri-miRs into their mature forms [56]. In
DGCR8−/− mESC cells, pri-miR transcripts cannot be further processed by the microprocessor and
are not loaded into a miRISC complex [57]. As a result, the DGCR8−/− system is free of mature,
biologically active canonical miRs. We transfected DGCR8−/− mESCs with miR controls or miR-128
in triplicate cultures and harvested cells after 12 h in order to enrich for primary target mRNAs, as
opposed to studying secondary effects of miR-128. Two replicates of each triplicate were selected
and cDNA libraries were generated using the Smart-seq2 protocol [58]. The libraries were sequenced
as 43 bp paired-end reads. The ultrafast universal RNA-seq aligner STAR (Spliced Transcripts
Alignment to a Reference) was used to align the reads on to the mm9 genome [59]. RSEM (RNA-Seq by
Expectation-Maximization) [60] was used to quantitate the gene expression and EBSeq [61] was used to
identify differentially expressed genes. We then performed overlay analysis of the identified miR-128
targets with previously reported results from one proteomic screen identifying L1 ORF1p-encoded
protein (ORF1p) interaction partners [51], see Supplementary Table S1. Interestingly, several members of
the hnRNP (heterogeneous nuclear ribonucleoprotein) family were identified (hnRNPA1, hnRNPA2B1,
hnRNPK, hnRNPL and hnRNPU) as potential miR-128 targets and ORF1p interaction partners, see
Figure 1A, shown in grey. To validate the findings of the primary screen, we generated lentiviruses
containing plasmids encoding miR-128, anti-miR-128 or scramble miR control. HeLa cells were
transduced and selected with puromycin to generate stable miR-128, anti-miR-128 or miR control lines.
We included analysis of TNPO1, which we have previously validated to be a miR-128 target [33]. The
relative mRNA expression of hnRNPA1, hnRNPA2B1, hnRNPK, hnRNPL and hnRNPU was measured
by qRT-PCR, see Figure 1B. hnRNPA1 mRNA were significantly reduced in cells overexpressing
miR-128 relative to miR controls, see Figure 1B, top left panel. In cells where endogenous miR-128 was
neutralized by anti-miR-128, hnRNPA1, hnRNPA2B1, hnRNPK and hnRNPU mRNA were significantly
increased, see Figure 1B. The finding that hnRNPA1 mRNA is significantly decreased or increased
corresponding to overexpression or neutralization of miR-128, respectively, suggests that the effect
of miR-128 on hnRNPA1 mRNA levels is specific. As hnRNPA1 plays an important role in nuclear
transport by interacting with TNPO1 and is known to interact with ORF1p [43–51,62], we decided
to focus on the regulation of hnRNPA1 and examine if hnRNPA1 is required for miR-128-induced
restriction of L1 mobilization.
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Figure 1. Identification of hnRNPA1 as a cellular target of miR-128. (A) Table showing the results of 
an overlay analysis of the genes identified in our mouse embryonic stem cell (mESC) DGCR8−/− 
screen of putative miR-128 targets by differential gene expression and protein targets previously 
reported as L1 ORF1p interactome [5]. Members of the heterogeneous nuclear ribonucleoproteins 
(hnRNPs) family of RNA-binding proteins are highlighted in grey, see Supplementary Table S1 for 
additional information. (B) Relative amount of hnRNPA1, hnRNPA2B1, hnRNPK, hnRNPL and 
hnRNPU and TNPO1 (positive control) mRNA normalized to B2M determined in HeLa cells stably 
transduced with control miR, anti-miR-128 or miR-128 are shown as mean ± SD (n = 3 technical 
replicates, * p < 0.05, ** p < 0.01, *** p < 0.001). 

2.2. miR-128 Reduces hnRNPA1 mRNA and Protein Levels 

We next examined the effects of miR-128 on hnRNPA1 by performing and validating stable miR 
transductions with transient miR transduction of HeLa cells. We found that both transient and stable 
miR transduction of miR-128 resulted in significantly reduced hnRNPA1 levels and that miR-128 
neutralization enhanced hnRNPA1 mRNA levels in both experimental conditions, relative to miR 
controls, see Figure 2A left panel, and also Figure 1B, top left panel. Next, we determined that 
miR-128 overexpressing HeLa cells showed significantly reduced hnRNPA1 protein levels and 
anti-miR-128 significantly enhanced hnRNPA1 protein amounts, relative to miR control HeLa cells, 
by western blot analysis, see Figure 2B, quantifications are shown in the right panel. Different 
exposures of independent biological replicates are shown for miR-128 versus anti-miR-128, and 
confocal analysis, see Figure 2C, correlating with hnRNPA1 mRNA levels, see Figure 2A. Next, we 
wished to evaluate whether the observed effect of miR-128 on hnRNPA1 levels was limited to HeLa 
cells. We determined that miR-128 regulates hnRNPA1 mRNA levels in a panel of cell lines, 
including an induced pluripotent stem cell line, a cancer-initiating cell line and three different cancer 
cell lines (iPSCs), colon cancer initiating cells (CCIC), breast cancer cell line (MDA-MB-231), 
non-small cell lung cancer line (NCI-A549) and a teratoma cell line (Tera-1). miR-128 significantly 
reduced hnRNPA1 in all but the lung cancer cell line and anti-miR-128 showed substantially 
enhanced hnRNPA1 levels in all cell lines except the teratoma cell line, see Figure 2D. Finally, as 
expected, miR-128 was determined to also significantly regulate hnRNPA1 protein levels in three 

