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Abstract: The unfolded protein response (UPR) is a highly conserved pathway that allows cells
to respond to stress in the endoplasmic reticulum caused by an accumulation of misfolded and
unfolded protein. This is of great importance to secretory cells because, in order for proteins to
traffic from the endoplasmic reticulum (ER), they need to be folded appropriately. While a wealth
of literature has implicated UPR in immune responses, less attention has been given to the role of
UPR in T cell development and function. This review discusses the importance of UPR in T cell
development, homeostasis, activation, and effector functions. We also speculate about how UPR may
be manipulated in T cells to ameliorate pathologies.
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1. Introduction

An important stop on the journey of a secreted protein to the plasma membrane is entry into the
endoplasmic reticulum (ER). Newly synthesized peptide sequences that emerge from the ribosome
containing an ER signal sequence are bound by a signal recognition protein (SRP). SRP binding slows
translation, and the SRP targets the ribosome-nascent chain complex to the protein translocation
channel (translocon) in the ER [1]. Upon docking of the ribosome with the ER, the peptide enters the
translocon, translation resumes, and the signal sequence is cleaved off.

Newly translated proteins are modified to allow for confirmation of appropriate protein formation
in the ER lumen. If protein folding does not proceed appropriately, chaperone proteins will bind to
the misfolded protein and retain it within the ER. Retention of the misfolded protein for an extended
period activates the endoplasmic reticulum-associated degradation (ERAD) pathway that results in
the ubiquitination and eventual degradation of the protein. The rate of protein trafficking is dependent
in part on this quality control process. Under normal conditions, ERAD is able to maintain ER
homeostasis, but should the cell become overwhelmed with misfolded protein, it must resolve this
issue or undergo apoptosis [2,3].

Integrated stress responses (ISR) are general stress-response mechanisms that are evolutionarily
conserved amongst eukaryotes [4]. These responses maintain cell homeostasis and are activated by a
number of mechanisms such as amino acid depletion, UV irradiation, lipid exposure, viral infection,
heme deprivation, oxidative stress, hypoxia, and ER stress due to the accumulation of misfolded
protein in the ER [5]. All mechanisms that activate ISR result in a block in general protein translation
due to phosphorylation of eukaryotic translation initiation factor alpha (eIF2α) at Ser51, and this helps
reduce stress in the ER. The unfolded protein response (UPR) overlaps with the ISR, as stress in the
ER activates both responses, and both responses result in phosphorylation of eIF2α [4,6]. However,
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in the case of ISR, multiple proteins can mediate phosphorylation of eIF2α, including protein kinase
RNA-like endoplasmic reticulum kinase (PERK), while UPR mediates phosphorylation of eIF2α
through PERK alone. PERK and the other activators of UPR are kept in an inactive state by GRP78,
and GRP78 disassociates and binds to unfolded protein, which leads to activation of these proteins [7].
Other molecules are involved in this process [8]; however, they will not be discussed here, as it is
beyond the scope of this review. eIF2α phosphorylation also selectively promotes the translation of
UPR specific mRNAs, such as activating transcription factor 4 (ATF4). ATF4 increases transcription
of genes involved in resolving ER stress and inducing apoptosis (Figures 1 and 2) [9,10]. ATF4 also
promotes the expression of IRE1α mRNA in mouse cells, and IRE1α is important in UPR [11].Int. J. Mol. Sci. 2019, 19, x 3 of 26 

 

Figure 1. The role of unfolded protein response (UPR) in cell survival upon induction of ER stress. 
GRP78 is normally associated with PERK, IRE1, and ATF6. GRP78 disassociates from these molecules 
and binds to unfolded proteins as they accumulate, keeping them sequestered in the ER. Recruitment 
of GRP78 away from these molecules leads to their activation. PERK dimerizes and auto-
phosphorylates upon removal of GRP78. It then phosphorylates eIF2α, which leads to inhibition of 
translation for most proteins, while UPR specific translation increases. One of those molecules 
upregulated is ATF4, which functions as a transcription factor and promotes the expression of 
proteins important in stress response. Upon release of GRP78, ATF6 travels to the Golgi where it is 
cleaved by S1P and S2P, resulting in a fragment that is active in promoting gene transcription. IRE1 
dimerizes and auto phosphorylates as well upon removal of GRP78. It then can splice Xbp-1 mRNA, 
allowing for the production of a transcription factor that works in tandem with ATF6 to promote 
genes involved in protein folding and degradation. IRE1 activates the regulated IRE1-dependent 
decay (RIDD) pathway which results in the degradation of mRNAs, which reduces the load in the 
ER. All of these pathways promote cell survival. 

  

Figure 1. The role of unfolded protein response (UPR) in cell survival upon induction of ER stress.
GRP78 is normally associated with PERK, IRE1, and ATF6. GRP78 disassociates from these molecules
and binds to unfolded proteins as they accumulate, keeping them sequestered in the ER. Recruitment of
GRP78 away from these molecules leads to their activation. PERK dimerizes and auto-phosphorylates
upon removal of GRP78. It then phosphorylates eIF2α, which leads to inhibition of translation for
most proteins, while UPR specific translation increases. One of those molecules upregulated is ATF4,
which functions as a transcription factor and promotes the expression of proteins important in stress
response. Upon release of GRP78, ATF6 travels to the Golgi where it is cleaved by S1P and S2P, resulting
in a fragment that is active in promoting gene transcription. IRE1 dimerizes and auto phosphorylates
as well upon removal of GRP78. It then can splice Xbp-1 mRNA, allowing for the production of a
transcription factor that works in tandem with ATF6 to promote genes involved in protein folding and
degradation. IRE1 activates the regulated IRE1-dependent decay (RIDD) pathway which results in the
degradation of mRNAs, which reduces the load in the ER. All of these pathways promote cell survival.

