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Abstract: Cell cytotoxicity assays, such as cell viability and lactate dehydrogenase (LDH) activity
assays, play an important role in toxicological studies of pharmaceutical compounds. However,
precise modeling for cytotoxicity studies is essential for successful drug discovery. The aim of our
study was to develop a computational modeling that is capable of performing precise prediction,
processing, and data representation of cell cytotoxicity. For this, we investigated protective effect of
quercetin against various mycotoxins (MTXs), including citrinin (CTN), patulin (PAT), and zearalenol
(ZEAR) in four different human cancer cell lines (HeLa, PC-3, Hep G2, and SK-N-MC) in vitro.
In addition, the protective effect of quercetin (QCT) against various MTXs was verified via modeling
of their nonlinear protective functions using artificial neural networks. The protective model of QCT
is built precisely via learning of sparsely measured experimental data by the artificial neural networks
(ANNs). The neuromodel revealed that QCT pretreatment at doses of 7.5 to 20 µg/mL significantly
attenuated MTX-induced alteration of the cell viability and the LDH activity on HeLa, PC-3, Hep G2,
and SK-N-MC cell lines. It has shown that the neuromodel can be used to predict the protective
effect of QCT against MTX-induced cytotoxicity for the measurement of percentage (%) of inhibition,
cell viability, and LDH activity of MTXs.
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1. Introduction

Cell cytotoxicity assays have a central role in toxicology studies in the assessment of the in vivo
toxic potential of pharmaceutical chemical agents based on in vitro cell cytotoxicity studies [1]. In vitro
cell cytotoxicity assays are generally used for drug screening to detect whether the test molecules
have effects on cell proliferation or display direct cytotoxic effects. By using this concept, it is
possible to measure the protective effect of pharmaceutical lead compounds as well. Two cytotoxicity
assays, including cell viability and lactate dehydrogenase (LDH) leakage assays, are widely used
in vitro toxicology studies. Cell viability is an important indicator for understanding the underlying
mechanisms of certain genes, proteins, and pathways involved cell survival or death after exposing
to toxic agents [2]. The LDH leakage assay is based on the measurement of LDH activity in the
extracellular medium, where the loss of intracellular LDH and its release into the culture medium
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is an indicator of irreversible cell death due to cell membrane damage [3]. In vitro cell viability and
LDH leakage assays play a crucial role in predictive toxicology in assessing the toxicity of chemicals.
However, the quality of in vitro cytotoxicity data fluctuates dramatically due to the variation of
experimental modeling, data collection, data analysis, and interpretation. In addition, there has been a
remarkable increase in the amount of pharmaceutical compounds that have to assess potential cytotoxic
effect for toxicological evaluation [4]. Particularly from the point of view of research laboratories
and pharmaceutical industries, the role of precise modeling for cytotoxicity studies is essential for
successful drug development because toxicity still remains one of the major factors for failure in the
drug discovery [5].

Mycotoxins (MTXs) are toxic developing in many foodstuffs which are responsible for creating a
worldwide problem in various agricultural commodities [6–8]. Finding out a drug candidate that can
reduce or minimize MTX-induced toxicity is a great challenge for researchers because MTXs exhibit
high diversified toxic effects in humans and animals [9,10].

Quercetin (QCT) (3,3′,4′,5,7-pentahydroxyflavone) is a natural dietary compound that possess
strong anti-oxidant and exhibited beneficial effect against major classes of MTXs in both in vitro
and in vivo experiments [11]. It has been reported that QCT inhibits MTX-induced cytotoxicity and
oxidative stress in the liver of rats [12]. The effect QCT as well as other many natural compounds
against MTXs still remains unknown. In this study, the effect of QCT is investigated with the help of
neuro modeling about several MTXs, such as Citrinin (CTN), Patulin (PAT), and Zearalenol (ZEAR).

Artificial neural networks (ANNs) belong to a class of Artificial Intelligence (AI) tools which
are inspired by neuroscience and the architecture of human brain. Similar to the biological neural
networks, ANNs are capable of parallel processing using large number of neurons and the learning
is conducted based on the given data [13–17]. ANNs have been widely used for problems in pattern
detection and classification [18–22].

Neuromodeling is a methodology for building models of systems using ANN via learning the
relationship between the inputs and their corresponding outputs. This modeling method is especially
useful for applications where the relationship between the system input and output is unknown
and/or highly nonlinear. The behavior of the original system can be reproduced via an ANN-based
model learned using sparsely measured local data of the system. This process is also called ANN-based
system identification [23].

The aim of our study is to develop a precise model for the protective effect of QCT against
MTX-induced cytotoxicity in four different human cell lines (HeLa, PC-3, Hep G2, and SK-N-MC)
using the ANN-based system identification method. Toward this end, two ANN models were designed
to predict the protective effect of QCT against MTX-induced cytotoxicity that was evaluated with the
measurement of percentage (%) of inhibition, cell viability, and LDH activity of MTXs (CTN, PAT, and
ZEAR) in HeLa, PC-3, Hep G2, and SK-N-MC.

2. System Identification Using Artificial Neural Network

2.1. Neuromodeling via System Identification

System identification is a methodology for building models of a dynamic system using
measurements of the system’s input and output signals. It also includes the optimal design of
experiments for efficiently generating informative data for fitting such models as well as model
reduction. In this study, a neural network approach has been used for system identification. Specifically,
multilayer neural networks and back propagation [24] learning has been employed. Figure 1 shows a
diagram to explain the concept of system identification.
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Figure 1. Concept of system identification with artificial neural networks, where lines with arrow 
heads denote parameter adjustment via learning. 