Figure 1. Identification of hnRNPA1 as a cellular target of miR-128. (A) Table showing the results of an
overlay analysis of the genes identified in our mouse embryonic stem cell (mESC) DGCR8−/− screen
of putative miR-128 targets by differential gene expression and protein targets previously reported
as L1 ORF1p interactome [5]. Members of the heterogeneous nuclear ribonucleoproteins (hnRNPs)
family of RNA-binding proteins are highlighted in grey, see Supplementary Table S1 for additional
information. (B) Relative amount of hnRNPA1, hnRNPA2B1, hnRNPK, hnRNPL and hnRNPU and
TNPO1 (positive control) mRNA normalized to B2M determined in HeLa cells stably transduced with
control miR, anti-miR-128 or miR-128 are shown as mean ± SD (n = 3 technical replicates, * p < 0.05,
** p < 0.01, *** p < 0.001).

2.2. miR-128 Reduces hnRNPA1 mRNA and Protein Levels

We next examined the effects of miR-128 on hnRNPA1 by performing and validating stable miR
transductions with transient miR transduction of HeLa cells. We found that both transient and stable
miR transduction of miR-128 resulted in significantly reduced hnRNPA1 levels and that miR-128
neutralization enhanced hnRNPA1 mRNA levels in both experimental conditions, relative to miR
controls, see Figure 2A left panel, and also Figure 1B, top left panel. Next, we determined that miR-128
overexpressing HeLa cells showed significantly reduced hnRNPA1 protein levels and anti-miR-128
significantly enhanced hnRNPA1 protein amounts, relative to miR control HeLa cells, by western blot
analysis, see Figure 2B, quantifications are shown in the right panel. Different exposures of independent
biological replicates are shown for miR-128 versus anti-miR-128, and confocal analysis, see Figure 2C,
correlating with hnRNPA1 mRNA levels, see Figure 2A. Next, we wished to evaluate whether the
observed effect of miR-128 on hnRNPA1 levels was limited to HeLa cells. We determined that miR-128
regulates hnRNPA1 mRNA levels in a panel of cell lines, including an induced pluripotent stem cell
line, a cancer-initiating cell line and three different cancer cell lines (iPSCs), colon cancer initiating
cells (CCIC), breast cancer cell line (MDA-MB-231), non-small cell lung cancer line (NCI-A549) and
a teratoma cell line (Tera-1). miR-128 significantly reduced hnRNPA1 in all but the lung cancer cell
line and anti-miR-128 showed substantially enhanced hnRNPA1 levels in all cell lines except the
teratoma cell line, see Figure 2D. Finally, as expected, miR-128 was determined to also significantly
regulate hnRNPA1 protein levels in three additional cancer cell lines (A549 (lung cancer), SW620
(colon cancer) and PANC1 (pancreatic cancer)), see Figure 2E, quantifications are shown below each
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western blot result. Different exposures of independent biological replicates are shown for miR-128
versus anti-miR-128 experiments. Together, these results demonstrate that miR-128 regulates hnRNPA1
mRNA and protein levels in multiple cell types.
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Figure 2. miR-128 reduces hnRNPA1 mRNA and protein amounts whereas miR-128 neutralization
enhances hnRNPA1 expression levels in multiple cell types. (A) Relative amount of hnRNPA1 mRNA
normalized to B2M in HeLa cells stably transduced with miR-128, anti-miR-128 or control constructs
(left panel, n = 2 independent biological replicates, p = ns); or transiently transfected with miR-128,
anti-miR-128 or control mimics (right panel, mean ± SEM, n = 3 independent biological replicates,
* p < 0.05) (B) Immunoblot analysis of hnRNPA1 and α-tubulin protein levels in lysates from HeLa cells
transduced with miR-128, anti-miR-128 or miR control constructs (left panel). Quantification of blots is
shown (right panel). (C) Stable miR-128, anti-miR-128 and control miR HeLa cell lines were analyzed
by immunofluorescence for hnRNPA1 expression and co-localization with DAPI. (D) Relative amounts
of hnRNPA1 mRNA normalized to B2M in induced pluripotent stem cells, colorectal cancer initiating
cells (CCIC), breast cancer cells (MDA-MB-231), non-small cell lung cancer (A549) cells and teratoma
(Tera-1) cells. (E) Immunoblot analysis of hnRNPA1 and α-tubulin protein levels in protein-containing
lysates isolated from non-small cell lung cancer (A549), colon cancer (SW620) (PANC1) cells transduced
with miR-128, anti-miR-128 or miR control constructs. Quantification of blots are shown (bottom
panels). Throughout the figure if not otherwise noted, n = 3 independent biological replicates, mean ±
SEM, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, calculated by students t-test.
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2.3. miR-128 Binds Directly to the CDS of hnRNPA1 mRNA