There are two forms of the serine/threonine kinase IRE1. Mucosal tissue contains the isoform
IRE1β, while other tissues possess IRE1α [12,13]. IRE1 splices a 26-nucleotide intron from X box binding
protein 1 (XBP1) mRNA, creating a protein that acts as a transcription factor for UPR-related genes [14].
IRE1 can also regulate a subset of other mRNAs through a process called regulated IRE1-dependent
decay (RIDD) [15]. In RIDD, IRE1 preferentially targets and cleaves ER-localized mRNAs at a Xbp-1
like consensus site [16,17]. RIDD activity increases under ER stress, and excessive IRE1 activation
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induces cell death by repressing anti-apoptotic pre-microRNAs; however, it appears to be necessary
for normal cell homeostasis [16,18,19]. IRE1 also promotes apoptosis via a pathway that involves Traf2
and JNK [20].

ATF6 is bound to the ER membrane, but when protein homeostasis is disrupted, as in ER stress,
GRP78 is released from the luminal domain [21]. ATF6 then migrates to the Golgi apparatus to undergo
cleavage, first by Site 1 Protease (S1P) and then by Site 2 Protease (S2P) [22]. This process unmasks
the cytosolic domain of ATF6, and ATF6 enters the nucleus where it binds to the ER stress response
element (ERSE) containing sequence to activate genes that encode molecules involved in the UPR,
ER chaperones, ERAD components, and Xbp-1 [14]. ATF6 and Xbp-1 can work in tandem to promote
expression of the above proteins [23]. While ATF6 promotes cell survival, it can promote apoptosis via
upregulation of CHOP [24–26] (Figure 2).

It is critical that cellular homeostasis is maintained, as failure to do so results in the development
of a diseased state in the host, and both UPR and ISR work to maintain homeostasis. The UPR
re-establishes normal function in the ER by promoting changes that resolve the accumulation of
unfolded protein. Activation of the UPR promotes degradation of terminally misfolded proteins
via ubiquitination and the proteasome and attenuated translation of non-essential proteins,
while increasing the expression of those that promote protein folding and degradation [7].Int. J. Mol. Sci. 2019, 19, x 4 of 26 

 
Figure 2. The role of UPR in cell death upon prolonged ER stress. Prolonged activation of UPR can 
promote apoptosis. Dimerization and phosphorylation of PERK promotes ATF4, which activates 
CHOP and subsequently apoptosis. ATF6 can also promote upregulation of CHOP. IRE1α can 
promote apoptosis via activation of JNK and via degradation of pro-survival RNAs by RIDD. 

2. UPR and T cell Lineages 

T cell development and differentiation results in an increase in protein translation, and the UPR 
is important in promoting the health of cells that secrete proteins. Moreover, the UPR has been 
recognized for its important role in regulating a variety of immune cell functions [29–32]. 
Increasingly, the UPR is shown to promote T cell survival and gain of effector functions due to its 
critical role in fostering protein secretion and ER homeostasis in T cells. 

2.1. The UPR and T Cell Development 

While UPR and ER stress are activated during T cell development, it is unknown if they play a 
direct role. IRE1 is active at the CD4+CD8+ double positive (DP) stage of T cell development and is 
downregulated upon the maturation of CD4+ T cells [33]. While this hints at a role for UPR in T cell 
development, it does not provide definitive proof. Amantini et al. showed that activation of the ion 
channel transient receptor potential cation channel subfamily V member 1 (TRPV1) induces ER stress 
in mouse thymocytes and implicated TRPV1 in the regulation of UPR molecules [34]. They showed 
that knocking out TPRV1 downregulated the expression of GRP78 and heat shock protein glucose-
regulated protein (GP96, also known as GRP94), and this led to a modest increase in the protein 
expression of ATF4 and endoplasmic reticulum resident protein 57. Loss of TRPV1 also resulted in 
increased apoptosis and reduced thymocytes, as well as defects in positive selection, leading to 
reduced DP thymocytes. While it is tempting to assume that the increased apoptosis is due to the 
elevated ATF4, TRPV1 is a component of the T cell receptor (TCR) signaling complex [35]. TRPV1 is 
phosphorylated by the proximal signaling molecule lymphocyte kinase or Lck, assumedly to mediate 
signaling events downstream of the TCR, as TRPV1−/− CD4+ T cells have reduced activation of 
signaling molecules downstream of the TCR. Failure to signal appropriately during thymocyte 
selection results in cell death, and Lck is critical in this process [36,37]. ATF4−/− mouse HSC injected 
into donor animals are able to develop into T lymphocytes [38]. Therefore, the increased apoptosis 
found in TRPV1−/− thymocytes may be occurring independent of ER stress and UPR. 

Figure 2. The role of UPR in cell death upon prolonged ER stress. Prolonged activation of UPR can
promote apoptosis. Dimerization and phosphorylation of PERK promotes ATF4, which activates
CHOP and subsequently apoptosis. ATF6 can also promote upregulation of CHOP. IRE1α can promote
apoptosis via activation of JNK and via degradation of pro-survival RNAs by RIDD.

Upon antigen recognition, immune cells undergo proliferation and develop effector functions
that result in the influx of proteins into the ER, potentially initiating ER stress. There is a wealth
of evidence that indicates that ER stress is a major contributor to disease and inflammation [27,28].
More recently, ER stress, ISR, and UPR have been shown to play a role in T cell development and
response. This review focuses on the role of ER stress and UPR in T cell development, homeostasis,
activation, proliferation, and effector functions. However, molecules that play a dual role in ISR and
ER stress will also be highlighted. In addition, we explore how UPR may be manipulated in T cells to
protect against cancer, asthma, and rheumatic diseases.
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2. UPR and T Cell Lineages

T cell development and differentiation results in an increase in protein translation, and the UPR is
important in promoting the health of cells that secrete proteins. Moreover, the UPR has been recognized
for its important role in regulating a variety of immune cell functions [29–32]. Increasingly, the UPR
is shown to promote T cell survival and gain of effector functions due to its critical role in fostering
protein secretion and ER homeostasis in T cells.

