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Abstract: Secreted effectors from Magnaporthe oryzae play critical roles in the interaction with rice to
facilitate fungal infection and disease development. M. oryzae-secreted protein MoHrip1 can improve
plant defense as an elicitor in vitro, however, its biological function in fungal infection is not clear.
In this study, we found that the expression of mohrip1 was significantly induced in the stages of
fungal penetration and colonization. Although dispensable for the growth and conidiation, MoHrip1
was necessary for the full virulence of M. oryzae. Deletion of mohrip1 remarkably compromised
fungal virulence on rice seedlings and even on rice leaves with wounds. Rice sheath inoculation
assay further demonstrated the defects of mohrip1-deleted mutants on penetration and proliferation
in rice cells. Additionally, compared with WT and complementation strain, the inoculation of
mohrip1-deleted mutants induced a higher expression of specific defense related genes and a higher
production of specific defensive compounds in rice leaves. These data collectively indicated that
MoHrip1 is necessary for fungal penetration and invasive expansion, and further full virulence of
rice blast fungus.
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1. Introduction

Biotrophic or hemibiotrophic pathogenic fungi often feed on living host tissues for the whole life
cycle or early infection stages. In the process of pathogen infection, many strategies are deployed to
disturb host immunity or inactivate host defense responses, among which, secreted effectors play a
key role [1,2].

Magnaporthe oryzae, a synonym of Pyricularia oryzae [3], the causal agent of blast disease,
significantly constrains rice production worldwide [4]. In a typical disease cycle, infections initiate
when the conidia of M. oryzae land on the surface of rice leaves and germinate to form germ tubes,
which then differentiate into melanized appressoria. With the enormous turgor pressure and physical
force, penetration pegs, developing from these specialized appressoria, breach the host cuticle and
subsequently differentiate into biotrophic invasive hyphae (IH) [5–8]. The thin tubular primary IH
develop into bulbous pseudohyphae and then filamentous hyphae, filling the infected cells [6,9].
In this invasive process, a myriad of effectors, such as AvrPiz-t [10] and biotrophy-associated secreted
(BAS) proteins [11], are secreted to the pathogen-host interface by the fungal secretion machinery,
which locates adjacent to the bulbous pseudohyphae [1,9,12,13]. These secreted effectors mainly
function to alter host cellular defense processes and facilitate further infections [14].
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In recent years, machine-learning tools, which incorporate common features of fungal effectors
discovered to date (including protein size, amino acid content, charge, evidence for diversifying
selection, etc.), have been adopted for the prediction of putative effectors from filamentous pathogens,
which often possess huge effector repertoires comprising hundreds of sequence-unrelated small
secreted proteins, for example, the newly identified family termed as MAX-effector (M. oryzae Avrs and
ToxB) [2,12]. But in general, data on the molecular function of these effectors are sparse. As one member
of MAX-effector family, AVR-Pia has been identified as an avirulence factor to trigger hypersensitive
response (HR) and activate innate immunity in rice cultivars containing the Pia R gene [2,15–17].
In the initial invasive stage, AVR-Pia is induced at the onset of appressorial differentiation and
recognized by rice NLR protein RGA5 through direct binding to induce the downstream signal
transduction [18–20]. Moreover, with the analysis of interaction transcriptome, PWL2 [21], also
considered as an avirulence factor, and other 58 candidate effectors have been identified during
M. oryzae invading the living rice cells [11]. Among these effectors, BAS1 functions mainly as a
virulence factor to promote blast fungus growth, sporulation and virulence in planta [22]. The same as
BAS1, other effectors, MC69 [23] and Rbf1 [9], have been successively identified as virulence factors
to facilitate fungal invasion. These secreted effectors often act together, thus the deletion of a single
effector gene generally compromises the fungal virulence but has no all-or-none effect [23].

MoHrip1, first identified from the culture filtrate of M. oryzae, is a HR inducing protein elicitor.
The mohrip1 gene (GenBank accession No. JQ231215.1) encodes a small protein consisting of 142 amino
acids with the first 16 amino acids as a signal peptide. In our previous research, MoHrip1 had been
shown to induce the early events of defense responses in tobacco and to enhance systemic resistance
of rice to blast fungus in vitro [24]. Furthermore, if ectopic expressed in rice, MoHrip1 can also
improve plant resistance to blast disease and tolerance to drought [25]. But as a secreted effector,
the intrinsic function of MoHrip1 in M. oryzae and especially in the process of M. oryzae infecting
rice is not clear. In this study, we demonstrated that the expression of mohrip1 was induced during
M. oryzae infection. More importantly, MoHrip1 was demonstrated to facilitate fungal penetration and
subsequent proliferation by the suppression of rice immunity, which guaranteed the full virulence
of M. oryzae. Our data corroborate the function of most effectors from plant pathogens to facilitate
infection and pathogenesis.