We next wished to determine if hnRNPA1 mRNA is a direct target of miR-128. When performing
bioinformatics analyses of potential miR-128 binding sites in hnRNPA1 mRNA, we identified one
potential 7-mer seed site in the coding DNA sequence (CDS), see Figure 3A, top panel. The CDS
sequence of hnRNPA1, including the seed site, was cloned into an miR-binding site luciferase reporter
construct. As a positive control construct, a 23-nt with perfect complementarity was also generated, see
Figure 3B, top panel. HeLa cells were co-transfected with the hnRNPA1 binding site-encoding plasmid
and either mature miR-128 or miR control mimics. Luciferase activity was significantly reduced in cells
co-transfected with miR-128 and the plasmid encoding the hnRNPA1 binding site relative to those
co-transfected with the miR control mimic and hnRNPA1 binding site plasmid, see Figure 3B, bottom
left panel. These results indicate that miR-128 binds to the seed site located in the CDS of hnRNPA1.
To further characterize the specificity of miR-128 binding to the seed site in hnRNPA1, a mutated seed
site was generated and cloned into the miR-binding site luciferase reporter plasmid, see Figure 3B, top
panel. HeLa cells were co-transfected with either the wild-type (WT) or miR-128 seed mutant (mutant)
binding site-encoding plasmids and either mature miR-128 or miR control mimics. We verified that
luciferase activity was reduced in miR-128-wildtype-hnRNPA1-induced HeLa cells, compared to HeLa
cells overexpressing the miR control. This finding establishes that miR-128 indeed interacts with
the wildtype hnRNPA1 mRNA sequence, resulting in the inhibition of the translation of luciferase,
see Figure 3B, right panel. In contrast, miR-128-mutant-hnRNPA1 over-expressing HeLa cells were
characterized by de-repressed luciferase activity, to levels similar to that of the control. This result
is consistent with the idea that miR-128 does not interact with the hnRNPA1 CDS mRNA sequence
in which mutations have been introduced, and thus cannot inhibit luciferase activity, see Figure 3B,
right panel.

Finally, in order to evaluate whether miR-128 directly interacts with hnRNPA1 mRNA in cells,
Argonaute-RNA immuno-purification (miRISC-IPs) analysis were performed, see Figure 3C. Briefly,
transduced HeLa cell lines stably expressing miR-128 or anti-miR-128 were lysed and Argonaute
complexes relatively enriched with miR-128 (miR-128) or depleted of miR-128 (anti-miR-128) were
isolated. The argonaute complexes were then analyzed for occupancy by hnRNPA1 mRNA by qRT-PCR;
if hnRNPA1 mRNA is a direct target of miR-128, occupancy should be higher in complexes enriched
with miR-128 relative to those depleted of miR-128 (anti-miR-128). As expected, the relative level of
hnRNPA1 mRNA was significantly lower in cells stably overexpressing miR-128 compared to cells
expressing anti-miR-128, see Figure 3D, top left panel “Input”. The relative fraction of Argonaute-bound
hnRNPA1 mRNA was significantly increased in cells overexpressing miR-128 relative to cells expressing
anti-miR-128, see Figure 3C, top right panel “IP—hnRNPA1”. When correcting for the higher amount of
hnRNPA1 mRNA in anti-miR-128 input samples, the relative fractions of Argonaute-bound hnRNPA1
mRNA in IP samples were found to be more significantly reduced, relative to miR-128 samples, see
Figure 3D, top right panel “corrected anti-miR-128”. miR-128 did not reduce GAPDH mRNA amounts
or immuno-purified GAPDH mRNA, see Figure 3D, lower panels. These data combined, suggests that
induced amounts of miR-128 result in enrichment of hnRNPA1 mRNA bound to Argonaute complexes
by a direct interaction with the seed sequence in the CDS of hnRNPA1 mRNA.