2.1. The UPR and T Cell Development

While UPR and ER stress are activated during T cell development, it is unknown if they play a
direct role. IRE1 is active at the CD4+CD8+ double positive (DP) stage of T cell development and is
downregulated upon the maturation of CD4+ T cells [33]. While this hints at a role for UPR in T cell
development, it does not provide definitive proof. Amantini et al. showed that activation of the ion
channel transient receptor potential cation channel subfamily V member 1 (TRPV1) induces ER stress in
mouse thymocytes and implicated TRPV1 in the regulation of UPR molecules [34]. They showed that
knocking out TPRV1 downregulated the expression of GRP78 and heat shock protein glucose-regulated
protein (GP96, also known as GRP94), and this led to a modest increase in the protein expression
of ATF4 and endoplasmic reticulum resident protein 57. Loss of TRPV1 also resulted in increased
apoptosis and reduced thymocytes, as well as defects in positive selection, leading to reduced DP
thymocytes. While it is tempting to assume that the increased apoptosis is due to the elevated ATF4,
TRPV1 is a component of the T cell receptor (TCR) signaling complex [35]. TRPV1 is phosphorylated
by the proximal signaling molecule lymphocyte kinase or Lck, assumedly to mediate signaling events
downstream of the TCR, as TRPV1−/− CD4+ T cells have reduced activation of signaling molecules
downstream of the TCR. Failure to signal appropriately during thymocyte selection results in cell
death, and Lck is critical in this process [36,37]. ATF4−/− mouse HSC injected into donor animals
are able to develop into T lymphocytes [38]. Therefore, the increased apoptosis found in TRPV1−/−

thymocytes may be occurring independent of ER stress and UPR.
GP96 appears necessary for T cell development. GP96 is a molecular chaperone critical in the

folding and transport of toll-like receptors and integrins, and without GP96 these molecules fail to
be transported to their post-ER compartments [39–41]. Thymocyte development requires integrin
mediated cell-to-cell interactions [42]. GP96 is required for the expression of most integrins on the
cell surface of hematopoietic stem cells (HSC) and T cell development, as the absence of GP96 in
mouse hematopoietic stem cells (HSC) led to a CD4−CD8− double negative (DN)1 to DN2 transitional
block [39].

Loss of ribosomal protein 22 (Rpl22) causes a block in αβ cell development, but not γδ T cell
development in mice [43]. This defect is due to elevated ER stress caused by an inability to inhibit
protein synthesis, which leads to the upregulation of cell cycle regulator and tumor suppressor p53
and the induction of apoptosis [44]. Knocking down PERK in these cells rescues Rpl22 deficient mouse
T cells. These results indicate that PERK may play a role in T cell development, albeit in an ATF4
independent manner.

Regulating mitochondrial function is important for T cell development. For example, RhoA deficient
mice have reduced thymocytes and increased apoptosis in thymocyte populations, conceivably due to
their thymocytes having elevated reactive oxygen species and mitochondrial function [45]. PERK protects
the mitochondria during early stages of ER stress by inducing mitochondrial remodeling in an ATF4
independent manner [46]. It is conceivable that PERK may promote T cell development in the thymus
in an ATF4 independent manner through its roles in promoting mitochondrial health.

Interestingly, the Rpl22 deficient mice have a block at the DN3 stage of T development. At this
stage T cells must signal through the pre-TCR to allow for β-chain selection and progression to the
DP CD4+CD8+ stage [47,48]. DN3 T cells undergo robust proliferation upon β chain selection [49],
and it is possible that UPR promotes survival upon ER stress caused by the proliferation. Alternatively,
UPR could be important for β chain selection itself. Rpl22 is upregulated by Myc interacting zinc
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finger protein (M1Z1) in T cells undergoing VDJ recombination [50]. MIZ1 is crucial for lymphocyte
development and promotes pre-TCR expression and β chain selection, and loss of MIZ1 or Rpl22 at
this stage results in increased p53 mediated apoptosis [43,51,52]. UPR is known to be activated in
lymphocyte progenitor stages, and plays an important role in heavy chain rearrangement in B cells,
a process that is analogous to β chain rearrangement in T cells [53].

2.2. T Cell Activation and Homeostasis

TCR signaling activates UPR in mouse cells, indicating that UPR may play an important role in
T cell activation upon antigen stimulation [54,55]. IL-2 induced by TCR stimulation in CD8+ T cells
correlates with the expression of UPR response molecules such as GRP78, and GRP78 heterozygous
mouse CD8+ T cells have a defect in proliferation which is restored by exogenous IL-2 [54,56]. Thaxton
et al. show that ER stress activated by T cell stimulation plays an important role in the activation of
CD4+ murine T cells [57]. While IRE1α is upregulated upon TCR stimulation, IRE1α deficient mouse
T cells appear to proliferate and produce cytokines upon TCR and CD28 stimulation [55], indicating
that IRE1α is not required for T cell activation. ATF6 may also play a role in the regulation of T cell
activation. Loss of GP96 leads to maintenance of a naïve state in mouse CD4+ T cells [57], and GP96
expression is regulated by ATF6 [58]. Future studies will have to explore if ATF6 directly plays a role
in T cell activation.

ER stress and UPR also appears to play a role in T cell homeostasis and proliferation.
KDEL receptor 1 (KDELR) is responsible for retrograde transport of ER resident proteins to the
ER from the cis-Golgi. Studies using a cell line stably expressing mutant KDELR showed that the
inability of KDELR to retrieve molecules to the ER resulted in the upregulation of UPR [59]. T cells
in mice with a KDELR mutation have increased eIF2α phosphorylation and upregulation of CHOP,
leading to a reduction of naïve T cells in vivo [60]. However, a strong TCR signal can overcome the
stress induced by the KDELR mutation, maintain naïve cells, and restore the ability of the cells to
proliferate [61]. ATF4, which is upregulated by phosphorylated eIF2α, plays a role in proliferation as
well. ATF4 deficient murine T cells have reduced proliferation [62], while Xbp-1 and CHOP appear
to play a role in T cell quiescence. T cells in Schlafen-2 mutant mice have chronic ER stress, with a
greater proportion of T cells adopting an activated state and T cell death, and deletion of Xbp-1 or
CHOP increases viability and partially corrects for developmental defects [63,64].

