Studies on the Interaction between Poly-Phosphane Gold(I) Complexes and Dihydrofolate Reductase: An Interplay with Nicotinamide Adenine Dinucleotide Cofactor

Stefania Pucciarelli ¹, Silvia Vincenzetti ¹, Massimo Ricciutelli ², Camille Simon Oumarou ², Annateresa Ramadori ², Lorenzo Luciani ² and Rossana Galassi ²,*

- 1. School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino 62032, Italy
- 2. School of Science and Technology, University of Camerino, Via Sant'Agostino, 1, Camerino 62032, Italy

$UV\mbox{-visible spectroscopy stability tests of compounds 4L_3AuCl, 4L_2AuCl, and 2L_2AuCl on Hepes/methanol solution}$

Acquisitions of the absorptions in the range of 200–700 nm of the tested solutions were led for an hour lapse every 3 minutes in 11.85 μ M concentration of 4 L₃AuCL (figure S1), 4 L₂AuCl, and 2 L₂AuCl (figure S2) at 30 °C. The stability was tested in Hepes/methanol 80:20, which are the same conditions used for the inhibition tests. The spectra highlighted no overall changes in solution over the time.

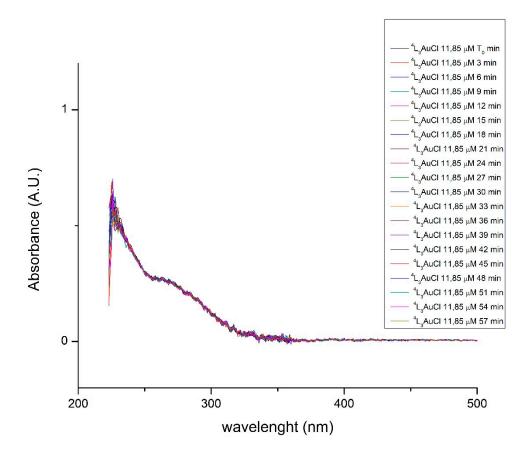


Figure S1. UV-visible spectra for 11.85 μM of ⁴L₃AuCl in hepes/methanol

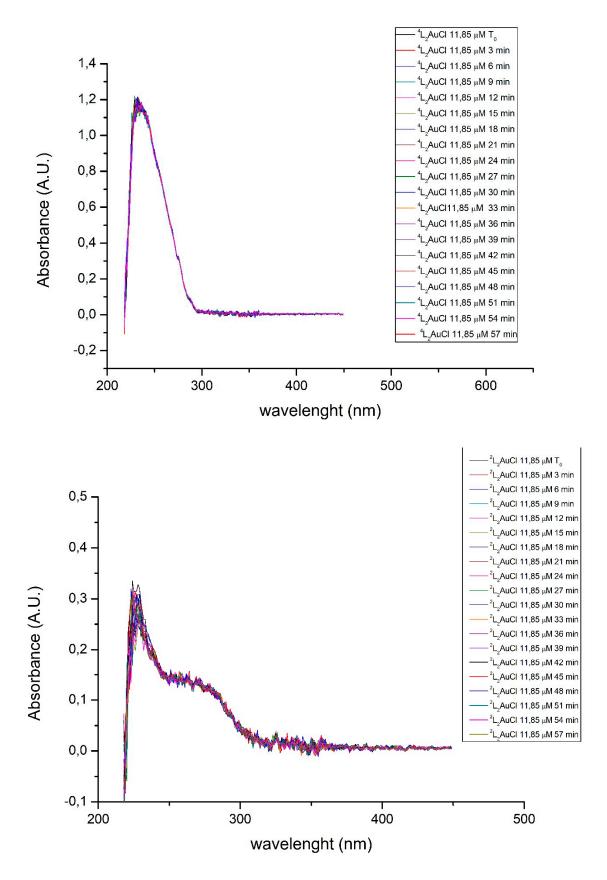


Figure S2. UV-visible spectra for 11.85 μ M of 4 L₂AuCl (above), and 2 L₂AuCl (below) in Hepes/methanol

Emission spectra

These emission spectra were recorded upon adding 4L or benzoic acid to DHFR 5 μM buffered solutions.

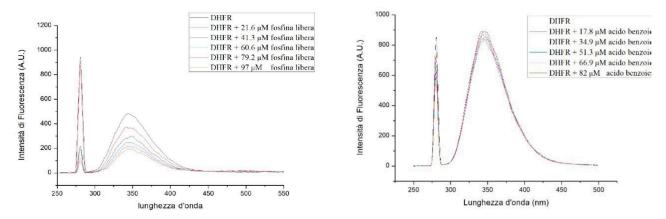


Figure S3. Quenching spectra for DHFR upon the addition of free phosphane, 4COOHPh₂P (left), and benzoic acid (right).