The system to be modeled is placed in parallel with a neural network with nonlinear learning 
capability. That input signal x is given to both the system and the neural network and the output of 
the system is taken as the desired response d for training the neural network. The objective of system 
identification is then to build a neural network whose response o matches to the response y of the 
system for a given set of inputs x. To achieve this objective input signals are presented repeatedly to 
the network and the norm of the error vector d - o , is minimized using back-propagation 

algorithm, which iteratively adjusts the weights of the neural network until its response is close to 
the desired system response.  

2.2. Multilayer Neural Networks 

A multilayer neural network (MNN), as shown in Figure 2, is a class of feed-forward artificial 
neural network that consists of an input layer, an output layer, and at least one hidden layer in 
between them [16,17]. Except for the input layer, the basic element in each layer is a node called 
neuron. The input layer receives inputs x from the external world. This data is weighted with 
different synaptic weights {wji} and feed-forwarded to the hidden layer. Each neuron in the hidden 
layer sums the weighted inputs it receives from its preceding layer and applies a nonlinear transfer 
function also called “activation function” before passing them as inputs to the output layer. The 
output layer neurons perform similar computation and yield the output values y of the neural 
network. The output of the hidden and output neurons can be expressed as follows. 
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where fh and fo are the activation functions, and bj and bk are the bias of the hidden and output layer, 
respectively. In this study the sigmoid activation function is used: 
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The multiple layers and nonlinear activation enable the MNN to learn a mapping of any 
complexity. The network is learned based on repeated presentations of the training samples and 
iterative adjustments of the weights using back-propagation algorithm. 

Figure 1. Concept of system identification with artificial neural networks, where lines with arrow
heads denote parameter adjustment via learning.

The system to be modeled is placed in parallel with a neural network with nonlinear learning
capability. That input signal x is given to both the system and the neural network and the output of
the system is taken as the desired response d for training the neural network. The objective of system
identification is then to build a neural network whose response o matches to the response y of the
system for a given set of inputs x. To achieve this objective input signals are presented repeatedly to
the network and the norm of the error vector ‖d−o‖, is minimized using back-propagation algorithm,
which iteratively adjusts the weights of the neural network until its response is close to the desired
system response.

2.2. Multilayer Neural Networks

A multilayer neural network (MNN), as shown in Figure 2, is a class of feed-forward artificial
neural network that consists of an input layer, an output layer, and at least one hidden layer in
between them [16,17]. Except for the input layer, the basic element in each layer is a node called
neuron. The input layer receives inputs x from the external world. This data is weighted with different
synaptic weights {wji} and feed-forwarded to the hidden layer. Each neuron in the hidden layer sums
the weighted inputs it receives from its preceding layer and applies a nonlinear transfer function
also called “activation function” before passing them as inputs to the output layer. The output layer
neurons perform similar computation and yield the output values y of the neural network. The output
of the hidden and output neurons can be expressed as follows.

zj = fh(∑
i

xi.wji + bj) (1)

yk = fo(∑
j

zj.wkj + bk) (2)

where fh and fo are the activation functions, and bj and bk are the bias of the hidden and output layer,
respectively. In this study the sigmoid activation function is used:

f (a) = 1/(1 + e−a) (3)

The multiple layers and nonlinear activation enable the MNN to learn a mapping of any
complexity. The network is learned based on repeated presentations of the training samples and
iterative adjustments of the weights using back-propagation algorithm.
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Figure 2. Architecture of our artificial neural network. 

2.3. System Identification via Learning with Back-propagation 

Assume that the error function of the network shown in Figure 2 is defined as 
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where y is the network output and t is the desired target and the error is computed over all the data 
points p. Using (1) and (2), (4) can be written as 
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If all W are chosen appropriately for all the patterns, then the error E will approach close to 
zero. At this situation, the system can produce output values close to the target values for all the 
inputs. At this state the network is regarded as completely learned and we can say that the function 
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So the goal is to find the appropriate value of the network weights W. This goal is achieved via 
learning which is performed by iteratively updating W such that the error E, at the output, is 
reduced. Different optimization techniques, like gradient-based back-propagation, genetic 
algorithm, and simulated annealing, are used for training neural networks. However, 
back-propagation [24] is the most commonly used algorithm for learning neural networks. It 
propagates the error backwards throughout the network layers and updates the weight by 
computing the gradient of the error. The derivative of the error with respect to the weights of the 
network is computed using the chain rule of differentiation. 

The aim of our study is to model the protective effect of QCT against MTX-induced cytotoxicity 
in four different human cell lines (HeLa, PC-3, Hep G2, and SK-N-MC) using the above-mentioned 
multilayer neural network based system identification method. Toward this end, two ANN models 
are designed and trained to predict the protective effect of QCT against MTX-induced cytotoxicity. 

3. Result 

3.1. Protective Effect of QCT on MTX-Induced Cytotoxicity in HeLa, PC-3, HepG2, and SK-N-MC Cells 

The experimental results revealed that % of inhibition increased with increasing dose of MTX, 
while QCT pretreatment significantly decreased % of inhibition in HeLa, PC-3, Hep G2, and 
SK-N-MC cell lines (Table 1). An increase in cell viability was observed in QCT-treated cells 
compared to MTX alone group (Figure 3). The result displayed that QCT at doses of 7.5 up to 20 
μg/mL possessed the best protective effects. QCT alone treatment did not change the cell viability 
compared to the control group (Figure 3). QCT pretreatment also markedly decreased the 

Figure 2. Architecture of our artificial neural network.