2. Results

2.1. The Mohrip1 Is Highly Expressed During Fungal Penetration and Colonization

MoHrip1 was originally isolated from the culture filtrate of M. oryzae as a protein elicitor [24].
Thus, it is expressed and secreted at least in the vegetative growth stage. To investigate the expression
pattern of mohrip1 in M. oryzae at different developmental and infection stages, quantitative reverse
transcription polymerase chain reaction (qRT-PCR) assays were conducted. As shown in Figure 1,
the transcriptional levels of mohrip1 in the saprophytic stages, either conidia obtained from oat agar
(OA) plate or mycelia from liquid complete medium (CM), were similar and significantly lower
than those in the infection stages. After the inoculation of M. oryzae conidia on rice seedlings,
the abundance of mohrip1 transcripts demonstrated a tendency of increasing at first and then
decreasing to the normal level as in the axenic mycelia or conidia. Compared to the liquid-cultured
mycelia, mRNA accumulation increased almost sevenfold at the first and second day post inoculation
(dpi), which respectively coincided with fungal penetration and colonization stages. Consequently,
the expression pattern of mohrip1 indicated its significance in M. oryzae infection.
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Figure 1. QRT-PCR analysis of mohrip1 expression in M. oryzae at different developmental and 
infective stages. Transcription of mohrip1 was significantly induced in the first 2 dpi. The relative 
expression levels of mohrip1 on the vertical axis were relative to that in the axenic mycelia after 
normalization with M. oryzae Actin gene. Values are the means of three independent biological 
replications. The error bars represent standard deviation (SD). “A”, “B” and “C” indicate the 
significance analyzed using Duncan’s multiple range test at p < 0.01. dpi, days post inoculation. 

2.2. MoHrip1 Is Dispensable for Fungal Growth and Development In Vitro 

MoHrip1, whether in native or recombinant form, induces HR in tobacco and triggers intensive 
defense responses in rice in vitro [24]. But its intrinsic function in M. oryzae and especially in its 
interaction with rice is still elusive. Basing on this problem, targeted gene deletion was conducted by 
replacing mohrip1 with hygromycin B resistance gene HPT according to the principle of homologous 
recombination (Figure 2A). Two mutants (Δmohrip1-10 and Δmohrip1-30) were selected by resistance 
to hygromycin B and further confirmed by PCR and Southern Blot analysis (Figure 2B). 

Figure 1. QRT-PCR analysis of mohrip1 expression in M. oryzae at different developmental and infective
stages. Transcription of mohrip1 was significantly induced in the first 2 dpi. The relative expression
levels of mohrip1 on the vertical axis were relative to that in the axenic mycelia after normalization with
M. oryzae Actin gene. Values are the means of three independent biological replications. The error bars
represent standard deviation (SD). “A”, “B” and “C” indicate the significance analyzed using Duncan’s
multiple range test at p < 0.01. dpi, days post inoculation.

2.2. MoHrip1 Is Dispensable for Fungal Growth and Development In Vitro

MoHrip1, whether in native or recombinant form, induces HR in tobacco and triggers intensive
defense responses in rice in vitro [24]. But its intrinsic function in M. oryzae and especially in its
interaction with rice is still elusive. Basing on this problem, targeted gene deletion was conducted by
replacing mohrip1 with hygromycin B resistance gene HPT according to the principle of homologous
recombination (Figure 2A). Two mutants (∆mohrip1-10 and ∆mohrip1-30) were selected by resistance to
hygromycin B and further confirmed by PCR and Southern Blot analysis (Figure 2B).



Int. J. Mol. Sci. 2019, 20, 1643 4 of 17
Int. J. Mol. Sci. 2019, 19, x 4 of 17 

 
Figure 2. Construction and confirmation of mohrip1 deletion and complementation mutants. (A) 
Deletion of mohrip1 according to homologous recombination. pKOV21-mohrip1-U-D, knockout 
vector for mohrip1; WT, pattern of mohrip1 in the genome of M. oryzae; Δmohrip1, deletion mutants 
containing HPT gene replacing mohrip1; UFR, upstream flanking region of mohrip1; DFR, 
downstream flanking region of mohrip1. Values represent the size of corresponding fragments. P1 to 
P6 were six primers used for the mutant confirmation by PCR. (B) Confirmation of the deletion 
mutants. (a) PCR confirmation; (b) Southern Blot validation using mohrip1 (upper) and HPT (lower) 
probes; (C) Confirmation of several independent complementation strains by PCR (upper) and 
Southern Blot (lower) with mohrip1 probe. The 1—6 were six complementation strains confirmed by 
PCR, from which two strains were chosen for Southern Blot. One strain named mohrip1-10-com was 
randomly selected for the subsequent bioassays. Δmohrip1-10, Δmohrip1-30, mohrip1-10-com and WT 
respectively represent the two deletion mutants, one complementation mutant and the wild type 
strain. 

The two independent deletion mutants, Δmohrip1-10 and Δmohrip1-30, displayed identical 
phenotypes in vitro, thus Δmohrip1-10 was selected as a representative in some of the following 
bioassays. The mutants were not distinct from WT in colony growth, production and morphology of 
conidia and appressoria (Figure 3), indicating that MoHrip1 was unnecessary for fungal saprophytic 
growth and conidiation. This was similar to some other identified effectors from M. oryzae [9,23]. As 
for the estimate of virulence on rice, the mutants demonstrated remarkable defects (Figure 4). To 
further test if the reduced virulence was exclusively due to the deletion of mohrip1, a 

