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Table S1. List of 85 molecular descriptors. 

Category ID Name Description 

Physicochemical 

properties 
1 JCMolecularPolarizability Molecular polarizability value 

 2 JCAtomCount The number of atoms in the molecule including hydrogens 

 3 JCExactMass 
The monoisotopic mass calculated from the weights of the most 

abundant natural isotopes of the elements 

 4 JCMass 
The average molecular mass calculated from the standard atomic 

weights 

 5 JCWPC Weight percentage of carbon elemental 

 6 JCWPH Weight percentage of hydrogen elemental 

 7 JCWPN Weight percentage of nitrogen elemental composition 

 8 JCWPO Weight percentage of oxygen elemental composition 

 9 JCWPP Weight percentage of phosphorus elemental composition 

 10 JCWPS Weight percentage of sulfur elemental composition 

 11 JCWPX Weight percentage of halogen elemental composition 

 12 JCMicrospeciesCount The number of microspecies 

 13 JClogP The octanol/water partition coefficient 

 14 JClogD(pH=1.50) The octanol-water distribution coefficient at any pH =1.50 

 15 JClogD(pH=5.00) The octanol-water distribution coefficient at any pH =5.00 

 16 JClogD(pH=6.50) The octanol-water distribution coefficient at any pH =6.50 

 17 JClogD(pH=7.40) The octanol-water distribution coefficient at any pH =7.40 
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 18 HLB 
The hydrophilic-lipophilic balance number (HLB number) measures 

the degree of a molecule being hydrophilic or lipophilic. 

 19 JCAcceptorCount The count of molecular hydrogen bond acceptor 

 20 JCDonorCount The count of molecular hydrogen bond donor 

 21 JCAcceptorSiteCount Molecular hydrogen bond acceptor multiplicity 

 22 JCDonorSiteCount Molecular hydrogen bond acceptor/donor multiplicity 

 23 JCDoubleBondStereoisomerCount 
Returns the number of generated double bond stereoisomers of the 

input molecule. 

 24 JCLipinskiRuleof53of4 

Returns TRUE if the molecule passes 3 of the following 4 criteria: 

Molweight: <= 500, LogP <= 5, Number of H-Donor atoms <= 5, Number 

of H-Acceptor atoms <= 10 

 25 JCLipinskiRuleof54of4 

Returns TRUE if the molecule passes all of the following 4 criteria: 

Molweight: <= 500, LogP <= 5, Number of H-Donor atoms <= 5, Number 

of H-Acceptor atoms <= 10 

 26 JCLeadLikeness 

When designing leadlike combinatorial libraries, care should be 

exercised not to exceed the following property values: Molweight: <= 

450, LogD (on pH 7.4): >= -4 and <= 4, Number of Rings: <= 4, Number 

of Rotatable Bonds <= 10, Number of H-Donor atoms <= 5, Number of 

H-Acceptor atoms <= 8 

 27 JCGhoseFilter 
Molweight: >= 160 and <= 480, Number of Atoms: >= 20 and <= 70, LogP: 

between -0.4 and 5.6, Refractivity: >= 40 and <=130 

 28 JCMueggeFilter 

Molweight: >= 200 and <= 600, Number of Rings: <=7, Number of C 

Atoms >=5 and (Number of Atoms, Number of C Atoms-Number of H 

Atoms) >=2, Number of Rotatable Bonds <=15, Number of H-Donor 

atoms <= 5, Number of H-Acceptor atoms <= 10, LogP >= -2 and <= 5, 

PSA <= 150 

 29 JCVeberFilter 

Compounds, which meet only these two criteria will have a high 

probability of good oral bioavailability in the rat: Number of Rotatable 

Bonds: <12, Polar Surface Area: <140 A² 

 30 JCBioavailability 

Molweight <= 500, LogP <= 5, Number of H-Donor atoms <= 5, Number 

of H-Acceptor atoms <= 10, Number of Rotatable Bonds <= 10, Polar 

Surface Area <= 200, Number of Fused Aromatic Rings <= 5. This 
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function works slightly different: if at least 6 from these criteria are 

TRUE for a molecule, then JCBioavailability returns TRUE, otherwise 

FALSE. 

Topological 

geometry 

properties 

31 JCBalabanIndex 
The Balaban distance connectivity of the molecule, which is the average 

distance sum connectivity. 