2.3. System Identification via Learning with Back-propagation

Assume that the error function of the network shown in Figure 2 is defined as

E = ∑
p

(
yp − tp

)2 (4)

where y is the network output and t is the desired target and the error is computed over all the data
points p. Using (1) and (2), (4) can be written as

E = ∑
p

(
fo

(
∑

j
wkj. fh(. . . (Xp))

)
− tp

)2

(5)

If all W are chosen appropriately for all the patterns, then the error E will approach close to
zero. At this situation, the system can produce output values close to the target values for all the
inputs. At this state the network is regarded as completely learned and we can say that the function

fo

(
∑ wkj fh(. . . (Xp))

)
is the identified system of the target system.

So the goal is to find the appropriate value of the network weights W. This goal is achieved via
learning which is performed by iteratively updating W such that the error E, at the output, is reduced.
Different optimization techniques, like gradient-based back-propagation, genetic algorithm, and
simulated annealing, are used for training neural networks. However, back-propagation [24] is the most
commonly used algorithm for learning neural networks. It propagates the error backwards throughout
the network layers and updates the weight by computing the gradient of the error. The derivative of
the error with respect to the weights of the network is computed using the chain rule of differentiation.

The aim of our study is to model the protective effect of QCT against MTX-induced cytotoxicity
in four different human cell lines (HeLa, PC-3, Hep G2, and SK-N-MC) using the above-mentioned
multilayer neural network based system identification method. Toward this end, two ANN models
are designed and trained to predict the protective effect of QCT against MTX-induced cytotoxicity.

3. Result

3.1. Protective Effect of QCT on MTX-Induced Cytotoxicity in HeLa, PC-3, HepG2, and SK-N-MC Cells

The experimental results revealed that % of inhibition increased with increasing dose of MTX,
while QCT pretreatment significantly decreased % of inhibition in HeLa, PC-3, Hep G2, and SK-N-MC
cell lines (Table 1). An increase in cell viability was observed in QCT-treated cells compared to MTX
alone group (Figure 3). The result displayed that QCT at doses of 7.5 up to 20 µg/mL possessed the
best protective effects. QCT alone treatment did not change the cell viability compared to the control
group (Figure 3). QCT pretreatment also markedly decreased the MTX-caused LDH release (Figure 4).
QCT alone treatment did not change the LDH activity compared to the control group (Figure 4).
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Figure 3. The protective effect of QCT against MTX-induced cell death. (A) Cell viability on HeLa, PC-3,
Hep G2, and SK-N-MC cells when pretreated with QCT and post-treated with various MTXs, such as
(A) CTN, (B) PAT, and (C) ZEAR. Values were represented as mean ± SD. ## p < 0.01 as compared with
the control group; * p < 0.05; ** p < 0.01 as compared with the MTX alone group.

 

2 

 

Figure 4. The protective effect of QCT against MTX-induced cytotoxicity. LDH activity on HeLa, PC-3,
Hep G2, and SK-N-MC cells when pretreated with QCT and post-treated with various MTXs, such as
(A) CTN, (B) PAT, and (C) ZEAR. Values were represented as mean ± SD. ## p < 0.01 as compared with
the control group; * p < 0.05; ** p < 0.01 as compared with the MTX alone group.
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3.2. Neuro Modeling of Protective Effect of QCT

The neuromodeling of protective effect of QCT against MTX (CTN, PAT, and ZEAR) in different
cell lines (HeLa, PC-3, Hep G2, and SK-N-MC) has been performed via learning of neural networks.
For this end, determination of % of inhibition and cell viability using crystal violet assay and LDH
activity using LDH assay were performed.

3.2.1. Neuro Modeling of Percentage (%) of Inhibition

The cytotoxicity was evaluated by determination of % of inhibition on HeLa, PC-3, Hep G2, and
SK-N-MC cells that were pretreated with QCT (0–20 µg/mL) for 6 h, followed by the incubation
with MTX (0–200 µM) for 24 h. The % of inhibition was measured for discrete amounts of MTX
(0.0, 0.78125, 1.5625, 3.125, 6.25, 12.5, 25, 50, 100, and 200 µM) at every QCT dose of 0.0, 5.0, 7.5, 10,
15, and 20 µg/mL for each cell lines and MTX. A total 720 data points were measured, of which 480
data points corresponding to the % inhibition for QCT values of 0.0, 5.0, 10, and 20 µg/mL, as listed
in Table 1 were used to train the neural network model whereas 240 data points corresponding to
the % inhibition for QCT values of 7.5 and 15 µg/mL were reserved for testing. Out of the 480 data
points, Table 1, used for training the neural network, 20% samples were randomly chosen and set aside
for validation.

The doses of MTX and QCT are the primary inputs to the neural network, and the target to
be learned is the corresponding % of inhibition. As the % inhibition of QCT on different cell lines
and different MTXs is different, a naïve way would be to learn 12 different neural network models
corresponding the four different cell lines and three different MTXs. However, in this study we aim to
design a single neural network that models the overall behavior on the above mentioned cell lines
and MTXs. To distinguish the % inhibition corresponding to the four cell lines and the three MTXs,
additional binary codes are used as input to the network. The four cell lines HeLa, PC-3, Hep G2,
and SK-N-MC are encoded as 1000, 0100, 0010, and 0001, respectively, and, the three MTXs (CTN,
PAT, and ZEAR) are encoded as 100, 010, and 001, respectively. For example, the input to the neural
network corresponding to 10 µg/mL QCT on HeLa cell lines for 0.78125 µM CTN is (1, 0, 0, 0, 1, 0, 0,
0.78125, 10). The doses of QCT and MTXs are normalized using their corresponding maximum doses
used in this study, i.e., (dose of QCT/20, dose of MTX/200). The output of the network, i.e., the % of
inhibition, is expressed a real number between zero and one [25].