The GTPase domain of the immune-associated nucleotide-binding protein 5 (Gimap5, also known
as IAN5) regulates natural killer T cell (NKT) functions and NKT development and peripheral T cell
survival, proliferation, and Ca2+ homeostasis in mouse and rat models, as loss of Gimap5 negatively
effects these processes [65–68]. Moreover, Gimap5 is upregulated in single positive (SP) CD4+ and
CD8+ thymocytes, and knocking down Gimap5 in fetal mouse thymocytes inhibits the development of
double positive and CD4+ SP T cells [69]. Gimap5 regulates T cell homeostasis and proliferation in
peripheral T cells through inhibition of glycogen synthase kinase 3β (GSK3β), a UPR protein found to
block CHOP mediated apoptosis [68,70,71].

2.3. CD4+ T Helper Cells

CD4+ T cells are involved in many aspects of the immune response and it is well established
that CD4+ T cell differentiation is dependent on the strength and length of the TCR signal and the
microenvironment. Th1 cells, identified by production of IFNγ, are involved in intracellular responses;
Th2 cells, identified by production of IL-4, are involved in extracellular responses; Th17 cells, identified
by the production of IL-17, are involved in inflammatory responses; Th9 cells, identified by the
production of IL-9, are involved in responses to parasites; and T regulatory cells are involved in
regulating immune functions [72]. Recently, the UPR and ER stress have been shown to play a role in
T helper differentiation and effector functions.

The IRE1α/Xbp-1 pathway appears to play a role in promoting Th2 differentiation and effector
functions. Xbp-1 promotes Th2 differentiation and activation [73], and induction of Th2 and type 2
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innate lymphoid cell (ILC2) effector functions in mice are dependent on IRE1α and Xbp1s [74,75].
CD4+ T cells from IRE1α mutant mice have reduced IL-4 production, Xbp1s mRNA, and IL-4 mRNA
stability in vitro upon activation and Th2 differentiation [55]. Activation of IRE1α mutant T cells in
the presence of 4µ8c, a small molecule inhibitor of IRE1α RNase function, leads to a further reduction
in Xbp1s mRNA levels and inhibition of Th2 cytokines IL-4, IL-5, and IL-13. Moreover, treatment of
human and mouse T cells activated in the presence of 4µ8c, a small molecule inhibitor of IRE1α RNase
function, leads to reduced secretion of IL-4, IL-5, and IL-13 [55,76,77]. Human Th2 cells differentiated
in the presence of 4µ8c have reduced IL-4 production; however, a study measuring IL-4 production in
mouse cells treated under similar conditions found IL-4 secretion was inhibited, while cells maintained
the ability to produce IL-4 as detected by flow cytometry [76,77]. The discrepancy between these
studies may be due to differences in species. Interestingly, while inhibition of UPR reduces Th2 effector
function, cellular stress that promotes ER stress is reported to also reduce Th2 cytokine production [78].
This indicates that there may be a “Goldilocks Zone” with regards to ER stress, too little or too much
leads to effector functions being inhibited.

UPR appears to regulate Th2 cytokines differently in Th2 cells with an established phenotype.
Treatment of established human Th2 cells and a mouse Th2 cell line, D10.G4.1, with 4µ8c leads to a
reduction of IL-5 secretion, but not IL-4 [77]. Moreover, IL-5 is still produced in the mouse cells treated
with 4µ8c, indicating that inhibition of IRE1α in established Th2 cells results in loss of IL-5 secretion,
but not production. Interestingly, strength of signal appears to play a role in the regulation of Th2
cytokines by UPR, as there was a modest reduction in IL-13 production in mouse cells stimulated
with strong agonists that mimic a T cell signal, Phorbol myristate acetate and ionomycin, but not
plate-bound antibody. In addition, IL-4 translation appears to be regulated by eIF2α in primed Th2
cells; restimulation of Th2 cells results in dephosphorylation of eIF2α and translation and production
of IL-4 [79].

While there is considerable evidence for a role for UPR in Th2 effector functions and cytokine
regulation, UPR appears to play a lesser role in Th1 cells. Induction of cell stress via inhibition of
glucose metabolism or osmotic stress, events that activate ISR, results in reduced IFNγ production
in mouse Th1 cells [78]. While ATF4 is not required for T cell development in the thymus, it appears
to be necessary for Th1 effector functions [38,62]. Using a fetal liver cell transfer (FTL) mouse model,
Yang et al. showed that loss of ATF4 leads to diminished Th1 effector function in high and low oxidizing
environments [62]. Moreover, IFNγ was reduced in isolated splenocytes from ATF4-/- FTL mouse cells
using the experimental autoimmune encephalomyelitis (EAE) and keyhole limpet hemocyanin (KHL)
models. Induction of ATF4 in T cells undergoing activation in a high oxidizing environment or under
amino acid deprivation appears to be induced in part by general control nonderepressible proteins
2 (GCN2), a kinase that phosphorylates eIF2α in response to proteasome inhibition and nutritional
deprivation as part of the ISR [62,80]. ATF4 regulates mechanistic target of rapamycin complex 1
(mTORC1), as inhibition of ATF4 leads to reduced mTORC1 pathway activation [62]. The mTORC1
pathway promotes Th1 differentiation [81,82]. However, IRE1α and PERK do not appear to play a
direct role in Th1 effector functions, as loss or inhibition of these molecules in Th1 cells or cells being
differentiated under Th1 conditions does not block Th1 effector functions and profile [55,76,77,83].
This indicates that PERK is not important for promoting ATF4 in Th1 cells, and that ATF4 may be
activated by one of the many other pathways that are explained in the introduction that promote
eIF2α phosphorylation.