2.4. L1 Retrotransposition Is Dependent on hnRNPA1

hnRNPA1 is a known binding partner of L1 ORF1p [51] and TNPO1 [33] suggesting a possible
role for miR-128-induced regulation of hnRNPA1, affecting the L1 retro-transposition life cycle. We
first wished to evaluate whether hnRNPA1 is required for successful de novo retro-transposition of L1,
as previously reported [51], and secondly whether miR-128-induced L1 restriction is dependent on
reduced hnRNPA1 levels.
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Figure 3. miR-128 represses hnRNPA1 expression by binding directly to coding sequence (CDS) RNA.
(A) Schematic of the predicted miR-128 7-mer binding site in the coding region (CDS) of hnRNPA1
mRNA (top panel). (B) Cartoon showing the predicted base pairing of miR-128 to the seed sequence of
wild-type (WT) hnRNPA1 as well as a representation of mutations in the seed sequence (mutant) used
for luciferase binding assays (top panel). Relative luciferase activity in HeLa cells transfected with
plasmids expressing a Gaussia luciferase gene fused to the wild-type (WT) binding site or positive
control sequence corresponding to the 22 nucleotide perfect match of miR-128 and co-transfected
with control or mature miR-128 mimics were determined 48 h post-transfection (bottom left panel, n
= 3 independent biological replicates, mean ± SEM, ** p < 0.01, **** p < 0.0001). Relative luciferase
activity in HeLa cells transfected with plasmids expressing the luciferase gene fused to the WT or
the mutated binding site (mutant) and co-transfected with control or mature miR-128 mimics were
determined 48 h post-transfection (bottom right panel, n = 3 independent biological replicates, mean ±
SEM, * p < 0.05). (C) Cartoon of Argonaute-RNA immuno-purification (miRISC-IP). (D) miRISC IP of
HeLa cell lines stably transduced with miR-128 overexpression or miR-128 neutralization (anti-miR-128)
were performed. Relative amounts of hnRNPA1 RNA normalized to B2M were determined for input
samples (top left panel “input—hnRNPA1”, n = 3 independent biological replicates, mean ± SEM, *
p < 0.05). Relative fractions of hnRNPA1 transcript amounts associated with immune-purified Ago
complexes are shown for immunopurified (IP) samples, hnRNPA1 fractions normalized to the amount
of TNPO1 in the input are shown as “corrected” (top right panel “IP—hnRNPA1”, n = 3 independent
biological replicates, mean ± SEM, * p < 0.05, ** p < 0.01). (D) Relative amount of GAPDH in the same
input and IP samples were determined as a negative control (top right panel “IP—hnRNPA1”, n = 3
independent biological replicates, mean ± SEM). Throughout the figure, n = 3 independent biological
replicates, mean ± SEM, * p < 0.05, ** p < 0.01, **** p < 0.0001, calculated by students t-test.

Next, we evaluated de-novo retro-transposition activity in miR-modulated HeLa cells by
performing colony formation assays. Specifically, we took advantage of previously generated variants
of the neomycin reporter construct, which encodes the L1 mRNA (full-length) and a retro-transposition
indicator cassette. The wild-type (WT) L1 construct is generated to encode the neomycin gene, which is
inserted in the antisense direction, as it relates to a full-length L1 element. An intron has been inserted in
the sense direction of the full-length L1 element. This strategy ensures that the neomycin (neo) protein
can only be translated into a functional enzyme and cells can survive if L1 transcription takes place and
is followed by splicing of the L1 mRNA, which is then reverse transcribed into DNA and the spliced
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DNA variant is then integrated back into the genome. This assay, therefore, allows for the quantification
of cells with new (de novo) retrotransposition and genomic integrations events in culture. In addition,
we have generated a miR-128-resistant variant of the L1 plasmid, by introducing a silent mutation
into the miR-128 binding site (in the ORF2 sequence) attenuating miR-128 binding, but allowing L1 to
retrotranspose (as described in [32,33]). Finally, a third variant of the L1 plasmid described by [63]
encodes an L1 RNA containing a D702A mutation in the reverse transcriptase (RT) domain of the
ORF2 protein, rendering the encoded L1 RT deficient (RT dead). The RT dead plasmid variant was
used as a negative control in order to demonstrate that colonies obtained upon wild-type L1 plasmid
transfections and neo selection are the consequence of a round of de novo L1 retro-transposition, as
previously described [33]. We generated stable HeLa cell lines overexpressing full-length hnRNPA1 or
plasmid control, shRNA against hnRNPA1 or a control sequence (GFP, Green Fluorescent Protein).
Induced versus reduced hnRNPA1 expression levels were verified by western blot analysis, see Figure 4,
right panels. hnRNPA1-modulated HeLa cell lines were then transfected with WT L1 or RT deficient L1
(RT-dead) neomycin reporter and selected for 14 days with neomycin replenished daily. We observed
a significant increase in neomycin-resistant colonies in cells overexpressing hnRNPA1, relative to
control HeLa cells, see Figure 4A. In contrast, cells expressing sh-hnRNPA1 were characterized by a
significantly decreased number of neo-resistant colonies, compared to control HeLa cells, see Figure 4B.
Importantly, hnRNPA1-modulated HeLa cells encoding the negative control (RT-dead) did not generate
any neomycin-resistant colonies. These experiments demonstrate that hnRNPA1 is required for optimal
L1 activity, agreeing with previous findings [51].Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 9 of 18 
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Figure 4. Overexpression of hnRNPA1 enhances de novo L1 retro-transposition and hnRNPA1
knock-down reduces L1 mobilization. (A) De novo retro-transposition was determined by a colony
formation assay in HeLa cells stably transduced with plasmids encoding control plasmid (control),
hnRNPA1 and transfected with L1 expression construct. Western blot analysis validating reduced
levels of hnRNPA1 in over-expressing cell lines are shown. α-tubulin was used as a loading control
(right panel). (n = 3 technical replicates, mean ± SD, ** p < 0.01). (B) Representative example of
neomycin-resistant colony counts from a colony formation assay in HeLa cells stably transduced with
plasmids encoding shRNA against GFP (Green Fluorescent Protein) (control), hnRNPA1 and transfected
with WT L1 (L1) or RT deficient L1 (RT-dead L1) expression construct. (n = 3 technical replicates, mean
± SD, *** p < 0.001). Western blot analyses of hnRNPA1 and α-tubulin in knock-down HeLa cell lines
are shown (right panels).
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2.5. miR-128-Induced L1 Restriction Is Partly Dependent on hnRNPA1