So the neural network to be designed should have nine input and one output nodes.
The appropriate number of hidden nodes required to learn the system was determined empirically.
Starting with an initial five hidden nodes in a single hidden layer, the number of hidden nodes were
incremented gradually. The network was trained using the back-propagation algorithm with a learning
rate of 0.05 on the training dataset for a fixed 10,000 epochs, and its performance was evaluated on the
randomly selected validation dataset. The root mean square error

rmse =

√√√√ 1
N

N

∑
i=1

(yi − ti)
2 (6)

was employed to evaluate the performance on the validation dataset where N is the number of
validation data points. The results of the empirical method are presented in Table 2. The network
with 20 and 30 hidden nodes produced the lowest error on the validation dataset. So, keeping the
number of nodes in the first hidden layer at 20, another hidden layer was added to this network.
Staring with three hidden nodes, the nodes in the second hidden layer were increased in steps of three.
The network was then trained and validated as described earlier. The results of the empirical method
for determining the number of nodes in the second hidden layer is presented in Table 3.
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Table 1. Measured % of inhibition for neural network learning.

Measured % of Inhibition

Types of Cell Types of MTX
Dose of

QCT (µg/mL)

Dose of
MTX (µM)

0 0.78125 1.5625 3.125 6.25 12.5 25 50 100 200

HeLa [25]

CTN

0.0 0.000 4.037 7.148 12.442 18.547 25.711 34.773 62.960 73.363 77.878

5.0 0.000 2.552 4.725 8.745 14.436 21.066 29.509 55.722 65.976 72.426

10.0 0.000 1.207 2.252 4.037 7.148 11.442 17.136 34.121 48.016 60.865

20.0 0.000 0.663 1.207 2.157 3.601 5.615 8.251 19.558 33.847 45.154

PAT

0.0 0.000 10.394 20.702 30.119 39.728 48.266 56.931 66.120 86.211 94.497

5.0 0.000 8.528 16.427 24.212 31.912 41.947 48.993 58.207 79.298 89.532

10.0 0.000 3.379 5.742 9.746 12.900 19.961 26.679 33.080 58.963 73.549

20.0 0.000 0.630 1.805 4.154 5.931 11.134 16.346 21.520 42.283 60.139

ZEAR

0.0 0.000 5.744 11.029 17.033 25.506 32.597 38.322 47.308 68.444 92.675

5.0 0.000 4.753 8.253 14.074 20.551 27.415 31.961 39.877 57.776 80.446

10.0 0.000 0.467 2.256 3.928 7.271 13.851 18.196 22.502 38.721 62.941

20.0 0.000 0.396 0.829 2.104 3.426 7.433 10.569 14.425 27.220 52.217

PC-3

CTN

0.0 0.000 2.746 5.031 8.530 13.621 20.016 35.176 44.174 53.834 68.469

5.0 0.000 2.127 4.169 6.931 10.859 17.299 33.881 42.561 51.789 66.803

10.0 0.000 1.175 2.391 5.324 7.588 12.443 31.828 38.841 48.858 63.137

20.0 0.000 0.595 1.422 3.591 5.422 8.888 26.740 34.864 43.502 57.151

PAT

0.0 0.000 3.871 7.305 15.559 23.058 30.820 41.563 57.171 70.441 83.875

5.0 0.000 3.597 5.861 11.980 19.284 25.785 37.683 55.698 66.764 80.874

10.0 0.000 2.556 3.847 6.964 11.164 19.272 29.085 49.379 58.440 73.241

20.0 0.000 1.120 2.094 3.409 5.186 12.736 22.571 39.810 48.884 66.569

ZEAR

0.0 0.000 3.348 4.754 7.981 16.767 31.562 40.523 51.779 60.057 69.167

5.0 0.000 3.044 3.999 6.097 13.233 28.497 37.270 47.886 56.613 65.615

10.0 0.000 2.188 2.750 3.923 8.593 21.893 30.612 40.493 49.285 57.291

20.0 0.000 1.802 1.921 2.129 3.302 11.109 20.825 31.898 40.543 48.546
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Table 1. Cont.

Measured % of Inhibition

Types of Cell Types of MTX
Dose of

QCT (µg/mL)

Dose of
MTX (µM)