 32 JCHararyIndex 
The half-sum of the off-diagonal elements of the reciprocal molecular 

distance matrix of the molecule. 

 33 JCHyperWienerIndex A variant of the Wiener index. 

 34 JCSzegedIndex 

The Szeged index extends the Wiener index for cyclic graphs by 

counting the number of atoms on both sides of each bond (those atoms 

only which are nearer to the given side of the bond than to the other), 

and sum these counts. 

 35 JCWienerIndex 
Returns the average topological atom distance (half of the sum of all 

atom distances) in the molecule. 

 36 JCRefractivity Returns the molar refractivity of the input molecule. 

 37 JCAsymmetricAtomCount 
Returns the number of asymmetric atoms (having four different 

ligands). 

 38 JCChiralCenterCount 
Returns the number of tetrahedral stereogenic centers in the input 

molecule. 

 39 JCConnectedGraph Returns TRUE if the input molecule graph is connected. 

 40 JCDreidingEnergy 
Calculates the energy related to the 3D structure (conformation) of the 

molecule using dreiding force field. 

 41 JCHeavyAtomCount Returns the number of heavy atoms in the molecule. 

 42 JCMaximalProjectionArea 
Calculates the maximum of projection areas of the conformer, based on 

the van der Waals radius (in Å2). 

 43 JCMaximalProjectionRadius 
Calculates the radius for the maximal projection area of the conformer 

(in Å). 

 44 JCMinimalProjectionArea 
Calculates the minimum of projection areas of the conformer, based on 

the van der Waals radius (in Å2). 

 45 JCMinimalProjectionRadius 
Calculates the radius for the minimal projection area of the conformer 

(in Å). 
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 46 JCMolecularVolume Calculates the van der Waals volume of the molecule (in Å3). 

 47 JCMaxZ Returns the maximum z coordinate of the bounding box. 

 48 JCMinZ Returns the minimum z coordinate of the bounding box. 

 49 JCRotatableBondCount Returns the number of rotatable bonds in the molecule. 

 50 JCPlattIndex Returns the sum of the edge degrees of a molecular graph. 

 51 JCRandicIndex 
Returns the harmonic sum of the geometric means of the node degrees 

for each edge. 

 52 JCChainBondCount 
Returns the number of chain bonds (non-ring bonds excluding bonds 

of hydrogen atoms). 

 53 JCCyclomaticNumber 
Returns the smallest number of bonds which must be removed such 

that no circuit remains. 

 54 JCPSA9(pH=7.4) 

Returns the polar surface area (PSA), which is formed by polar atoms 

of a molecule. It is a descriptor that shows good correlation with 

passive molecular transport through membranes, and so allows 

estimation of transport properties of drugs. 

 55 JCAliphaticRingCount 
Returns the number of those rings in the molecule, which have non-

aromatic bonds (SSSR based). 

 56 JCAliphaticRingCountOfSize(Size=3) Returns the number of three-membered non-aliphatic rings. 

 57 JCAliphaticRingCountOfSize(Size=4) Returns the number of four-membered non-aliphatic rings. 

 58 JCAliphaticRingCountOfSize(Size=5) Returns the number of five-membered non-aliphatic rings. 

 59 JCAliphaticRingCountOfSize(Size=6) Returns the number of six-membered non-aliphatic rings. 

 60 JCAromaticRingCount Returns the number of aromatic rings in the molecule. 

 61 JCAromaticRingCountofSize(Size=5) Returns the number of five-membered aromatic rings 

 62 JCAromaticRingCountofSize(Size=6) Returns the number of six-membered aromatic rings 

 63 JCAromaticAtomCount Returns number of atoms in the molecule having aromatic bonds. 

 64 JCAromaticBondCount Returns the number of aromatic bonds in the molecule. 
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 65 JCCarboRingCount 
Returns the number of those rings in the molecule, which contain 

carbon atoms only. 

 66 JCCarboAromaticRingCount 
Returns the number of heterocycles in the molecule containing carbon 

atoms only (SSSAR based). 

 67 JCFusedRingCount 
Returns the number of fused rings in the molecule (having common 

bonds). 

 68 JCFusedAliphaticRingCount 
Returns the number of aliphatic rings having common bonds with 

other rings. 