At this point, our findings show that L1-mobilization is dependent on repressing the cellular
co-factor hnRNPA1, TNPO1, and direct binding to L1 RNA. In order to evaluate the relative importance
of miR-128-induced hnRNPA1 repression, we next performed rescue experiments. In brief, we
generated miR-128 or miR control HeLa cell lines in which we co-expressed either full-length hnRNPA1
or plasmid controls. All HeLa cell lines were then transfected with the mutant L1 (miR-128 resistant)
plasmid or the RT-dead L1 plasmid as previously described [33]. As expected, miR-128 significantly
reduced L1 retrotransposition, as determined by reduced neo resistant colonies, see Figure 5. When
reintroducing hnRNPA1 into miR-128 over-expressing HeLa cells, we observed a partial but significant
rescue of miR-128 induced L1 restriction, see Figure 5, whereas all HeLa cell lines transfected with the
RT dead L1 plasmid, resulted in no colonies following neo selection.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 10 of 18 
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Figure 5. hnRNPA1 partly rescues miR-128-induced inhibition of de novo L1 retrotransposition.
The functional importance of hnRNPA1 in miR-128-induced L1 repression was evaluated by colony
formation assays using mutant L1 (miR-128 resistant) or RT deficient L1 (RT-dead L1) expression
constructs in stable HeLa cell lines expressing either miR-control (miR-CTL) or miR-128 along with
either a plasmid control (FL-CTL) or induced hnRNPA1 (hnRNPA1) (n = 3 technical replicates, mean ±
SD, ** p < 0.01). Western blot analysis was performed for hnRNPA1 and α-tubulin to validate increased
levels of hnRNPA1 in miR-128-hnRNPA1 rescue HeLa cell lines (panel).

These results support the idea that miR-128 functions through direct binding of L1 RNA and
by regulating at least two cellular co-factors (hnRNPA1 and TNPO1), which L1 is dependent on for
successful mobilization.

3. Discussions

Interactions between hnRNPA1 and TNPO1, as well as hnRNPA1 and L1 ORF1p, have been
reported [43–49,51,62]. Our results demonstrate that miR-128 functions to repress hnRNPA1 as one of
the cellular co-factors in the L1 retro-transposition pathway and complement our earlier work describing
miR-128-induced direct repression of L1 retrotransposons [32] and miR-128-induced repression of a
nuclear import factor of L1 (TNPO1) [33]. This body of work agrees with the concept that miRs repress
multiple cellular targets in unison to regulate important cellular pathways [34–37]. In addition, our
overlay analysis indicates that miR-128 also regulates the levels of another heterogeneous nuclear
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ribonucleoprotein family member hnRNPL, see Figure 1, which has been reported to be required for
successful L1 retro-transposition by Goodier et al. [51].

Our findings also support the conclusion that miR-128 significantly reduces hnRNPA1 levels
by directly interacting with an miR-128 seed site in the coding region sequence (CDS) of hnRNPA1
mRNA. The finding that miR-128 targets the CDS of hnRNPA1 resulting in significantly reduced
hnRNPA1 mRNA and, in particular, hnRNPA1 protein levels in a small panel of different cell types,
was surprising. However, it is well established that miRs regulate gene products by preferentially
interacting with the 3′UTR and/or the CDS of target mRNA and that such interactions are of functional
importance [32,64,65]. In addition, we have determined that hnRNPA1 is required for successful
miR-128-induced inhibition of L1 activity, as overexpression of hnRNPA1 in miR-128 HeLa cells can
partially rescue the inhibitory effect of miR-128 on L1 mobilization. The idea that miR-128 targets
multiple co-factors which L1 is dependent on at different stages in its life cycle is an area of active
investigation in our laboratory and includes analysis of miR-128-induced regulation of other recently
reported L1 co-factors by Mita et al. and Taylor et al. [66,67].

Mechanistic studies are also needed to dissect what exact role hnRNPA1 plays in L1
retrotransposition. It is tempting to speculate that hnRNPA1 and TNPO1 cooperate at facilitating
active nuclear import of some L1-RNP complexes, and thus our finding that miR-128 target both
hnRNPA1 and TNPO1 mRNAs support a possible role for miR-128 in determining whether L1-RNP
complexes gain access to host DNA, independently of cell division. hnRNPA1 is also involved in
many other processes necessary for cellular function including proliferation [68], mRNA splicing [69],
and telomerase activity [70], and mutations in hnRNPA1 have been associated with human diseases
including amyotrophic lateral sclerosis 20 [71], lung adenocarcinoma [72] and HIV-1 [73,74]. We did
not observe any significant changes in cell cycle or cell toxicity when overexpressing or knocking down
hnRNPA1 levels. However, due to the wide activity of hnRNPA1 in nuclear shuttling, the broader
action of this protein on nuclear transport of cellular RNPs—not specific to L1, should also be taken into
account. It is possible that an overall change in nuclear transport, caused by modulation of hnRNPA1
also affects L1 mobilization.