0 0.78125 1.5625 3.125 6.25 12.5 25 50 100 200

Hep G2

CTN

0.0 0.000 0.357 2.480 11.010 17.209 24.668 32.108 41.636 52.204 67.657

5.0 0.000 0.278 2.293 8.824 14.740 21.952 29.435 38.582 49.717 65.390

10.0 0.000 0.135 1.160 5.596 11.123 17.181 23.743 31.516 42.822 59.160

20.0 0.000 0.022 0.777 2.847 6.236 11.694 18.509 25.229 35.645 53.168

PAT

0.0 0.000 2.571 5.199 8.137 16.763 25.955 37.198 43.070 53.062 69.132

5.0 0.000 1.695 3.327 5.707 11.952 23.024 34.639 40.480 50.132 67.178

10.0 0.000 0.879 1.535 3.295 10.396 19.582 31.226 36.960 46.394 63.472

20.0 0.000 0.250 0.565 1.304 6.122 16.175 26.296 31.880 40.779 56.756

ZEAR

0.0 0.000 2.451 4.555 8.583 15.487 25.169 31.310 40.590 55.180 69.852

5.0 0.000 1.851 3.565 6.963 13.048 22.278 28.300 37.765 51.332 66.941

10.0 0.000 1.291 2.495 4.820 9.110 16.094 21.458 30.619 44.090 59.257

20.0 0.000 0.682 1.471 3.153 6.551 12.379 17.782 25.190 38.595 53.895

SK-N-MC

CTN

0.0 0.000 5.149 9.054 15.030 24.020 33.060 44.460 54.860 70.190 89.515

5.0 0.000 4.116 7.303 12.658 20.801 29.273 41.660 52.521 67.797 86.988

10.0 0.000 2.554 4.578 8.514 14.904 23.242 35.788 44.936 59.906 77.792

20.0 0.000 1.256 2.702 5.280 9.363 16.641 27.459 35.506 49.598 63.050

PAT

0.0 0.000 3.830 7.512 13.157 22.759 39.909 52.706 69.069 78.993 89.176

5.0 0.000 3.215 6.264 11.385 20.793 36.114 49.039 64.793 74.542 85.105

10.0 0.000 2.680 4.963 9.308 17.370 31.163 44.130 59.581 68.837 79.193

20.0 0.000 1.585 3.099 6.162 12.077 21.915 31.908 48.888 58.464 64.169

ZEAR

0.0 0.000 6.051 10.256 14.708 19.469 26.018 36.300 53.844 75.113 80.588

5.0 0.000 4.359 7.981 11.581 15.744 22.170 32.511 49.840 72.063 78.304

10.0 0.000 2.279 4.224 6.678 10.003 15.094 24.568 40.715 65.506 72.174

20.0 0.000 1.370 2.463 4.262 6.809 10.899 18.943 33.655 55.343 60.131

MTX: Mycotoxin, QCT: Quercetin, CTN: Citrinin, PAT: Patulin, ZEAR: Zearalenol.
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Table 2. Performance comparison of a single hidden layer neural network by varying the number of
nodes in the hidden layer.

No. of Hidden Nodes Train RMSE Validation RMSE

5 0.0302 0.0282
7 0.0247 0.0278
10 0.0223 0.0245
12 0.0202 0.0208
15 0.0214 0.0198
17 0.0200 0.0211
20 0.0197 0.0190
22 0.0203 0.0194
25 0.0200 0.0236
27 0.0187 0.0192
30 0.0188 0.0190
32 0.0193 0.0203

Table 3. Performance comparison of a two hidden layer neural network by varying the number of
nodes in the last hidden layer. The first and the second elements of the No. of Hidden Nodes are node
numbers of the first and the second hidden layers, respectively.

No. of Hidden Nodes Train RMSE Validation RMSE

(20, 3) 0.0129 0.0150
(20, 6) 0.0110 0.0173
(20, 9) 0.0109 0.0162

(20, 12) 0.0113 0.0161
(20, 15) 0.0106 0.0147
(20, 18) 0.0105 0.0153
(20, 21) 0.0108 0.0151

From Table 3, it is seen that the neural network with two hidden layers produces the lowest error
in the validation dataset. Hence, a three-layered neural network of nine input nodes, 20 hidden nodes,
15 hidden nodes, and 1 output node, namely, a 9-20-15-1 network, as shown in Figure 5, was chosen
as the optimal network to learn the % of inhibition for all the combinations of cell lines and MTXs.
This empirically selected network was then finally trained on the whole training dataset (including the
validation dataset). Figure 6 shows the error curve obtained during the learning of this network on the
training and the test dataset, and the corresponding RMSEs are given in Table 4.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 10 of 19 
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Figure 5. Architecture of artificial neural network (ANN) (9-20-15-1) for learning of % of inhibition.
Biases of nodes are omitted in this figure, where four input terminals are used for indicating cell lines
and three input terminals are to determine MTXs and other two input terminals are for the dose of
MTX and QCT, respectively. Also, the single output terminal is for % of inhibition.
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Figure 6. Error curves of learning % of inhibition on the training and the test set. Root mean square
error (rmse) is employed to evaluate the performance and the network is trained for 10,000 epochs or
until the rmse reaches 0.01, whichever occurs first. (The x-axis is plotted in log scale.)

Table 4. Performance of the final 9-20-15-1 network on the train and test dataset.

Network Train RMSE Test RMSE

9-20-15-1 0.0110 0.0111

After the learning was completed, the network was evaluated on the test set and the % of
inhibition values were obtained from the output of the ANN. The % of inhibition surface obtained
from the trained neural network for Hep G2 cell lines with MTX CTN ranging from 0 to 200 µM for
different doses of QCT ranging from 0 to 20 µg/mL is presented in Figure 7. Note that the increasing
directions of QCT and CTN axis are indicated by arrow heads. The experimentally measured data is
superimposed on this surface with solid circles. The black solid circles are the % of inhibition values
used for training the ANN and the blue and red circles are those of test data. The solid circles hidden
partially in the surface indicate that the % inhibition values predicted by the ANN are close to the
experimentally measured data. For better visualization of the modeling accuracy of the ANN on
the test data, the % inhibition values predicted by the ANN at QCT values of 7.5 and 15 µg/mL are
presented in Figure 7c. The solid lines represent the outputs of ANN, whereas the solid dots are the
measured data. Observe that the output of the ANN is close to the measured data at every test point.