 69 JCFusedAromaticRingCount 
Returns the number of aromatic rings having common bonds with 

other rings. 

 70 JCHeteroRingCount 
Returns the number of those rings in the molecule, which contain 

hetero atoms. 

 71 JCHeteroAromaticRingCount Returns number of aromatic heterocycles in the molecule. 

 72 JCLargestRingSize Returns the size of the largest ring in the molecule. 

 73 JCLargestRingSystemSize Returns the size of the largest ring system in the input molecule. 

 74 JCRingAtomCount Returns number of ring atoms. 

 75 JCRingBondCount Returns the number of ring bonds. 

 76 JCRingCount 
Returns the number of rings in the molecule. This calculation is based 

on SSSR (Smallest Set of Smallest Rings). 

 77 JCRingSystemCount Returns the number of ring systems in the input molecule. 

 78 JCSmallestRingSize Returns the size of the smallest ring in the molecule. 

 79 JCSmallestRingSystemSize Returns the size of the smallest ring system in the input molecule. 

 80 JCDominantTautomerCount Returns the number of dominant tautomers. 

 81 JCTautomerCount Returns the number of tautomers. 

 82 JCAliphaticAtomCount 
Returns the number of atoms in the molecule having no aromatic bond 

(excluding hydrogens). 

 83 JCAliphaticBondCount 
Returns the number of non-aromatic bonds in the molecule (excluding 

bonds of hydrogen atoms). 
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 84 JCBondCount Returns the number of bonds in the molecule including hydrogens. 

 85 JCChainAtomCount 
Returns the number of chain atoms (non-ring atoms excluding 

hydrogens). 
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Model building 

Naïve Bayes 

Naïve Bayes, a simple probabilistic classifier which is developed depend on Bayes’ theorem. Bayes’ 

theorem can be formally expressed as follows. 
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Where P(A|B) and P(B|A) indicate the probability of events A conditional on events B and the 

probability of events B conditional on events A, respectively. P(A) is the probability of events A without 

considering events B. similarly, P(B) is the probability of events B without considering events A. Naïve 

Bayes assumes that all features are strong independence between each other. Although such an assumption 

is often incorrect, Naïve Bayes classifier has been found to perform quite well in a variety of classification 

works. Even when the independent variables were highly correlated, Naïve Bayes classifier can also return 

satisfactory results [1, 2]. 

K-nearest neighbor 

As an instance-based classification method, KNN may be the simplest classifier. The first step of KNN 

is to predefine the number of samples in training set closest to the new points. Generally, standard 

Euclidean distance is adopted to measure the distance between samples. The label of a new sample is 

determined by voting: the dominant category label of its k nearest neighbors is assigned to the new sample. 

As a non-generalizing machine learning method, KNN only stores instances from training set without 

generating internal models, and begins to learn only when the testing sample is coming. Therefore, when 

the data volume is large and high efficiency is required, KNN may be not the optimal choice. Nevertheless, 

KNN has been successfully applied in numerous classification problems [3, 4]. 

Kstar 

As another instance-based classification algorithm, Kstar is developed based on K-nearest neighbor 

framework. Therefore, Kstar almost has the same features as KNN. The major difference between them is 

that they adopt different distance evaluation method. Kstar using entropy-based method to measure the 

distance between instances. In other words, the distance between instances was represented by the 

complexity of transforming one instance into another [5]. 

AdaBoostM1 

As an ensemble learning algorithm, AdaBoost was always used in combination with many weak 

classifiers to improve the performance of in silico models. The basic idea of AdaBoost is that combining the 

output of each weak classifier into a weighted sum that stands for the final results of the boosted classifier. 

During the machine learning process, the weak classifiers are learned one by one. At each iteration, the 

following weak learners are preferred to in favor of those samples misclassified by the previous 

classifiers. Finally, the weak rules obtained by each weak classifier are combined to create a strong rule. In 
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this work, AdaBoost (with J48 as the weak learner), one of the best out-of-the-box classifiers, was adopted 

to create prediction model for DILI [6, 7]. 

Bagging 

Bagging, short for Bootstrap aggregating, is always used to improve the accuracy and stability of weak 

classifiers. For Bagging, the re-sampling techniques were used to generate a series of new training sets. 