In summary, we have identified hnRNPA1 as a novel miR-128 target. We have determined
that miR-128 significantly reduces hnRNPA1 protein and mRNA amounts by directly interacting
with the coding sequence of hnRNPA1 mRNA and that hnRNPA1 is required for miR-128-induced
L1 repression.

4. Materials and Methods

4.1. Cell Culture

All cells were cultured at 37 ◦C and 5% CO2 and routinely checked for mycoplasma (LT07-218,
Lonza, Alpharetta, GA, USA). HeLa cells (CCL-2, ATCC, Manassas, VA, USA) were cultured in EMEM
(SH3024401, Hyclone, Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 10% HI-FBS
(FB-02, Omega Scientific, Tarzana, CA, USA), 5% Glutamax (35050-061, Thermo Fisher Scientific), 3%
HEPES (15630-080, Thermo Fisher Scientific), and 1% Normocin (ant-nr-1, Invivogen/Thermo Fisher
Scientific). 293T cells (CRL-3216, ATCC) used to generate lentiviruses, H23 cells (CRL-5800, ATCC), and
MDA-MB-231 (ATCC HTB-26) were cultured in DMEM supplemented with 10% HI-FBS (FB-02, Omega
Scientific), 5% Glutamax (35050-061, Life Technologies/Thermo Fisher Scientific) and 1% Normocin
(ant-nr-1, Invivogen, San Diego, CA, USA). Tera-1 cells (HTB-105, ATCC) were cultured in McCoy’s 5A
(16600-082, Life Technologies, Carlsbad, CA, USA) supplemented with 20% Cosmic Serum (SH3008702,
Thermo Fisher Scientific). Passaging was performed at 80% confluence with 0.25% trypsin (SH30042.01,
Hyclone, Thermo Fisher Scientific). Colon cancer initiating cells (CCICs, gifted from Professor Marian
Waterman, UC Irvine, CA, USA). CCICs were cultured as spheres in ultra-low attachment flasks in
DMEM/F12, N2 supplement (17502-048, Life Technologies), B27 supplement (17504-044, Lifetech),
heparin (4 µg/mL, Sigma-Aldrich/EMD Millipore, Burlington, MA, USA), epidermal growth factor
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(20 ng/mL), and basic fibroblast growth factor (20 ng/mL). H23 (CRL-5800, ATCC) were cultured in
RPMI-1640 (11875, Life technologies), 10% HI-FBS, 5% Glutamax, and 1% Normocin. mESCs were
maintained in knockout DMEM medium (Invitrogen) supplemented with 15% fetal bovine serum, LIF
and 2i (PD0325901 and CHIR99021) as per standard techniques.

4.2. Transfection and Transduction

OptiMem (31985070, Life Technologies) and Lipofectamine RNAiMAX (13778075, Life
Technologies) were used to complex and transfect 20 µM miR-128 mimic, anti-miR-128 or control
mimics (C-301072-01 and IH-301072-02, Dharmacon, Lafayette, CO, USA) into cells. OptiMem and
Xtreme Gene HP (06366236001, Roche Life Science, Penzburg, Germany) were used to transfect pJM101
neomycin L1 reporter plasmid into HeLa cells. Cells were transduced with high titer virus using
polybrene (sc-134220, Santa Cruz Biotechnology, Dallas, TX, USA) and spinoculation (800 g at 32 ◦C for
30 min). Transduced cells were then selected and maintained using 3 µg/mL puromycin.

4.3. RNAi Using shRNA against hnRNPA1

shRNA for hnRNPA1 was designed using the RNAi Consortium (https://www.broadinstitute.org/

rnai/public/) using clone TRCN0000235098 and cloned into pLKO.1 puro backbone (Addgene, #8453,
Watertown, MA, USA). pLKO shGFP control plasmid was pre-assembled (Addgene, #30323).

4.4. Lentiviral Packaging

Lentiviral vectros (VSVG-pseudotyped) were generated by transfecting 0.67 µg of pMD2-G (12259,
Addgene), 1.297 µg of pCMV-DR8.74 (8455, Addgene), and 2 µg of mZIP-miR-128, mZIP-anti-miR-128,
pLKO-shControl or pLKO-shHNRNPA1 (transfer plasmid)) into 293 T cells using Lipofectamine LTX
with plus reagent (15338030, ThermoFisher). Supernatants containing virus were harvested after 48 h
and 96 h post-transfection. PEG-it virus precipitation solution (LV810A-1) was utilized to concentrate
viral supernatants, following manufacturer’s instructions.