The results of ANN were compared with that of linear regression method which is commonly
used for a rough estimation of experimental results. Figure 7b shows the surface of the % of inhibition
values obtained with linear regression of Hep G2 cell, and Figure 7d shows the % of inhibition curves
at QCT values of 7.5 and 15 µg/mL concentrations.

Similar figures for other MTXs, such as PAT and ZEAR, are presented in Figures 8 and 9,
respectively. As seen in Figures 7–9, the qualitative results of modeling the system with ANN shows
excellent performance for the four different cell line types and three different MTXs consistently.
A quantitative evaluation of the network’s performance on the test set exhibited high correlation
(R = 0.999) with the experimentally measured data, which is substantially higher than the correlation
obtained from other statistical method such as partial least squares (PLS) regression (R = 0.90). Also
note that separate models of linear regression or the partial least squares regression have to be built for
each of the cell line and MTX combination, whereas the proposed ANN models all the cell line MTX
combinations in as single model. The plot of the error between the measured % of inhibition and the
predicted values using the ANN model and PLS is as shown in Figure 10.
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Figure 7. Percentage of inhibition model of Hep G2 cell for dose of QCT and CTN. (a) Surface of %
of inhibition values obtained with ANNs, where black dots indicate training data and red and blue
dots are test data. (b) % of inhibition surface obtained with linear regression. Cross-sections of (c)
ANN-based model and (d) the linear regression model at QCT = 7.5 µg/mL (red) and QCT = 15 µg/mL
(blue), which comprise the test area. The outputs of the neuro-model are close to the experimentally
measured % of inhibition values.

3.2.2. Neuro-Modeling of Cell Viability and LDH Activity

Similar experiments, as those done for modeling the % of inhibition of QCT, were also conducted
to model the cell viability and LDH activity. As in the case of % of inhibition, variation of cell viability
and LDH activity was measured on cells treated with QCT (5, 7.5, 10, 15, and 20 µg/mL) and incubated
with MTXs: CTN (100 µM), PAT (50 µM), and ZEAR (100 µM). As shown in Figures 3 and 4, a total of
72 data points were measured for % of cell viability and LDH activity, respectively. Out of the total
72 data points, 48 data points were used to train the ANN, whereas the remaining 24 data points,
corresponding to QCT values of 7.5 and 15 µg/mL, were reserved for testing. As before, 20% of
samples chosen randomly from the training set were used for validating the neural network.

The aim of neural network in this case is to predict the cell viability and LDH activity given the
doses of MTXs and QCT for all the combination of MTXs and cell lines. The architecture of the ANN for
modeling this system is different from the case of % of inhibition model as the network needs to output
two values. The output of the network, i.e., the cell viability and LDH activity, are normalized to real
numbers between zero and one by dividing with their corresponding maximum values encountered in
this study, i.e., 100 and 350, respectively. The binary encoding scheme as described in Section 3.2.1 is
used to distinguish the different cell lines and the MTX combination. Hence the total number of input
nodes is equal to 9. The optimal network architecture for this task was also determined by following
the empirical method described in Section 3.2.1. The results of the empirical method are presented in
Tables 5 and 6.
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Figure 8. Percentage of inhibition model of QCT for Hep G2 cell with PAT. Surface of % of inhibition
obtained using (a) ANN model and (b) linear regression. Cross-sections of (c) ANN-based model and
(d) linear regression model at QCT = 7.5 µg/mL (red) and QCT = 15 µg/mL (blue), which comprise the
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Figure 9. Percentage of inhibition model of QCT for Hep G2 cell with ZEAR. Surface of % of inhibition
obtained using (a) ANN model and (b) linear regression. Cross-sections of (c) ANN-based model and
(d) linear regression model at QCT = 7.5 µg/mL (red) and QCT = 15 µg/mL (blue), which comprise the
test area.
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Figure 10. Comparison of error in modeling the % of inhibition on the test data using the partial least
squares regression (PLS) and the artificial neural network method.

Table 5. Performance comparison of a single hidden layer neural network by varying the number of
nodes in the hidden layer.

No. of Hidden Nodes Train RMSE Validation RMSE

5 0.0253 0.0597
7 0.0226 0.0943
10 0.0174 0.0540
12 0.0175 0.0737
15 0.0192 0.0721
17 0.0197 0.0937
20 0.0100 0.0545
22 0.0190 0.0830
25 0.0175 0.0892
27 0.0205 0.0852
30 0.0116 0.0637
32 0.0193 0.0851

Table 6. Performance comparison of a two hidden layer neural network by varying the number of
nodes in the last hidden layer. The first and the second elements of the No. of Hidden Nodes are node
number of the first and the second hidden layers, respectively.

No. of Hidden Nodes Train RMSE Validation RMSE

(10, 2) 0.0100 0.0612
(10,4) 0.0100 0.0450
(10, 6) 0.0100 0.0384
(10, 8) 0.0114 0.0338

(10, 10) 0.0100 0.0337

A network with nine input nodes, 10 hidden nodes, 10 hidden nodes, and two output nodes,
namely, a 9-10-10-2 network, shown in Figure 11, was determined to be the optimal network for this
task. This network was then trained on the whole training dataset (including the validation dataset).
Figure 12 shows the evolution of error during the learning of this network on the training and the test
dataset, and the corresponding RMSEs are given in Table 7.
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Figure 11. Architecture of ANN which was used for the modeling of cell viability and LDH activity.
The size of the ANN is 9-10-10-2. Biases of nodes are omitted in this figure.