Based on the new training sets, multiple versions of a predictor were attained and integrated to be an 

aggregated predictor by averaging the output or voting. Different from AdaBoost, the weak classifiers of 

bagging were independent between each other. Compared to other classifiers, Bagging usually displayed 

a more strong generalization ability. Here, Bagging was used to develop predictive model with KNN as 

the weak classifier [8, 9]. 

Decision tree 

Compared to other classification algorithms, decision tree algorithm is easier to understand and 

interpret. Models created based on this method can be displayed as decision trees consist of decision nodes, 

branches, and leaf nodes. As the most popular decision tree algorithm, C4.5 measures the splitting attribute 

based on a gain ratio impurity method. At every node of the decision tree, the attribute with the maximum 

information gain was choosed to divide the samples into subsets enriched in one class or the other. 

Thereafter, the C4.5 algorithm recurses on the partitioned sublists. In summary, the basic idea of decision 

tree is to predict the target variable based on the decision rules inferred from a large scale of dataset. [10, 

11]. 

Random forest 

As a widely used ensemble learning algorithm, Random forest algorithm runs by generating large 

numbers of decision trees simultaneously. Each tree in the forest is a sub-classifier, and the target variables 

of the test instances were confirmed by integrating the prediction results of each sub-classifier. For one test 

instance, the classification of each tree is regarded as one vote. Finally, we calculated the total votes and 

the class which achieves the maximum votes were assigned to the test instance. Random forest algorithm 

always offered an excellent performance and avoided the overfitting risk [12, 13]. 

References 

1. Zhang, Z., Naive Bayes classification in R. Ann Transl Med. 2016, 4, 241. 

2. Wolfson, J.; Bandyopadhyay, S.; Elidrisi, M.; Vazquez-Benitez, G.; Vock, D. M.; Musgrove, D.; 

Adomavicius, G.; Johnson, P. E.; O'Connor, P. J., A Naive Bayes machine learning approach to risk 

prediction using censored, time-to-event data. Stat Med. 2015, 34, 2941-2957. 

3. Zhang, Z., Introduction to machine learning: k-nearest neighbors. Ann Transl Med. 2016, 4, 218. 

4. Wang, X., A Fast Exact k-Nearest Neighbors Algorithm for High Dimensional Search Using k-

Means Clustering and Triangle Inequality. Proc Int Jt Conf Neural Netw. 2012, 43, 2351-2358. 

5. Cleary, J. G.; Trigg, L. E., K * : An Instance-based Learner Using an Entropic Distance Measure. 

Proc.intl Conf.on Machine Learning. 1995, 108-114. 

6. Romero, E.; Màrquez, L. s.; Carreras, X., Margin maximization with feed-forward neural networks: 

a comparative study with SVM and AdaBoost. Neurocomputing. 2004, 57, 313-344. 

7. Schapire, R. E.; Singer, Y. Machine learning, improved boosting algorithms using confidence-rated 

predictions. Machine Learning. 1999; 37; 80-91. 



 9

8. Breiman, L., Bagging predictors. Machine Learning. 1996, 24, 123-140. 

9. Wang, Y.; Li, Y.; Liu, X.; Pu, W.; Wang, X.; Wang, J.; Xiong, M.; Yao Shugart, Y.; Jin, L., Bagging 

Nearest-Neighbor Prediction independence Test: an efficient method for nonlinear dependence of 

two continuous variables. Sci Rep. 2017, 7, 12736. 

10. Quinlan, J. R., Induction of decision trees. Machine Learning. 1986, 1, 81-106. 

11. Khosravi, K.; Pham, B. T.; Chapi, K.; Shirzadi, A.; Shahabi, H.; Revhaug, I.; Prakash, I.; Tien Bui, D., 

A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at 

Haraz watershed, northern Iran. Sci Total Environ. 2018, 627, 744-755. 

12. Cutler, A.; Cutler, D. R.; Stevens, J. R., Random Forests. Machine Learning. 2004, 45, 157-176. 

13. D Richard, C.; Edwards, T. C.; Beard, K. H.; Adele, C.; Hess, K. T.; Jacob, G.; Lawler, J. J., Random 

forests for classification in ecology. Ecology. 2007, 88, 2783-2792. 

 