Figure 2. Construction and confirmation of mohrip1 deletion and complementation mutants.
(A) Deletion of mohrip1 according to homologous recombination. pKOV21-mohrip1-U-D, knockout
vector for mohrip1; WT, pattern of mohrip1 in the genome of M. oryzae; ∆mohrip1, deletion mutants
containing HPT gene replacing mohrip1; UFR, upstream flanking region of mohrip1; DFR, downstream
flanking region of mohrip1. Values represent the size of corresponding fragments. P1 to P6 were
six primers used for the mutant confirmation by PCR. (B) Confirmation of the deletion mutants.
(a) PCR confirmation; (b) Southern Blot validation using mohrip1 (upper) and HPT (lower) probes;
(C) Confirmation of several independent complementation strains by PCR (upper) and Southern Blot
(lower) with mohrip1 probe. The 1—6 were six complementation strains confirmed by PCR, from which
two strains were chosen for Southern Blot. One strain named mohrip1-10-com was randomly selected
for the subsequent bioassays. ∆mohrip1-10, ∆mohrip1-30, mohrip1-10-com and WT respectively represent
the two deletion mutants, one complementation mutant and the wild type strain.

The two independent deletion mutants, ∆mohrip1-10 and ∆mohrip1-30, displayed identical
phenotypes in vitro, thus ∆mohrip1-10 was selected as a representative in some of the following
bioassays. The mutants were not distinct from WT in colony growth, production and morphology of
conidia and appressoria (Figure 3), indicating that MoHrip1 was unnecessary for fungal saprophytic
growth and conidiation. This was similar to some other identified effectors from M. oryzae [9,23]. As for
the estimate of virulence on rice, the mutants demonstrated remarkable defects (Figure 4). To further
test if the reduced virulence was exclusively due to the deletion of mohrip1, a complementation
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strain (mohrip1-10-com) basing on ∆mohrip1-10 was selected (Figure 2C) and exhibited normal growth,
conidiation and infection as WT (Figures 3 and 4). Subsequently, the virulence of these mutants was
analyzed in detail.
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Figure 3. Characterization of mohrip1 deletion and complementation mutants. MoHrip1 was not
required for M. oryzae saprophytic growth and asexual reproduction. (A) Colony growth of M. oryzae
strains on CM and PDA plates after incubation for five days. (B) Conidiation of M. oryzae strains.
(C) Conidial germination and appressorial formation of M. oryzae strains. Observation was respectively
conducted at 2, 6 and 12 hpi. Scale bar = 20 µm.
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method. The three-week-old rice seedlings were used for the tests. The concentrations of conidial
suspensions were all adjusted to 2 × 105 conidia mL−1 in 0.2% Tween 20. MOCK, sterile water added
with 0.2% Tween 20 taken as a negative control. At 7 dpi, the symptoms of rice plants treated by
different strains were investigated. (B) Disease index of rice blast in spraying inoculation bioassay.
Disease indexes were investigated according to the ten grades of international specification. Data
are representative of three independent assays, each assay with three repeats. Error bars represent
SD. “A” and “B” indicate the significance analyzed using Duncan’s multiple range test at p < 0.01.
(C) Virulence bioassay on rice plants conducted by the punch inoculation method. 6 to 8-week-old rice
leaves were wounded by a puncher. 10 µl of conidial suspensions (2 × 105 conidia ml−1 in 0.2% Tween
20) were respectively dropped on the wound areas, sealed with transparent film and incubated at 26 ◦C.
After 12 days, the disease status was investigated and photographed. (D) Relative lesion area in punch
inoculation bioassay. Rice leaf samples were harvested by cutting 3 cm long sections containing the
lesions. Measurement was conducted using the Adobe Photoshop software. Error bars represent SD.
The “a”, “b” and “c” respectively represent the significance analyzed using Duncan’s multiple range
test at p < 0.05. (E) Relative fungal biomass in punch inoculation bioassay. DNAs of the harvested 3 cm
leaf sections containing the lesions were extracted according to the CTAB method. Representing the
relative fungal biomass, the value 2 [CT(OsUbiquitin) − CT(MoPot2)] was calculated according to the result of
DNA-based qPCR. Values are the means of three independent biological replications, and error bars
represent SD. “A” and “B” indicate the significance analyzed using Duncan’s multiple range test at
p < 0.01. ∆mohrip1-10, ∆mohrip1-30, mohrip1-10-com and WT respectively represent the two deletion
mutants, one complementation mutant and the wild type strain.

2.3. MoHrip1 Is Required for the Full Virulence of M. oryzae

Adopting the classic spraying inoculation method, we inoculated the conidia of ∆mohrip1-10,
∆mohrip1-30, mohrip1-10-com and WT on 3-week-old rice seedlings. The disease symptoms were
surveyed at 7 dpi. Referring to the lesion types established by Valent et al. [26], many large eyespot
lesions were formed and considerably overlapped together on rice leaves inoculated with conidial
suspension of WT. While for the deletion mutants, just a few dark brown necrotic spots scattered on the
infected leaves (Figure 4A). To further confirm the observed symptoms quantitatively, disease status
was rated according to the international specification for rice blast disease. Consistently, the obtained
disease index of WT was significantly larger than those of the deletion mutants (Figure 4B). However,
the impaired virulence could be restored by the complementation of the mohrip1 gene with its native
promoter and terminator. Consequently, MoHrip1 functioned as an important virulence factor during
M. oryzae infection.