4.5. RNA Extraction and Quantification

RNA was extracted using Trizol (15596-018, ThermoFisher) and a Direct-zol RNA isolation
kit (R2070, Zymo Research, Irvine, CA, USA). cDNA was made with High-Capacity cDNA
Reverse Transcription Kit (4368813, ThermoFisher). Amount of hnRNPA1 mRNA was analyzed
by qRT-PCR (Sense primer 5′-aagcaattttggaggtggtg-3′; Antisense primer 5′-atagccaccttggtttcgtg-3′)
using Forget-me-not qPCR mastermix (Biotium, Fremont, CA, USA) relative to beta-2-microglobulin
(B2M, Sense primer 5′-ATGTCTCGCTCCGTGGCCTTAGCT-3′; Antisense primer 5′-TGGTTCACA
CGGCAGGCATACTCAT-3′). All RT-qPCR was performed in technical cDNA and qPCR duplicates
using beta-2-microglobulin (B2M) as the reference gene, based on previous analysis establishing that
B2M is stably expressed in the analyzed cell lines [32,33,64]. All data were analyzed using NormFinder
to ensure stability of the reference genes. For each sample, relative quantities were calculated as 2−∆Ct

and determined as the average relative quantities in the cDNA synthesis duplicates.

4.6. Western Blotting

Rabbit anti-human hnRNPA1 antibody (K350, Cell Signaling Technology, Danvers, Ma, USA) was
used at 1:2000. Anti-alpha Tubulin antibody (ab4074, Abcam, Cambridge, MA, USA) was diluted 1:5000
and used as a loading control, validation of antibodies can be found on the manufacturer websites.
Secondary HRP-conjugated anti-rat (ab102172, Abcam) or HRP-conjugated anti-rabbit (#NA934, GE
lifesciences, Pittsburg, FA, USA) was used at 1:5000. ECL substrate (32106, Thermo Fisher Scientific)
was added and visualized on a BioRad ChemiDoc imager. Fluorescent quantification of protein
levels was done using the LiCor Odyssey SA infrared imaging system (Invitrogen). Alternatively,

https://www.broadinstitute.org/rnai/public/
https://www.broadinstitute.org/rnai/public/
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quantifications were performed using Image J. Values are displayed as protein levels normalized to
α-tubulin levels.

4.7. Argonaute-RNA Immuno-Purification

Immunopurification of all Argonaute (Ago) proteins from HeLa cell extracts was carried out using
the 4F9 antibody (#sc-53521, Santa Cruz Biotechnology), as previously described in [75,76]. Briefly,
10 mm plates of 80% confluent HeLa cells were washed with buffer A (20 mM Tris-HCl pH 8.0, 140
mM KCl and 5 mM EDTA) and lysed in 200 µL of buffer 2× B (40 mM Tris-HCl pH 8.0, 280 mM
KCl, 10 mM EDTA, 1% NP-40, 0.2% Deoxycholate, 2× Halt protease inhibitor cocktail (Pierce, city,
if any state, country), 200 U/mL RNaseout (Life Technologies) and 1 mM DTT). Adjustment of the
protein concentration across samples was obtained with buffer B (20 mM Tris-HCl pH 8.0, 140 mM
KCl, 5 mM EDTA pH 8.0, 0.5% NP-40, 0.1% deoxycholate, 100 U/mL Rnaseout (Life Technologies),
1 mM DTT and 1×Halt protease inhibitor cocktail (Pierce/ThermoFisher Scientific). Centrifugation
of RNA-containing lysates was carried out at 16,000× g for 15 min at 4 ◦C. Following centrifugation,
supernatants were incubated with 10–20 µg of 4F9 antibody conjugated to epoxy magnetic beads
(M-270 Dynalbeads, Life Technologies) for 2 h at 4 ◦C with gentle rotation (Nutator). The beads
were isolated by magnetic separation and were washed three times for 5 min with 2 mL of buffer C
(20 mM Tris-HCl pH 8.0, 140 mM KCl, 5 mM EDTA pH 8.0, 40 U/mL Rnaseout (Life Technologies),
1 mM DTT and 1× Halt protease inhibitor cocktail (Pierce)). Immunopurification was performed,
after which RNA was isolated using miRNeasy kits (QIAGEN, Germantown, MD, USA), according
to the manufacturer’s recommendations. Finally, qRT-PCR was carried out using hnRNPA1 primers
designed around the binding site of miR-128 (Sense primer 5′-TCTCCTAAAGAGCCCGAACA-3′;
Antisense primer 5′-TTGCATTCATAGCTGCATCC-3′) or GAPDH (Sense primer 5′-GGTGG
TCTCCTCTGACTTCAA-3′; Antisense primer 5′-GTTGCTGTAGCCAAATTCGTT-3′) normalized
to B2m (Sense primer 5′-ATGTCTCGCTCCGTGGCCTTAGCT-3′; Antisense primer 5′-TGGTTC
ACACGGCAGGCATACTCAT-3′). Results were normalized to their inputs.

4.8. Cloning

To generate the hnRNPA1, full-length clone modifications of the
pFC-PGK-MCS-pA-EF1-GFP-T2A-Puro plasmid (SBI, backbone, Palo Alto, CA, USA) were
carried out by specifically replacing the PGK with a CMV (cytomegalovirus) promoter. The CMV
promoter, which is a strong and robust promoter, was PCR amplified using the phiC31 integrase
expression plasmid (SBI) as a template. The CMV promoter insert was generated by using sense CMV
primer (5’-CTAGAACTAG TTATTAATAG TAATCAATTA CGGGGTC-3´) and antisense CMV primer
(5´-GATATCGGAT CCACCGGTAC CAAGCTTAAG TTTAAAC-3´). The plasmid, containing the
insert and backbone, was then cut by XbaI and BamHI and purified by agarose gel electrophoresis.
The insert and backbone-containing plasmid was ligated together utilizing the Quick ligation kit
(NEB) and then transformed, using Cold Fusion competent cells (1 × 109 cfu/µg). Finally, the
pFC-CMV-MCS-pA-EF-1-GFP-T2A-Puro-MH1 plasmid was verified by sequencing.

