Article

Cytotoxic Acetogenins from the Roots of Annona purpurea

Gustavo A. Hernández-Fuentes ¹, Aída Nelly García-Argáez ^{2,3}, Ana L. Peraza Campos ¹, Iván Delgado-Enciso ⁴, Roberto Muñiz-Valencia ¹, Francisco J. Martínez-Martínez ¹, Antonio Toninello ⁵, Zeferino Gómez-Sandoval ¹, Juan Pablo Mojica-Sánchez ¹, Lisa Dalla Via ², ^{*}, Hortensia Parra-Delgado ¹,^{*}.

- 1. Facultad de Ciencias Químicas, Universidad de Colima, Carretera Colima-Coquimatlán km 9, 28400, Coquimatlán, Colima, México.
- 2. Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via F. Marzolo 5, 35131 Padova, Italy
- 3. Fondazione per la Biologia e la Medicina della Rigenerazione T.E.S.-Tissue Engineering and Signalling Onlus, Via F. Marzolo, 13, 35131 Padova, Italy.
- 4. Facultad de Medicina, Universidad de Colima, Av. Universidad 333, Las Víboras, 28040 Colima, México.
- 5. Dipartimento di Scienze Biomediche, Università degli Studi di Padova, Via G. Colombo 3, 35121, Padova, Italy.

* Correspondence:

Prof. Lisa Dalla Via. Phone: +39 (049) 8275712. Fax: +39 (049) 8275366. E-mail: lisa.dallavia@unipd.it. Prof. Hortensia Parra-Delgado. Phone and fax: +52 (312) 3161163. E-mail: hparra@ucol.mx

Supplementary files

Table of Contents

S1 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 1
S2 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 1
S3 COSY experiment (CDCl₃) of 1
S4 HSQC experiment (CDCl₃) of 1
S5 HMBC experiment (CDCl₃) of 1
S6 Mass spectrum (IE) of 1
S7 HRMS (ESI-TOF) of compound 1
S8 Mass spectrum of the TMSi derivative of 1
S9 Correlations in COSY and ¹H NMR spectrum (C₆D₆) of 1
S10 ¹H NMR (400 MHz, CDCl₃), Mosher ester *R* of 1
S12 COSY experiment (CDCl₃), Mosher ester *S* of 1
S13 IR theoretical calculations of 1

S14 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 2 S15 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 2 S16 COSY experiment (CDCl₃) of 2 S17 HSQC experiment (CDCl₃) of 2 S18 HMBC experiment (CDCl₃) of 2 S19 Mass spectrum (IE) of 2 S20 HRMS (ESI-TOF) of compound 2 S21 Mass spectrum of the TMSi derivative of 2 S22 Correlations in COSY and ¹H NMR spectrum (C₆D₆) of 2 S23 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 2a S24 COSY experiment (CDCl₃), Mosher ester *R* of 2 S25 COSY experiment (CDCl₃), Mosher ester S of 2 S26 IR theoretical calculations of 2

S27 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3 S28 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 3 S29 COSY experiment (CDCl₃) of 3 S30 HSQC experiment (CDCl₃) of 3 S31 HMBC experiment (CDCl₃) of 3 S32 Mass spectrum (IE) of 3 S33 HRMS (ESI-TOF) of compound 3 S34 Mass spectrum of the TMSi derivative of 3 S35 Correlations in COSY and ¹H NMR spectrum (C₆D₆) of 3 S36 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3a S37 COSY experiment (CDCl₃), Mosher ester *R* of 3 S38 COSY experiment (CDCl₃), Mosher ester *S* of 3 S39 IR theoretical calculations of 3

S40¹H NMR (400 MHz, CDCl₃) spectrum of compound 4 S41 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 4 S42 COSY experiment (CDCl₃) of 4 S43 HSQC experiment (CDCl₃) of 4 S44 HMBC experiment (CDCl₃) of 4 S45 Mass spectrum (IE) of 4 S46 Mass spectrum of the TMSi derivative of 4 S47 HRMS (ESI-TOF) of compound 4 S48 Correlations in COSY and ¹H NMR spectrum (C₆D₆) of 4 S49 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 4a S50 COSY experiment (CDCl₃), Mosher ester *R* of 4 S51 COSY experiment (CDCl₃), Mosher ester *S* of 4 S52 IR theoretical calculations of 4 S53¹H NMR (400 MHz, CDCl₃) spectrum of compound 5 S54 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 5 S55 COSY experiment (CDCl₃) of 5 S56 HSQC experiment (CDCl₃) of 5 S57 HMBC experiment (CDCl₃) of 5 S58 Mass spectrum (IE) of 5 S59 Mass spectrum (ESI⁺) of 5 S60 HRMS (ESI-TOF) of compound 5 S61 Correlations in COSY and ¹H NMR spectrum (C₆D₆) of 5 S62 IR theoretical calculations of 5

S1 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 1

S2. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 1

S5 HMBC experiment (CDCl₃) of 1

S7 HRMS (ESI-TOF) of compound 1

S8 Mass spectrum of the TMSi derivative of 1

S11 COSY experiment (CDCl₃), Mosher ester of 1, R= (*R*)-MTPA

Annopurpuricin A				
Experimental	6-311G(d,p)/B3LYP ^a	6-311G(d,p)/ωB97XD ^b		
3373.49	3651.98	3717.85		
2916.36	2941.67	2917.35		
2848.85	2863.30	2846.24		
1742.68	1767.26	1805.48		
1651.06	1641.57	1678.02		
1471.68	1458.90	1469.24		
1420.56	1423.38	1422.21		
1371.38	1374.44	1373.00		
1324.12	1324.52	1324.57		
1203.57	1207.92	1203.50		
1119.67	1120.29	1122.52		
1080.13	1086.63	1082.00		
1052.16	1050.23	1053.94		
966.33	965.71	964.90		
945.11	945.90	943.18		
868.92	869.15	870.93		
828.42	822.49	826.97		
716.55	715.31	716.28		
637.47	632.16	638.27		
600.82	614.55	601.34		