To further confirm the result of the spraying inoculation bioassay, another method, punch
inoculation, was conducted on 6 to 8-week-old rice plants [27]. Disease status was investigated
at 12 dpi. Again, WT and complementation strain mohrip1-10-com produced larger lesions on rice
leaves than those caused by the deletion mutants (Figure 4C). In addition, the relative lesion area and
fungal biomass in these lesions were also examined and corroborated the symptoms quantitatively.
The relative lesion area, calculated using the Adobe Photoshop software, and the relative fungal
biomass, represented by the transcription ratio of M. oryzae Pot2 gene versus rice Ubiquitin gene,
were both significantly smaller in the rice plants inoculated with the mohrip1-deleted mutants than
WT and complementation strain (Figure 4D,E). All these data coincided with the results of spraying
inoculation bioassay and demonstrated the significance of MoHrip1 for the full virulence of M. oryzae.

2.4. MoHrip1 Is Important for the Penetration and Proliferation of M. oryzae

Generally, deficiencies in penetration and infectious growth are the two main limiting factors for
the impaired virulence of pathogens. In most researches for M. oryzae, the penetration ratio in the
first 24 hours post inoculation (hpi) is often taken as an indicator of the ability to penetrate [28,29].
Consequently, an inoculation assay using rice sheaths was conducted to observe the infection process
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under a microscope. Conidial suspensions (5 × 104 conidia mL−1 in 0.2% Tween 20) of ∆mohrip1-10,
mohrip1-10-com and WT were respectively inoculated on the detached rice sheaths placed in a moist box.
According to the four grades we divided in another research [30], the percentages of different infection
levels were calculated. At 12 hpi, the percentages of formed appressoria reached approximately 80%
for all the strains, revealing that MoHrip1 was dispensable for the formation of invasive structure.
Subsequently at 24 hpi, as shown in Figure 5A, nearly 70% of the appressoria of ∆mohrip1-10 didn’t
form the primary IH. While for the complementation strain mohrip1-10-com and WT, the percentages of
appressoria developing IH reached approximately 60%. Therefore, the results indicated that MoHrip1
played an important role in the penetration of M. oryzae.
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Figure 5. MoHrip1 is important for M. oryzae penetration and proliferation. According to the four
levels (Level 0, just appressoria without penetration; Level 1, with penetration peg or primary IH;
Level 2, with sparse secondary IH restricted in the first infected rice cell; Level 3, with abundant IH in
the initial and even neighboring rice cells) we divided in another research, the infection status of rice
leaf sheaths inoculated with M. oryzae strains (5 × 104 conidia ml−1 in 0.2% Tween 20) was respectively
investigated at 24 hpi and 36 hpi. (A) Statistical analysis of the penetration rates of M. oryzae strains at
24 hpi. (B) Statistical analysis of the infection rates of M. oryzae strains at 36 hpi. Data are representative
of three independent assays, each assay with three repeats. For each repeat, at least 100 appressoria
were observed. ∆mohrip1-10, mohrip1-10-com and WT respectively represent one deletion mutant, one
complementation mutant and the wild type strain.

To further explore whether the proliferation of ∆mohrip1-10 was restricted in the initial infected
rice cell or not, sheath inoculation assay was continually monitored to 36 hpi. As shown in Figure 5B,
IH of WT spread freely in the initial and adjacent rice cells, while for ∆mohrip1-10, most of the
penetrated hyphae were restricted in the initial invaded cell. And this defect could be restored by
the complementation of mohrip1 gene. According to the statistical results, almost 60% of the IH came
to Level 3, and the proportions of Level 2 and Level 1 were gradually decreased to about 25% and
15% for WT and mohrip1-10-com. By contrast, approximately 43% and 31% IH of ∆mohrip1-10 were
limited in the status of Level 1 and Level 2. While for Level 3, the proportion was just 12% (Figure 5B).
Consequently, MoHrip1 was also crucial for the infectious growth and spread of IH in the infected
rice cells. In conclusion, MoHrip1 was important for fungal penetration and subsequent proliferation,
and thus the full virulence of M. oryzae.

2.5. MoHrip1 Suppresses the Activation of Plant Immunity

In the process of M. oryzae infecting rice, the pathogen deploys different strategies to contribute to
its virulence. Multiple defense responses in rice are also induced correspondingly to defend [31,32],
among which includes the up-regulated expression of certain defense related genes, which play
important roles in the restriction of fungal penetration and proliferation [9,33]. To explore whether
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the compromised virulence of ∆mohrip1 mutants was partially due to their defect in suppression of
plant defense responses, qRT-PCR assays were conducted. The obtained results demonstrated that
the transcription of a subset of defense related genes differed significantly at 3 dpi relying on whether
the inoculated strain was mohrip1 deleted or not. As shown in Figure 6, the expression levels of PBZ1,
PAL and PR1a, were significantly higher in rice plants inoculated with ∆mohrip1-10 than those with
WT. While for PR5, the opposite tendency was obtained. In addition, the transcripts of four genes
related to the biosynthesis of phytoalexins, especially oryzalexin, were also estimated. Consistently,
their expression also demonstrated an obvious increase in rice leaves inoculated with ∆mohrip1-10
compared with WT (Figure 6).
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Figure 6. MoHrip1 suppresses the transcription of certain defense related genes in rice. Transcription
levels of these genes were induced stronger in rice infected with ∆mohrip1-10 than WT at 3 dpi other
than PR5. The vertical axis indicates the expression levels relative to those in the water sprayed leaves
(MOCK) after normalization with the rice β-Actin gene (Os11G0163100). Gray columns represent
the PR or the defense pathway related genes, while brown ones represent genes taking part in the
biosynthesis of phytoalexins. Three independent biological experiments were conducted, each with
three replicates. Error bars represent SD. The “a”, “b”, “c” and “A”, “B”, “C” respectively represent the
significance analyzed using Duncan’s multiple range test at p < 0.05 and p < 0.01. MOCK, ∆mohrip1-10,
and WT respectively represent the rice seedlings treated with 0.2% Tween 20, mohrip1 deletion mutant
and the wild type strain.