Loss of ATF4 led to a modest reduction in IL-17 production in vitro under high oxidizing
conditions, presumably due to a reduction in the activation of mTORC1 [62]. The mTORC1 pathway
is implicated in regulating Th17 cells and IL-17 production, and leptin induces mTOR, a component
of mTORC1 [81,84,85]. Leptin activates the mTOR via the phospoinositide-3-kinase/Protein kinase
B (also known as Akt) pathway [85–87]. Interestingly, leptin, which can induce Th17 and Th2 cell
differentiation and effector functions, is found to activate Th2 differentiation via activation of a
signaling pathway that involves mTOR promoting IRE1α activation and Xbp1s [74,88–90]. Moreover,
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leptin promotes the survival of autoreactive T cells, including IL-17 and IFNγ producing cells and
the ability of the cells to induce EAE via activation of mTOR [91]. ATF4 deficient mice have reduced
clinical disease in an EAE model [62]. It may be that targeting ATF4 will be of benefit in the treatment
of autoimmunity due to its influence on mTOR and IRE1 [11].

CHOP has been implicated in the regulation of IL-17 [92]. However, a recently published
study found CHOP−/− mice had normal Th17 differentiation [78]. Brucklacher-Waldert et al. found
that cellular stressors such as hypoxia, changed ionic pressure, and reduced glucose metabolism
promote activation of the UPR via Xbp-1 and enhanced Th17 differentiation, albeit to different
degrees, while inhibition of cellular stress via treatment with Tauroursodeoxycholic acid (TUDCA),
a water-soluble bile salt known to block ER stress response, delayed the onset of Th17 mediated
autoimmunity in a mouse model of multiple sclerosis. They also found treating cells with activators of
ER stress promoted Th17 effector functions. Moreover, in the same study, onset of disease symptoms
was shown to be delayed in mice with Xbp-1 deficient lymphocytes. The data in this study corroborated
with other studies that found that hypoxia and disruption of osmotic pressure induced Th17 effector
functions [93–97]. However, prolonged hypoxia without reoxgynation results in reduced IL-17,
while culturing cells under hypoxic conditions with normoxic exposure (5% oxygen) leads to elevated
IL-17 [93,98]. In contrast, a 2011 study by Shi et al. found that blocking glycolysis using a similar
method to the Brucklacher-Waldert study resulted in reduced Th17 effector functions and promotion
of Treg differentiation in vitro [94]. Differences in results between these two studies may be explained
by seeding densities and/or media which can change the microenvironment and the presence of
environmental stressors. However, Shi et al. also found that treatment of mice with an inhibitor of
glycolysis reduced EAE. A recent study looking at the role of glycolysis in Th17 and Treg cell functions
using human peripheral blood mononuclear cells (PBMCs) found inhibiting glycolysis blocks Th17
differentiation and reduced IL-17 production in memory T cells and the survival of memory T cells [99].
This study also found that while Treg cells utilize glycolysis, inhibiting glycolysis in memory Tregs does
not block their ability to function. Future studies will have to be performed to better define the role of
glycolysis and UPR in Th17 effector functions. Interestingly, while PERK and IRE1α are not required
for Th17 differentiation, as their inhibition does not preclude Th17 differentiation [55,83], inhibition
of PERK and IRE1α mitigates the effects of cellular stress on Th17 differentiation caused by reduced
glucose metabolism or hypoglycemia and changed ionic pressure, respectively [78]. This indicates
that different arms of UPR are important for promoting Th17 effector functions dependent on various
environmental stressors.

2.4. T Regulatory Cells

ER stress is implicated in the regulation of regulatory T cells. CD4+ and CD8+ human T regulatory
(Treg) clones had elevated IL-10 cytokine production when treated with thapsigargin, an activator of
ER stress and UPR, in an eIF2α phosphorylation dependent manner [100]. Loss of ATF4 led to a modest
increase in FOXP3 mRNA expression in mouse CD4+ cells differentiated under T regulatory conditions
in a high oxidizing environment [62]. In addition, loss of molecular chaperone GP96 led to instability
in mouse Treg cells resulting in loss of FOXP3 expression and promotion of IFNγ production [101].
Interestingly, inhibition of GP96 led to a modest increase in ATF4 in hepatoma cells [102], causing
one to ask if the loss of FOXP3 and promotion of IFNγ in GP96 deficient Tregs is due to elevated
ATF4. Indeed, ATF4 promotes Th1 responses [62]. GP96 also regulated the availability of TGF-β on the
surface of T regulatory cells [101]. This indicates that GP96 plays roles in T cell activation and plasticity.

2.5. CD8 T Cells

CD8+ T cells, known as cytotoxic T cells, play an important role in immune responses to cancer
and internal pathogens. ER stress plays an important role in CD8+ T cell differentiation and gain of
effector functions. Infection of mice with Lymphocytic choriomeningitis virus resulted in upregulation
of spliced Xbp-1, and Xbp-1 enhanced differentiation of CD8+ T cells [103]. ER stress chaperone
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GRP78 also appears to play a role in the regulation of granzyme B in CD8+ T cells and CD8+

Intraepithelial lymphocytes, as GRP78 heterozygous CD8+ T cells had reduced granzyme B secretion
and cytotoxicity [56]. This granzyme B deficiency, found in GRP78 heterozygous mouse T cells,
was due to a reduction in IL-2 mediated proliferation, as exogenous IL-2 helped to partially restore
granzyme B expression.