Int. J. Mol. Sci. 2019, 20, 1725 14 of 18

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 14 of 19 

 

22 0.0190 0.0830 

25 0.0175 0.0892 

27 0.0205 0.0852 

30 0.0116 0.0637 

32 0.0193 0.0851 

Table 6. Performance comparison of a two hidden layer neural network by varying the number of 

nodes in the last hidden layer. The first and the second elements of the No. of Hidden Nodes are 

node number of the first and the second hidden layers, respectively. 

No. of Hidden Nodes Train RMSE Validation RMSE 

(10, 2) 0.0100 0.0612 

(10,4) 0.0100 0.0450 

(10, 6) 0.0100 0.0384 

(10, 8) 0.0114 0.0338 

(10, 10) 0.0100 0.0337 

A network with nine input nodes, 10 hidden nodes, 10 hidden nodes, and two output nodes, 

namely, a 9-10-10-2 network, shown in Figure 11, was determined to be the optimal network for this 

task. This network was then trained on the whole training dataset (including the validation dataset). 

Figure 12 shows the evolution of error during the learning of this network on the training and the 

test dataset, and the corresponding RMSEs are given in Table 7. 

 

Figure 11. Architecture of ANN which was used for the modeling of cell viability and LDH activity. 

The size of the ANN is 9-10-10-2. Biases of nodes are omitted in this figure. 

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

Epochs

Train

Test

R
M

S
E

 

Figure 12. Error curves for the learning of cell viability and LDH activity on the training and the test 

set. Root mean square error (rmse) is employed to evaluate the performance and the network is 

trained for 20,000 epochs or until the rmse reaches 0.001, whichever occurs first. (x-axis is plotted in 

log scale.) 

Table 7. Performance of the final 9-10-10-2 network on the train and test dataset. 

Figure 12. Error curves for the learning of cell viability and LDH activity on the training and the test
set. Root mean square error (rmse) is employed to evaluate the performance and the network is trained
for 20,000 epochs or until the rmse reaches 0.001, whichever occurs first. (x-axis is plotted in log scale.)

Table 7. Performance of the final 9-10-10-2 network on the train and test dataset.

Network Train RMSE Test RMSE

9-10-10-2 0.0052 0.0364

The trained network was evaluated on the test set and the cell viability and LDH activity values
were obtained from the output of the ANN. The cell viability and the LDH activity curve obtained
from the trained neural network for different cell lines pretreated with different doses of QCT ranging
from 0 to 20 µg/mL and incubated with MTXs: CTN (100 µM), PAT (50 µM), and ZEAR (100 µM) is
presented in Figure 13. The experimentally measured data is superimposed on this curve with markers,
where ‘*’ indicates the data points used for training the ANN and ‘o’ for testing.

As seen from Figure 13, the qualitative results of modeling the system with ANN shows excellent
performance for the 4 different cell line types and 3 different MTXs consistently. A quantitative
evaluation of the network’s performance on the test set exhibited high correlation (Rcell_viability = 0.995
and RLDH_activity = 0.997) with the experimentally measured data.

The plot of the error between the measured cell viability and LDH activity and the corresponding
values predicted using the ANN model is as shown in Figure 14.
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4. Discussion

The main objective of this paper was to model the protective effect of QCT against MTXs using
ANNs, and to verify the ability of the model in estimating the protective effect of QCT. Specifically,
the protective effect of QCT against three different MTXs (Citrinin, Patulin, and Zearalenol) on four
different cell lines (HeLa, PC-3, Hep G2, and SK-N-MC cell lines) was measured experimentally, and
the data were used to model their nonlinear protective functions (% of inhibition, cell viability, and
LDH activity) using multilayer neural networks.

The experimental measurements revealed that treatment with MTX significantly decreased cell
viability and increased LDH activity. However, the % of inhibition of four different cells pretreated
with the three MTXs was consistently decreased with the dose of QCT. Also, pretreatment with QCT
attenuated MTX-induced alteration of cell viability and LDH activity that it could protect the cell lines
from cytotoxicity. The effects of QCT against the MTX-induced cytotoxicity were conducted via cell
viability and LDH release assays in Hela, PC-3, Hep G2, and SK-N-MC cell lines. The experimental
results showed that treatment with MTX significantly decreased cell viability and increased LDH
activity. However, pretreatment with QCT significantly attenuated MTX-induced alteration of cell
viability and LDH activity, which suggests that it could protect the cell lines from cytotoxicity. Therefore,
these results suggest that QCT may inhibit MTX-induced diseases in humans.

Two different ANN models with sizes of 9-20-15-1 and 9-10-10-2, determined empirically, were
used to model the % of inhibition, the cell viability, and LDH activity, respectively. For both tasks,
the experimentally measured data for the protective effects of QCT for three different MTXs in four
different cells was used for training the neural network. As a result, twelve and twenty-four different
models of precise protective effects of QCT were built on the two ANNs, respectively. Unlike the
commonly used statistical methods, like linear regression or partial least square regression, which
require separate models to be computed for each MTX and cell line combination, a single neural
network was designed to model the different combinations using a special binary encoding scheme for
each MTX and cell line combination. Moreover, quantitative evaluations of the network’s performance
on the test sets exhibited high correlation with experimentally measured data which was substantially
higher than that of individual models computed using other statistical methods.