Biosynthesis of sakuranetin, the only known flavonoid phytoalexin in rice to date, depends
significantly on OsNOMT gene, which encodes a naringenin 7-O-methyltransferase [34,35]. After
inoculation with ∆mohrip1-10, the transcripts of OsNOMT were significantly higher than those
in WT infected leaves (Figure 7A). To further confirm the expression of OsNOMT, we estimated
the contents of sakuranetin in rice leaves inoculated with M. oryzae strains at 3 dpi. Consistently,
∆mohrip1-10 induced significantly higher accumulation of sakuranetin (Figure 7B). Furthermore,
we also measured the content of another phytoalexin momilactone A. Consistently, its accumulation in
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rice leaves inoculated with ∆mohrip1-10 was also significantly higher than WT (Figure 7C). Therefore,
we concluded that MoHrip1 suppressed the accumulation of certain phytoalexins. In addition, we also
determined the contents of total phenols and flavonoids in rice leaves. Coincided with the production
of sakuranetin and momilactone A, the contents of these defensive compounds were also improved
in ∆mohrip1-10-treated rice leaves, although no significance was detected in the contents of total
phenols between ∆mohrip1-10 and WT (Figure 7D,E). Altogether, the result demonstrated that MoHrip1
inhibited the expression of specific defense related genes and the biosynthesis of specific defensive
compounds, resulting in the inactivation of rice plant immunity.
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Figure 7. MoHrip1 inhibits the production of defensive compounds. (A) Improved transcription
of OsNOMT by the treatment with ∆mohrip1-10 at 3 dpi. OsNOMT encodes naringenin
7-O-methyltransferase critical for the biosynthesis of sakuranetin, the only known flavonoid
phytoalexin in rice to date. (B) Contents of sakuranetin measured by HPLC-MS/MS. (C) Contents
of momilactone A measured by HPLC-MS/MS. (D) Contents of total flavonoids measured by
spectrophotometer. (E) Contents of total phenols measured by spectrophotometer. The contents of total
flavonoids and phenols were respectively indicated by the absorbance values at OD280 nm (for total
phenols) and OD325 nm (for total flavonoids). The bioassay conducted three times independently,
each time with three repeats. Error bars represent SD. The “a”, “b” and “A”, “B”, “C” respectively
represent the significance analyzed using Duncan’s multiple range test at p < 0.05 and p < 0.01. MOCK,
∆mohrip1-10, and WT respectively represent the rice seedlings treated with 0.2% Tween 20, mohrip1
deletion mutant and the wild type strain.

3. Discussion

In this study, we mainly characterized the biological function of MoHrip1 in M. oryzae and
especially the infective interaction with rice. The obtained results demonstrated that the expression of
mohrip1 was significantly improved during fungal infection. What’s more, the significantly induced
MoHrip1 played a critical role in fungal penetration and proliferation by suppression of rice immunity,
and this was the main cause for the compromised virulence of mohrip1-deleted mutants.

With the prosperous development of pathogen-plant interaction, numerous effectors have been
identified and shown to be important for the virulence of fungal pathogens and modulation of plant
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immunity [36,37]. Generally, many of these candidate effectors are significantly induced during the
infection process [11,38]. In our study, we also investigated the expression pattern of mohrip1 by
qRT-PCR and found that its transcription was obviously up-regulated in the first 2 dpi, followed by
a gradual decrease for up to five days to the normal level as in axenic mycelia or conidia (Figure 1).
This kind of expression pattern was similar to many other effectors from M. oryzae. PWL2 and other 58
putative effector genes have been found to be up-regulated at least tenfold during plant infection by
an analysis of interaction transcriptome [11]. Additionally, Sornkom et al. [18] have analyzed in detail
the expression pattern of Avr-Pia. They divided the time course post inoculation into three stages: 0 to
24 hpi, 24 to 36 hpi and after 36 hpi respectively representing the stages of appressorial differentiation,
penetration and colonization. Accordingly, the obvious induction of mohrip1 extremely coincided with
the penetration and colonization stages. Therefore, it is very likely that MoHrip1 plays a crucial role in
the invasion and proliferation of M. oryzae.

To investigate the biological function of MoHrip1 in M. oryzae, deletion and complementation
mutants were constructed (Figure 2). In the phenotypic measurement of growth and development,
we didn’t find any difference between the deletion mutants and WT in mycelial growth, conidiation,
and formation of appressoria (Figure 3). This was similar to many other effectors from M. oryzae,
for example, RBF1 [9] and MC69 [23]. However, the virulence of deletion mutants on rice seedlings
(spraying inoculation) and even on rice leaves with wounds (punch inoculation) was largely
compromised (Figure 4). Therefore, we speculated that the compromised virulence of mohrip1-deleted
mutants might partially result from their defect in the hyphal spread after penetration. This hypothesis
was further corroborated by the results from rice sheath inoculation assay (Figure 5). Besides,
the assay also demonstrated the significantly compromised penetration ability of the deletion mutants.
These results collectively indicated the importance of MoHrip1 in fungal penetration and colonization,
and this was coherent to the expression pattern of mohrip1 (Figure 1).