2.6. Invariant Natural Killer T Cells

Invariant natural killer T cells (iNKT) cells are an innate-like T cell subset that recognizes glycolipid
antigens presented by a non-classical MHC molecule, CD1d and express natural killer cell markers
on their surface. iNKT cells rapidly produce cytokines following activation, and like other T cells,
can be further divided into effector lineages based on their cytokine profiles [104]. iNKT1 cells produce
IFNγ and CCL5, iNKT2 cells produce IL-4 and IL-13, and iNKT17 cells produce IL-17, IL-4, and IL-13.
Moreover, these subsets of cells appear to play important roles in anti-tumor immunity and promoting
autoimmunity and asthma [104–108]. The IRE1α/Xbp-1 pathway is active within iNKT1 and iNKT17
lineages, and UPR is upregulated upon TCR stimulation [109]. Interestingly, IRE1α deficient iNKT1
and iNKT17 cells experience globally impaired cytokine production due to reduced mRNA stability.
This is similar to how IL-4 is regulated in primary CD4+ T cells isolated from IRE1α deficient mice [55].
In addition, IRE1α is implicated in regulating GATA3 and T-bet mRNA in iNKT cells, as palmitic
acid-mediated ER stress leads to degradation of GATA3 and T-bet mRNA via RIDD, which results
in reduced IL-4 and IFNγ [110]. Moreover, these transcription factors are important for iNKT1 and
iNKT17 effector functions [111].

3. UPR, T Cells, and Disease

ER stress has been implicated in neurological diseases, diabetes, cancer, and various inflammatory
disorders. Moreover, ER stress and the activation of the UPR influences the differentiation and effector
functions of T cells and, in turn, manipulating UPR in T cells may be a way to combat a number of
diseases and disorders. In the following sections, we speculate on how UPR may be manipulated in T
cells to combat disease.

3.1. Cancer

The enhanced proliferation found in cancer cells leads to a nutrient deprived environment,
hypoxia, and an increased influx of unfolded protein in the ER, all of which activate UPR [112–115].
Moreover, tumor cells alter their surroundings to create a supportive and immunosuppressive
microenvironment. T cells play an important role in cancer responses; however, T cells found
in the tumor microenvironment experience metabolic constraints which can affect T cell effector
function [116–118]. Interaction of T cells with tumors results in reduced function and death for
T cells due to the secretion of soluble factors and through cell to cell interactions [119–122].
Manipulation of UPR appears to be an avenue for the maintenance of T cell function and health
in tumor microenvironments.

CD4+ T cells play an important role in tumor immunity. CD4+ T cell death is induced by tumor
supernatants in a manner that induces ER stress-mediated apoptosis [123]. IRE1α was found to
be activated in T cells found in the ovarian cancer microenvironment, leading to decreased IFNγ,
suppressed mitochondrial activity in CD4+ T cells, and increased infiltration of T cells in patient
tumors. Inhibiting the IRE1α-Xbp-1 pathway activation in human T cells enhanced mitochondrial
respiration. In addition, mice with Xbp-1 deficient T cells mounted a tumor response, experienced
a delay in malignancy, and had enhanced survival in an ovarian cancer model [122,124]. This work
is of particular interest as Xbp-1 appears to promote CD8+ T cell effector functions in response to
infection [103]. It may be that the cell microenvironment determines whether the IRE1α-Xbp-1 pathway
will promote or inhibit T effector functions.
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There is evidence that the UPR can be manipulated to promote the clearance of tumors.
Ca2+ mobilization is important for T cell activation, and blocking inositol triphosphate receptor, a Ca2+

channel, in the ER in vivo promotes tumor responses in T cells [57]. Ca2+ accumulation in the ER is
regulated by sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) pumps, and inhibition of SERCA
induces ER stress [125,126]. It may be that nifetepimine can be used to inhibit tumors and promote T
cell responses. Tumor induced SERCA3 upregulation in T cells resulted in apoptosis via activation
of the UPR, and inhibition of this process by treatment with nifetepimine resulted in T cell survival
and downregulation of SERCA3 [123]. This is particularly interesting because nifetepimine promoted
apoptosis in triple negative breast carcinoma cells due to inhibition of GRP78 upregulation, and it is
thought that tumors survive in part due to activation of the UPR [127,128]. Genetic ablation of the ER
stress molecule GP96 resulted in reduced Ca2+ mobilization in mouse T cells and reduced glucose
metabolism [57]. GP96 expression is associated with a number of cancers [129,130]. Therefore, due to
the importance of GP96 in promoting cancer, any therapies that promote GP96 in T cells will have to be
carefully targeted. GP96 is also upregulated in primary lymphomas caused by Marek’s disease virus,
a pathology found in chickens that is used as a model for lymphomas that express Hodgkin’s disease
antigen CD30 [131–133]. ATF6 promotes Xbp-1 and GP96 [14,58] expression, and ATF6 expression
correlates with poor prognosis in a number of cancers [134,135]. However, it remains to be determined
if ATF6 can directly influence T cell function in tumor immunity.

ATF4 is important for metabolism in T cells undergoing activation and regulates T helper effector
functions [62], making ATF4 a potential target for cancer treatment. Indeed, there is interest in targeting
ATF4 for tumor therapy, as ATF4 is overexpressed in many cancers and appears to promote the survival
of tumors [136–139]. Loss of ATF4 in mice led to a reduction in Th1 cells when differentiated in vitro
and increased FOXP3 expression in T cell cultures under high oxidizing conditions [62]. Th1 cells
promote the clearance of tumors in many different cancer models [140–142]. However, any therapies
that inhibit ATF4 in T cells will need to be targeted and narrow in scope, as a global loss of AFT4
leads to increased Th17 responses in vivo due to effects on non-T cells [62]. Alterations in the balance
of Th17 and Treg cells are reported in a number of cancers [143,144]. Moreover, Th17 and Treg cells
are both implicated in promoting and inhibiting anti-tumor activities [72,145,146]. ATF4 presents a
potential target for helping maintain the balance between Th17 and Treg cells in tumor immunity.