It was observed that the additional burden for the neural network to discriminate between the
different input combinations, expressed as binary codes, demands comparatively larger networks,
which require more number of iterations for network convergence and hence longer training times.
However, it was shown that single model for different input combination provides a unified and
elegant solution with the ability to precisely model the protective effects of QCT against MTXs.

5. Material and Methods

5.1. Materials and Cell Culture

Citrinin (CTN), patulin (PAT), zearalenol (ZEAR), and quercetin (QCT) were purchased from
Sigma-Aldrich (St. Louis, MO, USA). HeLa (cervical cancer cell), PC-3 (prostate cancer cell), Hep G2
(liver cancer cell), and SK-N-MC (brain cancer cell) human cell lines were obtained from the American
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type culture collection (Manassas, VA, USA). The cells were grown in Dulbecco’s Modified Eagle’s
Medium (DMEM) and Roswell Park Memorial Institute (RPMI) 1640 supplemented with 10% fetal
bovine serum (FBS), 4.5 g/L D-glucose, 2 mmol/L L-glutamine, 110 mg/L sodium pyruvate, 100 U/mL
penicillin, and 100 µg/mL streptomycin at 37◦C in a humidified atmosphere containing 95% air and
5% CO2.

To prevent mycoplasma effectively we followed a procedure described previously [26]. Briefly,
we brought all cells and culture materials from reliable sources, used good aseptic technique,
recommended antibiotic used for culture medium to eradicate all contamination and finally disinfecting
the laminar flow hood after working.

5.2. Measurement of Mycotoxin-Induced Cytotoxicity

The MTX-induced cytotoxicity in different cell lines (HeLa, PC-3, Hep G2, and SK-N-MC) was
measured by determination of percentage (%) of inhibition, cell viability, and LDH activity.

5.2.1. Measurement of Percentage (%) of Inhibition

At first, we measured percentage (%) of inhibition to observe the cytotoxic effect of the MTXs
(Citrinin, Patulin, and Zearalenol) and MTX + QCT on HeLa, PC-3, Hep G2, and SK-N-MC. Briefly,
cells were seeded in 24-well plates with 5 × 104 cells per well in culture media and allowed to attach
overnight; cells were pretreated with QCT (0–20 µg/mL) at 37 ◦C in a humidified atmosphere of 5%
CO2/95% air for 6 h followed by the incubation with mycotoxins (0–200 µM) for 24 h.

5.2.2. Cell Viability

Crystal violet assay was used to determine MTX-induced cell death. Briefly, cells were seeded in
24-well plates with 5 × 104 cells per well in culture media and allowed to attach overnight. The cells
were pretreated with the doses of QCT at 5, 10, and 20 µg/mL at 37 ◦C in a humidified atmosphere of 5%
CO2/95% air for 6 h, followed by the incubation with CTN (100 µM), PAT (50 µM), and ZEAR (100 µM)
for 24 h. After 24 h of incubation, removed medium and washed the cells with phosphate buffer
solution (PBS) and 0.2% crystal violet solution was added to each well. After 10 min of incubation,
the crystal violet solution was removed carefully by washing with water. Finally, added 100 µL 1%
sodium dodecyl sulfate (SDS) to solubilize the color solution until the color is uniform and no areas of
dense coloration in bottom of wells. The samples were read at 590 nm in a microplate reader (Spectra
MAX, Gemini EM, Molecular Device, Sunnyvale, CA, USA). The cell viability is expressed as the
percentage of absorbance of control.

5.2.3. Lactate Dehydrogenase (LDH) Activity

Lactate dehydrogenase (LDH) activity assay was used to determine MTX-induced cytotoxicity.
LDH release into the media was taken as an indicator of cell damage and the assay is based
on the principle of reduction of nicotinamide adenine dinucleotide (NAD) by LDH. The reduced
NAD (NADH) is utilized in the stoichiometric conversion of a tetrazolium dye which is measured
spectrophotometrically using an LDH assay kit (Cat. No. 04744926001, Sigma, Saint Louis, MO, USA).
Briefly, cells were seeded (5 × 104 cells/well) and cultured in 24-well culture plates. The cells were
then preincubated with or without different concentrations of QCT (5, 7.5, 10, 15, and 20 µg/mL) at
37 ◦C for 6 h followed by incubation with CTN (100 µM), PAT (50 µM), and ZEAR (100 µM) for 24 h.
After treatment was over, cells were centrifuged at 240 × g for 4 min and the culture supernatant was
transferred in a new plate. The assay mixture was prepared and added to each well and the plate
incubated wrapped in foil at room temperature for 30 min. Reaction was terminated by adding the stop
solution to each well. The plate was read at 490 nm at a reference wavelength of 690 nm. The extent of
cytotoxicity is expressed as the percentage of absorbance of control.
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5.3. Statistical Data Analysis and Neural Network Training

All the data were expressed as mean ± SD and one-way ANOVA (Analysis of variance) followed
by Dunnett’s test was used for the statistical analysis using SPSS software (version 16, SPSS, Inc.,
Chicago, IL, USA). * p < 0.05 and ** p < 0.01 were considered significant. The artificial neural network
was trained using custom codes developed by the authors written in MATLAB(R) (2017b, Mathworks,
Natick, MA, USA) on a standard computer station (Intel(R) Core(TM) i7-6700k 4.00 GHz, 8 cores,
8 GB RAM) machine, whereas the partial least squares method was implemented using MATLAB’s
built-in plsregress function.
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