Our previous research has proved the function of purified MoHrip1 as an exogenous inducer to
elicit the early events of defense response in tobacco, such as hydrogen peroxide production, callose
deposition, and alkalization of the extracellular medium [24]. In rice, the MoHrip1-treated seedlings
possess enhanced systemic resistance to blast fungus, and the results have been further confirmed
by the transcriptional profiling [24,39]. Additionally, over-expression of the mohrip1 gene in rice also
significantly enhances plant resistance to blast fungus [25]. Gathering all these results together, it may
seem puzzling that MoHrip1 acts both as a virulence factor facilitating fungal infection and an elicitor
activating plant immune responses. However, many other effectors have also been proved functioning
in the similar way. MSP1, one member from the snodprot1 family, possesses significant phytotoxic
properties in the infective interaction between M. grisea and rice. But the purified protein MSP1
has no toxic effect on rice leaves [40]. Harpin, one of the classic elicitors, can activate plant defense
reaction well-known as HR. Whereas, it is also necessary for the pathogenicity of pathogenic bacteria
including Erwinia, Pseudomonas, and Xanthomonas [41]. XEG1, the recently identified effector from the
soybean pathogen Phytophthora sojae, actions both as a major virulence factor during soybean infection
and a pathogen-associated molecular pattern (PAMP) recognized by the plant’s PAMP recognition
machinery to induce the downstream defense responses [42]. Similar to XEG1, the plant defense
responses induced by MoHrip1 may also belong to the first layer of immunity called PAMP-triggered
immunity (PTI), namely, MoHrip1 probably functions as a PAMP. Therefore, with dual function as a
PAMP to induce the following PTI and an effector to facilitate fungal infection, MoHrip1 further blurs
the distinction between PAMP and effector, PTI and ETI [43].

The defects of mohrip1-deleted mutants in pathogenicity generally due to the activated immune
system in rice cells. Thus, we estimated the transcripts of some related genes at 3 dpi and found that
the expression levels of PBZ1, PAL and PR1a were all significantly higher in rice leaves inoculated with
mohrip1-deleted mutant than WT, partially illustrating the significance of MoHrip1 in the inactivation
of plant immunity (Figure 6). In our previous researches about MoHrip1, when the rice seedlings,
either Nipponbare or transgenic lines containing the mohrip1 gene, are attacked by the blast fungus,
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the transcription of some pathogenesis-related (PR) genes are all induced. And the induction levels
for these genes are even higher when MoHrip1 exists in extra, either expressed in the transgenic rice
or sprayed in the purified recombinant form [24,25]. Meanwhile, even applied exogenously alone
without the inoculation of fungus, MoHrip1 activates the expression of these defense related genes
significantly [39]. These results may seem contradictory to the results obtained in this study, however,
the exposing methods of MoHrip1 in these situations are different. When expressed in the transgenic
rice or sprayed in the recombinant form, MoHrip1 may exist continuously and distribute widely.
While when secreted in the process of M. oryzae infecting rice, the protein is only significantly induced
in the infection stage and limited to the infection sites. Furthermore, the concentrations of MoHrip1 in
these conditions are also different or uncontrollable. Considering all these factors, MoHrip1 may act as
a virulence factor or a PAMP in different situations, resulting in the different transcription of these
related PR genes.

Contrasting to other defense related genes, the expression of PR5 in rice was significantly induced
by the inoculation of WT (Figure 6). PR5 proteins are a kind of thaumatin-like proteins (TLPs) widely
distributing in plants. Their expression is often induced by microbial infection and pathogenic elicitors,
osmotic stress, wounding and plant hormones [44]. The antifungal activity of PR5 is well-documented
no matter in the form of heterologous expressed protein [45,46] or transgenic plants [47]. Meanwhile,
they can mediate the signal transduction by interaction with their receptors or ligands [44]. BcIEB1
is a probable PAMP identified from the broad range phytopathogenic fungus Botrytis cinerea. It can
interact with osmotin, one of the PR5 proteins in tobacco, and this interaction can protect the fungus
from the antifungal activity of osmotin as well as modulate the elicitor activity of BcIEB1 on plants [48].
Both MoHrip1 and Alt a 1, an allergen causing the chronic asthma in children identified from
Alternaria alternata, belong to the Alt a 1 family. It has been proved that Alt a 1 can interact with
the PR5 thaumatin-like proteins from kiwi and further inhibit their antifungal activity [49]. Similar
to BcIEB1 and Alt a 1, we assumed that MoHrip1 probably interacts with PR5 proteins and this
assumption has been further confirmed by a yeast two-hybrid system in another study [50]. Therefore,
the complex interaction between MoHrip1 and PR5 may partly determine the difference in expression
of PR5 compared with other surveyed defense related genes.