UPR is also a potential target for the treatment of leukemias. Ubiquitin fusion degradation 1
(UFD1) is a component of the ERAD complex and promotes the elimination of misfolded proteins [147].
UFD1 inactivation in human T- acute lymphoblastic leukemia (T-ALL) induces apoptosis via activation
of PERK [148]. There are a number of proteasome inhibitors available for treatment of leukemia.
The proteasome inhibitor bortezomib induces apoptosis via activation of ER stress responses, and in
combination with casein kinase 2 inhibitor CX-4945, which also induces apoptosis via UPR, these two
drugs functioned to induce apoptosis of various T-ALL and B cell acute lymphoblastic leukemia
(B-ALL) lines and primary lymphoblasts from T and B-ALL patients [149]. The drugs inhibited GRP78
activation, while promoting IRE1, CHOP, PERK, and eIF2α phosphorylation. Treatment of Jurkat
cells, a T-ALL derived cell line, with chemotherapeutic agent selenite, led to activation of ATF4 and
CHOP and promotion of cell death [150]. Moreover, farnesol, a naturally occurring isoprenoid alcohol,
induced apoptosis and blocked proliferation of human T lymphoblastic leukemia Mot4 cells, and this
correlated with upregulation of CHOP and other UPR associated molecules [151]. Interestingly, just as
with the combination of CX-4945 and bortezomib, farnesol reduced GRP78 expression. GRP78 when
overexpressed promotes chemoresistance in cancer cells [152,153], and GRP78 levels appear to be
predictive of chemoresponsiveness [154–156]. Therefore, targeting GRP78 and other UPR molecules in
T cell leukemias is another potential avenue for treatment.

3.2. Asthma

Asthma is a lung disease that inflames and constricts the airway, leading to difficulty breathing.
It has a number of distinct clinical phenotypes caused by interactions of different leukocytes, epithelial
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cells, and stromal cells, and while asthma is classically thought of as a type 2 immune response disease
mediated by cytokines IL-4, IL-5, and IL-13, other T cell types such as Th1, Th17, Treg, and NKT cells
are implicated in asthma pathology [107,157–161]. Moreover, T cells are known to retain plasticity and
are influenced by their surroundings, allowing them to manifest attributes typically assigned to other
subsets [162–165]. While the majority of cases can be controlled using standard treatments, a subset of
asthmatic patients is unable to control the disease.

The IL-5-producing highly pathogenic memory Th2 cells, also termed memory type pathogenic
Th2 cells (Tpath2), are important in inducing pathogenesis in allergic airway inflammation and atopic
dermatitis [166,167]. IL-4 produced by these cells promotes Th2 differentiation and IgE isotype
switching in B cells; IL-5 produced by these cells recruits eosinophils, leading to eosinophilia; and IL-13
produced by these cells targets the airway epithelial cells to induce airway hyperresponsiveness.
IRE1 regulates Th2 cytokine production and differentiation in vitro and in vivo [55,73,75–77]; moreover,
inhibiting IRE1 in established Th2 cells leads to a block in IL-5 secretion, indicating that UPR could be
used to target Tpath2 cells

Obesity is a major risk factor for asthma, and elevated leptin, an adipokine mainly produced
by adipocytes, correlates with allergic asthma [168,169]. While obesity and a high fat diet appear to
promote exacerbated lung disease, there is some debate over how T cells are affected by leptin. It is
clear that leptin is critical for T helper responses in vitro and in vivo [74,170,171]. There is evidence that
leptin can upregulate cytokines such as IFNγ and IL-17 in asthma and can both promote and inhibit
Th2 effector functions in vitro and in type 2 diseases such as asthma and allergic rhinitis [170–175].
This variation may be due to the concentration of leptin present. Leptin can affect nearby cells that
influence T helper effector functions [176–178]. Changes in T cell subpopulations occur in the adipose
tissue and blood of obese individuals overtime; moreover, there is evidence that metabolic abnormality
can influence T helper effector cytokine profile [179–181].

Leptin, either applied exogenously or upregulated via a high fat diet in mice, promotes type
2 lymphocyte responses and airway hyperresponsiveness, and there is evidence that this requires
activation of the IRE1α/Xbp-1 pathway in T cells [74,75,172,182]. Feeding mice a high fat diet increased
Xbp1s expression in splenocytes and elevated Th2 responses and airway hyperresponsiveness [75].
Knocking down Xbp1s led to reduced Th2 responses in T cells stimulated with leptin and
promoted death.

Leptin and obesity also promote Th17 differentiation, and Th17 cells are elevated in the visceral
adipose tissues and peripheral blood of obese individuals [88,179,183,184]. A study by Silva et al.
found obesity in mice leads to elevated IFNγ, IL-4, and IL-17 in lung tissue homogenates [172]. Leptin
also appears to promote airway hyperresponsiveness in obese mice in a Th17 dependent manner [185].
While Zheng et al. did not explore whether IL-17 was elevated in their obese mice experiencing
airway allergic responses, they do find neutrophil infiltration increased in the lung, and Th17 cells
play an important role in recruiting neutrophils [75,186]. Treating obese mice with celastrol, a drug
known to promote apoptosis in cancer cells via activation of IRE1, ATF4, and CHOP, reduces airway
hyperresponsiveness and IL-17 production [185,187–189]. These studies indicate that targeting UPR in
obesity mediated asthma may prove beneficial for treatment.