S13 IR theoretical calculations of 1

S14 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 2

S15¹³C NMR (100 MHz, CDCl₃) spectrum of compound 2

S20 HRMS (ESI-TOF) of compound 2

S21 Mass spectrum of the TMSi derivative of 2

Annopurpuricin B				
Experimental	6-311G(d,p)/B3LYP ^a	6-311G(d,p)/@B97XD ^b		
3414.16	3687.17	3751.55		
3371.16	3621.53	3686.95		
2953.01	2952.07	2954.12		
2818.29	2826.32	2850.27		
1738.82	1760.50	1800.79		
1652.02	1633.96	1676.20		
1463.96	1464.37	1462.21		
1401.28	1415.27	1409.49		
1371.38	1372.29	1377.12		
1318.34	1323.34	1320.14		
1197.79	1199.52	1200.70		
1117.74	1115.44	1119.65		
1071.45	1077.94	1071.42		
1025.16	1025.28	1029.94		
913.29	913.07	916.038		
849.64	850.09	849.07		
790.81	788.74	799.02		
721.37	722.28	721.99		
629.75	638.87	655.81		
597.93	597.82	607.31		
577.67	580.27	584.22		

S26 IR theoretical calculations of 2

S34 Mass spectrum of the TMSi derivative of 3

S38 COSY experiment (CDCl₃), Mosher ester S of 3

Annopurpuricin C				
Experimental	6-311G(d,p)/B3LYP ^a	6-311G(d,p)/ωB97XD ^b		
3414.96	3696.59	3703.62		
3373.49	3662.96	3672.85		
2953.01	2957.93	2954.76		
2916.36	2921.99	2916.93		
2848.85	2850.15	2854.99		
1742.68	1768.09	1778.42		
1653.95	1641.06	1654.46		
1471.68	1460.13	1457.46		
1399.55	1423.16	1415.79		
1314.48	1314.38	1321.17		
1209.36	1212.24	1210.14		
1167.89	1169.83	1170.13		
1145.71	1145.47	1149.94		
1111.95	1123.31	1113.32		
1079.49	1083.09	1081.58		
1049.27	1043.45	1048.90		
1019.37	1021.23	1019.15		
960.54	963.08	959.75		
928.72	926.29	928.55		
912.32	914.13	916.16		
858.32	859.44	860.74		
788.88	786.59	789.28		
720.09	717.43	721.12		

S39 IR theoretical calculations of 3

S45 Mass spectrum (IE) of 4

S46 HRMS (ESI-TOF) of compound 4

S47 Mass spectrum of the TMSi derivative of 4

S50 COSY experiment (CDCl₃), Mosher ester of 4, R= (R)-MTPA

S51 COSY experiment (CDCl₃), Mosher ester of 4, R= (S)-MTPA

_	Annopurpuricin D		
	Experimental	6-311G(d,p)/ B3LYP ^a	6-311G(d,p)/wB97XD ^b
_	3416.88	3664.88	3773.30
	3367.70	3662.04	3730.17
	2953.01	2954.30	2953.75
	2917.32	2920.79	2920.97
	2849.81	2857.83	2872.94
	1747.50	1752.92	1789.45
	1652.99	1636.44	1675.74
	1464.93	1460.32	1466.60
	1399.35	1417.90	1399.07
	1374.27	1373.76	1376.77
	1319.30	1318.70	1320.91
	1202.61	1202.51	1201.12
	1118.71	1114.02	1111.31
	1074.34	1074.07	1076.38
	1025.16	1025.42	1034.49
	960.54	961.00	961.66
	912.32	920.32	910.19
	857.37	862.66	858.16
	789.84	788.59	787.52
	720.41	728.20	727.37
	630.72	632.84	636.38
_	602.75	596.97	600.17

S52 IR theoretical calculations of 4

S57 HMBC experiment (CDCl₃) of 5

S59 Mass spectrum (ESI⁺) of 5

S60 HRMS (ESI-TOF) of compound 5

Annopurpuricin E			
Experimental	6-311G(d,p)/B3LYP ^a	6-311G(d,p)/ωB97XD ^b	
3013.76	3074.60	3019.94	
2980.01	2981.73	2983.53	
2951.08	2950.63	2952.11	
2915.38	2919.36	2915.83	
2848.85	2875.84	2887.62	
1748.86	1767.87	1806.92	
1655.92	1655.71	1676.93	
1474.57	1460.26	1469.09	
1462.03	1459.29	1460.94	
1390.67	1383.38	1418.87	
1310.07	1314.84	1312.40	
1258.54	1260.01	1256.49	
1207.43	1206.71	1214.16	
1112.92	1126.46	1111.95	
1069.52	1072.59	1072.78	
1023.23	1024.15	1024.42	
955.72	955.83	954.35	
915.22	918.49	925.69	
878.52	875.34	879.21	
831.31	839.55	844.90	
800.45	795.46	806.31	
729.09	733.90	734.66	
662.54	674.42	637.94	

S62 IR theoretical calculations of 5