Furthermore, we also measured the transcription of several genes associated with the biosynthesis
of phytoalexins. As secondary metabolites induced by pathogen attack, phytoalexins often possess
intense antimicrobial activities. In rice, most identified phytoalexins are diterpenoid compounds [34].
Some genes related to the production of diterpenoid phytoalexins, such as KSL7, KSL10, KOL4,
CYP76M8, were all markedly improved in the rice plants infected by mohrip1 deletion mutant
(Figure 6). Sakuranetin is the only identified flavonoid phytoalexin in rice so far. Naringenin
7-O-methyltransferase coding gene NOMT is crucial for the production of sakuranetin by catalyzing
the bioconversion of sakuranetin from its precursor [51]. Consistent with our prediction, both the
expression of NOMT and the content of sakuranetin were all significantly higher in rice leaves
inoculated with mohrip1-deleted mutant than WT (Figure 7A,B). As for the biosynthesis of diterpenoid
phytoalexins, we measured the content of momilactone A as a representative and obtained a similar
result as sakuranetin (Figure 7C). Furthermore, we also measured the contents of other defensive
compounds, such as total phenols and flavonoids. Their accumulation also demonstrated the
same tendency to sakuranetin and momilactone A (Figure 7D,E). Therefore, it is probable that the
increased aggregation of defensive compounds partially resulting in the defects of ∆mohrip1 mutants
in penetration and proliferation.

In conclusion, this study demonstrated that M. oryzae effector gene mohrip1 was significantly
induced during infection. Although insignificant for the growth, conidiation, and formation of
appressoria, MoHrip1 was crucial for the penetration and colonization of M. oryzae by inactivation
of host immune responses. And this was the main cause for the compromised virulence of ∆mohrip1
mutants. Our research results are effective for the elucidation of the unique infection strategy deployed
by M. oryzae and control of rice blast disease.
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4. Materials and Methods

4.1. Strains and Culture Conditions

M. oryzae wild type strain KJ201 (WT) kindly supplied by Professor Wende Liu, mohrip1-deleted
strains, complementation strain assayed in this study were all cultured on OA plates at 26 ◦C. To get
large amount of conidia for inoculation, induction was made by placing the plates under continuous
light for 10 to 15 days [52]. The conidial suspension was prepared by scraping from OA plates with
sterile water and filtrating through one layer of Miracloth. While for fungal mycelia, liquid CM was
inoculated with fungal plugs and cultured in a shaker at 26 ◦C with a speed of 180 rpm. The mycelia
were harvested after two to three days and used for nucleic acid extraction and protoplast preparation.

4.2. QRT-PCR Analysis of Mohrip1 Expression

To analyze the expression mode of mohrip1 at different developmental and infectious stages of
M. oryzae, mycelia, conidia and infected leaf samples were all tested. For the obtaining of leaf samples,
rice seedlings grown to three-week-old were inoculated with fungal conidia (1 × 108 conidia mL−1

in 0.2% Tween 20) according to the classic spraying method [10]. The inoculated plants were placed
in a chamber with high humidity at 26 ◦C for 24 h in dark and then reset the relative humidity and
photoperiod respectively to 80% and 12 h light/dark [27]. Leaf samples were collected respectively at
1, 2, 3, 4, and 5 dpi. Total RNA was extracted using the fungal RNA kit (Omega Bio-Tek, Norcross, GA,
USA), and then reversely transcribed into cDNA using the EasyScript One-Step gDNA Removal and
cDNA Synthesis Supermix (TransGen Biotech, Beijing, China). With the obtained cDNA as template
and M. oryzae Actin (MGG_03982) as referring gene, qRT-PCR assays were performed on an ABI
7500 real-time PCR system (Applied Biosystems, Foster city, CA, United States) using TransStart Top
Green qPCR SuperMix (TransGen Biotech, Beijing, China). This bioassay was conducted three times
independently, each time with three repeats. Primers used were listed in Table S1.

4.3. Vector Construction

According to the standard principle of homologous recombination described in the previous
research [53], the knockout vector for mohrip1 was constructed. Briefly, taking the genomic DNA of
M. oryzae as template, 739-bp upstream and 766-bp downstream flanking regions of mohrip1 were
respectively amplified by PCR. The upstream sequence was digested by BamHI and EcoRI and fused
to the 5′-end of HPT gene on the plasmid pKOV21 [54], generating pKOV21-mohrip1-U. Then the
resultant vector and the downstream sequence were respectively digested by HindIII and KpnI and
connected together to form the knockout construct pKOV21-mohrip1-U-D.

To further verify the function of mohrip1, gene complementation was conducted by transformation
of mohrip1-deleted mutant with the complementation vector pYK11-mohrip1, which was constructed
by subcloning the entire coding region of mohrip1 with its native promoter and terminator (~2.4 kb)
into the multiple cloning site on pYK11. Primers used were listed in Table S1.