Loss of Gimap5 promoted pathogenic Th2 and Th17 cells in humans and mice and led to an
exacerbated lung allergic inflammation and airway hyperresponsiveness in mice [190], and Gimap5
is implicated in regulating CHOP activity [68,69]. This does not indicate a direct role of CHOP in
airway hyperresponsiveness; however, arsenic trioxide treatment reduced airway hyperresponsiveness,
lung inflammation, and reduced Th17 cells in mouse models of asthma [191–194]. This treatment
promoted T cell apoptosis, and knocking down CHOP in T cells provided some protection to T cells
from arsenic trioxide treatment [192]. In addition, celastrol, which reduces Th17 associated airway
hyperresponsiveness caused by obesity in mice, is known to promote upregulation of CHOP and
apoptosis and downregulates GSK3β [185,188]. GSK3β, which is found downstream of Gimap5,
inhibits CHOP induced apoptosis [70,187,188]. These studies hint at an importance of CHOP in
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controlling airway hyperresponsiveness and lung inflammation; however, future studies will have to
explore a role for CHOP in the pathology of asthma or allergy and whether it is protective or harmful.

ER stress and UPR are implicated in the regulation of allergic responses and in T cells involved
in these diseases. ER stress also appears to mediate mast cells and eosinophil responses [32,195].
Moreover, treatment of mice with 4µ8c, an inhibitor of IRE1α RNase activity, suppressed passive
cutaneous anaphylaxis, a disease mediated by tissue mast cells [195]. Therefore, targeting ER stress
in models of asthma, as well as other type 2 diseases, may prove to be protective due to effects on T
helper cells and other immune cells involved in these responses.

3.3. Rheumatic Diseases

T cells are involved in the pathology of a number of rheumatic diseases. While the manifestations
of systemic lupus erythematosus (SLE) are mediated by autoantibodies against nuclear antigens
and other self-proteins, dysregulation of T cell function and population ratios helps promote
disease [196,197]. Moreover, pathology is thought to develop in part due to enhanced T cell
apoptosis [198,199]. Because UPR is important in T cell effector functions, as explained earlier
in this text, targeting UPR associated molecules in T cells may help protect against SLE. T cells
in SLE patients have altered expression of adhesion markers, cell signaling pathways, and TCR
subunits [196]. Moreover, SLE disrupts T lymphocyte homeostasis, and UPR helps regulate T
cell homeostasis. In addition, there is evidence for oxidative stress in T cell dysfunction in SLE,
and oxidative stress induces genes involved in UPR [4,200]. A 2014 study found CHOP, IRE1, and PERK
to be downregulated in PBMCs of SLE patients, while total Xbp-1 and Xbp-1s was upregulated [201].
T cells make up between 50–75% of the total PBMCs in normal individuals [202], so one assumes
that the elevated gene expression is due in part to the T cells present in SLE individuals. Moreover,
T lymphocytes from SLE patients are more susceptible to ER stress induced apoptosis [203]. There is
also evidence that UPR contributes to T cell responses in the development of arthritis. Dietary palmitic
acid, an inducer of ER stress and RIDD in NKT cells, and tunicamycin, an activator of ER stress and
UPR, inhibit IL-4 and IFNγ in a mouse model of arthritis and leading to reduced antibody induced-joint
inflammation [110]. Because UPR appears to play an important role in NKT cell effector responses,
targeting UPR in these cells may protect against joint inflammation.

Antibodies to GRP78, GRP94, and Calnexin, an ER resident chaperone involved in protein folding,
are found in the sera of SLE and rheumatoid arthritis (RA) [204]. In particular, GRP78 is a major
autoantigen for human T cells in patients [205,206]. GRP78 is upregulated in the synovial sections
of RA patients, and T cells reactive to GRP78 are found in RA patients [207]. Preimmunization of
rats and mice with GRP78 stops the development of arthritis [205]. Moreover, stimulation of human
PBMCs and CD8 T cells with GRP78 results in production of IL-10 and the development of a regulatory
phenotype [206,208]. Treatment of mice with GRP78 intravenously or subcutaneously during the
active phase of the collagen induced arthritis model reduced disease severity and led to increased
IL-4, IL-5, and IL-10 (associated with dampening immune responses) production [209]. Moreover,
this improvement was dependent in part on cytokine IL-4, as GRP78 treatment was not able to lessen
disease severity in IL-4−/− mice immunized with GRP78. Interestingly, high levels of GRP78 did
not improve severity in mice. Peripheral T cells in RA patients proliferate to GRP78 in a HLA-DR
dependent manner unlike healthy individuals [207,208]. Shoda et al. show through using human
PBMCs from individuals with RA that GRP78 derived epitopes are differently recognized by effector
T cells and T regulatory cells. The epitope that induced the greatest response (immunopromoting
epitope) activated effector T cells from RA patients, but not healthy individuals, as evidenced by
elevated IFNγ and IL-17 and increased proliferation, while an epitope that produced a weaker T
cell response (immunoregulatory epitope) lead PBMCs to produce cytokine IL-10 [210]. In addition,
stimulating PBMCs with the immunopromoting epitope in the presence of the immunoregulatory
epitope reduced IL-17 and IFNγ production, and introducing the immunoregulatory peptide orally
in a collagen induced arthritis model led to increased IL-10 and T regulatory cells. It may be that the
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effector response is activated at higher concentrations of GRP78. Weber et al. found antibodies against
GRP78, GRP94, and calnexin in RA individuals early into disease progression [204]. These molecules
may also play a role in both pathogenicity and in protection, with higher concentrations of GRP78
promoting disease progression in mice [206,209]. In addition, T cells from SLE patients also proliferate
in response to GRP78, albeit to a lesser degree when compared to T cells from RA individuals [210].
These studies indicate that UPR could be targeted to treat RA and potentially SLE.

4. Conclusions

Changes that occur in T cells related to development, proliferation, activation, and differentiation,
lead to upregulation of ER stress and UPR. UPR is critical for the survival of cells due to its role in
maintaining ER stress homeostasis. Much work remains with regards to exploring how UPR and ER
stress control T cell immunity; however, the studies highlighted in this review suggest that UPR is
critical for T cell development and immune functions and that UPR could play an important role in
regulating diseases mediated by T cells (Figure 3). Future work is required to determine the efficacy of
treatments that modulate UPR on disease induction and progression.Int. J. Mol. Sci. 2019, 19, x 13 of 26 
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