In order to generate full-length hnRNPA1 mRNA expression plasmid, total RNA from
HeLa cells was isolated, 20 ng was reverse transcribed using poly dT primer. Phusion
High-Fidelity PCR Kit (NEB, Ipswich, MA, USA) was used to generate all amplicons by following
the manufacturer´s protocol. The fragments were assembled stepwise and cloned into the
pFC-CMV-MCS-pA-EF-1-GFP-T2A-Puro-MH1 BamHI/ClaI linearized backbone, using the Cold Fusion
kit (SBI). The pFC-CMV-TNPO1-pA-EF-1-GFP-T2A-Puro-MH1 plasmid was verified by sequencing.
FL-Control is an empty vector.

4.9. Luciferase Binding Assay

Wild-type hnRNPA1 sense primer (5′-AATTCTTGGGTTTGTCACATATGCCACTGTGGAGGAGGT
GGATGCAGCTA-3′) and antisense primer (5′-CTAGTAGCTGCATCCACCTCCTCCACAGTGGCATA
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TGTGACAAACCCAA-3′), mutated hnRNPA1 sense primer (5′-AATTCTTGGGTTTGTCACATATGCCC
TTATGGAGGAGGTGGATGCAGCTA-3′) and antisense primer (5′-CTAGTAGCTGCATCCACCTCCT
CCATAAGGGCATATGTGACAAACCCAA-3′), or positive control sense primer (5′-AATTCA
AAGAGACCGGTTCACTGTGAA-3′) and antisense primer (5′-CTAGTTCACAGTGAACCGGTCT
CTTTG-3′) sequences were cloned into dual-luciferase reporter plasmid (pEZX-MT05, GeneCopoeia,
Rockville, MD, USA). A total of 3 × 105 HeLa cells were forward transfected with 0.8 µg of reporter
plasmid (WT, mutated, Pos) and 20 nM miR-128 mimic (Dharmacon) or Control mimic (Dharmacon)
using Attractene transfection reagent (301005, Qiagen), according to manufacturer instructions.
Relative Gaussia Luciferase and SEAP was determined using a Secrete-Pair Dual Luminescence
Assay Kit (SPDA-D010, Genecopoeia). Luminescence was detected using a Tecan Infinite F200 Pro
microplate reader.

4.10. Site Directed Mutagenesis

A reverse transcriptase incompetent (PJM101/L1) plasmid control was generated by following the
published mutagenesis strategy of Morrish et al., utilizing the Q5 Site-directed mutagenesis Kit (E0554S,
NEB). Specifically, the D702A mutation in L1 ORF2 was carried out, resulted in a non-functional reverse
transcriptase enzyme, referred to as, RT-dead L1 [77].

4.11. Colony Formation Assay

Stable HeLa lines expressing miR-128, anti-miR-128, scramble control, shControl, shhnRNPA1,
shTNPO1, Full-length hnRNPA1 or TNPO1, or plasmid control were transfected with pJM101/L1RP
or RT-dead L1 plasmid (containing neomycin resistance retrotransposition indicator cassette) per
well using X-treme gene HP DNA transfection reagent (06366236001, Roche, Basel, Switzerland)
according to manufacturer instructions. Cells were selected using 500 µg/mL G418 (ant-gn-1,
Invivogen). Neomycin-resistant colonies were fixed with cold 1:1 methanol:acetone, then visualized
using May-Grunwald (ES-3410, Thermo Fisher Scientific) and Jenner-Giemsa staining kits (ES-8150,
Thermo Fisher Scientific) according to manufacturer’s protocol. Selection began with 25 µg/mL G418
72 h post-transfection and selection was maintained with daily media changes until negative control
(non-transfected) cells died. Neomycin-resistant colonies were fixed as described above.

4.12. RNA Sequencing and Data Analysis

DGCR8−/− mESCs were transfected with miR controls or miR-128 in triplicate cultures and
harvested cells after 12 h in order to enrich for primary target mRNAs, as opposed to studying
secondary effects of miR-128. Two replicates of each triplicate were selected and cDNA libraries were
generated using the Smart-seq2 protocol [58]. The libraries were sequenced as 43 bp paired-end reads.
STAR [59] was used to align the reads on to the mm9 genome. RSEM [60] was used to quantitate the
gene expression and EBSeq [61] was used to identify differentially expressed genes.

5. Conclusions

Our results demonstrate that miR-128 represses L1 mobilization through a multi-facetted
mechanism by both directly targeting of L1 RNA and indirectly through the repression of cellular
co-factors, possibly a network of co-factors which L1 is dependent on, including TNPO1 and
hnRNPA1 [32,33].

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/8/1955/
s1.
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