4.4. Fungal Transformation and Confirmation

PEG-mediated protoplast transformation was adopted in this study [55]. The mohrip1-deleted
mutants were generated by transforming the construct pKOV21-mohrip1-U-D into WT and screened
by resistance to hygromycin B. In order to construct the complementation mutants, the plasmid
pYK11-mohrip1 was introduced to protoplasts released from the mohrip1-deleted strain. The putative
mutants were selected by resistance to zeocin. All putative mutants in the section of mohrip1 deletion
and complementation were confirmed by PCR and Southern Blot [54]. Primers for PCR and probe
construction were listed in Table S1.
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4.5. Phenotypic Characterization

The developmental traits were investigated according to the previous methods with a little
modification [56,57]. For the vegetative growth and colony morphology, mycelial blocks of 5 mm
in diameter were picked out from ten-day-old OA plates and inoculated on fresh CM and PDA
plates. After incubation at 26 ◦C in dark for five days, the radial growth was measured with a vernier
caliper. For the measurement of conidiation, mycelial plugs of 5 mm × 5 mm were put on glass
slides and incubated in a moist container. The conidia on conidiophores were observed under a
microscope at 48 hpi. The quantity of conidia produced on OA plate was estimated by rubbing the
plate with 5 mL of sterilized distilled water and counting with a hemacytometer [56]. For conidial
germination and formation of appressoria, conidial suspensions (1 × 105 conidia mL−1) of 20 µL were
dropped on coverslips and placed in a humid box. At least 100 conidia for each strain were examined
microscopically respectively at 2, 6 and 12 hpi [56]. All bioassays were conducted at least three times,
each time with three to five repeats.

4.6. Pathogenicity Assays

In the pathogenicity assays, rice cultivar Nipponbare and conidial suspensions with a same
concentration of 2 × 105 conidia mL−1 in 0.2% Tween 20 were adopted. In the spraying
inoculation, fungal conidia were quantitatively and uniformly sprayed on three-week-old rice
seedlings. The inoculated plants were placed in dark for 24h and then returned to the normal
growth conditions [10,27]. After seven days, the lesion progressions were observed according to the
six types divided by Valent et al. [26]. Meanwhile, the disease index was also investigated referring to
the international specification for rice blast disease [24]. In addition, the relative expression levels of
certain defense related genes at 3 dpi were also investigated by qRT-PCR after normalization with rice
β-Actin gene (Os11G0163100).

For the punch inoculation assays, 6 to 8-week-old rice plants were used. According to the method
of Liu et al. [27], conidial suspension of 10 µl was dropped to the wound area on rice leaf made by
a puncher. The wounded area with conidial suspension was sealed with a piece of transparent film,
and then transferred into the growth chamber. After 12 days, leaf samples of 3 cm in length containing
the lesions were harvested and photographed. The images were analyzed with the Adobe Photoshop
software to calculate the relative lesion area. Moreover, the relative fungal growth, represented by the
ratio of CT values of Pot2 gene (MGG_13294.6) in M. oryzae versus the Ubiquitin gene (Os03g13170) in
rice, was determined by DNA-based qPCR. The relative fungal biomass was then calculated according
to the equation 2 CT(Ubiquitin) − CT(Pot2) [10].

These experiments were all repeated at least three times, each time with three repeats, and the
representative results from one time were displayed. Primers used were listed in Table S1.

4.7. Rice Leaf Sheath Infection Assays

Rice leaf sheath inoculation assays were conducted to observe the entire infection process of
M. oryzae [6,58]. Leaf sheaths were excised from the 1.5 to 2.5-month-old rice plants and inoculated
with a conidial suspension of 5 × 104 conidia mL−1 in 0.2% Tween 20. The inoculated sheaths were
observed microscopically at different time points post inoculation. According to the four infection
levels (Level 0, just appressoria without penetration; Level 1, with penetration peg or primary IH;
Level 2, with sparse secondary IH restricted in the first infected rice cell; Level 3, with abundant IH in
the initial and even neighboring rice cells) we divided in another research [30], the infection status
was investigated. For each sample, at least 100 penetrated sites were observed. Three assays were
conducted independently, each time with three to five repeats.
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4.8. Quantification of Defensive Compounds

The measurement of phytoalexins including sakuranetin and momilactone A was mainly
according to the method of Nishimura et al. [9] by HPLC-MS/MS. Briefly, rice leaves inoculated
with different M. oryzae strains were respectively collected at 3 dpi. Thirty-five milligrams of leaf
samples were grinded into powder and incubated in 1 mL extraction buffer methanol:H2O (1:1, v/v) for
30 min. Then two microliters of the supernatants were subjected to HPLC-MS/MS. For the estimation
of total phenols and flavonoids, leaf samples with the same weight were harvested, cut into 1 to
2 mm sections and immersed in methanol: HCl (99:1, v/v) at 4 ◦C. After 24 h, the absorbance values
of OD280 nm and OD325 nm, respectively representing the contents of total phenols and flavonoids,
were measured using SpectraMax 190 [59]. Three times were conducted for the assays, each time with
three to five repeats.

4.9. Statistics

All bioassays were conducted three independent times, each time with at least three repeats.
Statistical analysis was performed using the software of SAS System for Windows V8. Data from
independent biological replicates were analyzed with ANOVA (analysis of variance). Significance
analysis was carried out using the Duncan’s multiple range test.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/7/1643/
s1.
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Abbreviations

IH invasive hyphae
BAS biotrophy-associated secreted
MAX M. oryzae Avrs and ToxB
HR hypersensitive reaction
qRT-PCR quantitative reverse transcription polymerase chain reaction
OA oat agar medium
CM complete medium
dpi days post inoculation
hpi hours post inoculation
HPT hygromycin B resistance gene
PAMP pathogen-associated molecular pattern
PR pathogenesis-related
TLP thaumatin-like protein
ANOVA analysis of variance
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