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Abstract: Bacterial cell wall hydrolases, including amidases and peptidases, play a critical role in 
peptidoglycan turnover during growth, impacting daughter cell separation, and cell death, through 
autolysis. When exploring the regulation of protein expression across the growth cycle of an acid-
resistant strain of Lactobacillus paracasei, GCRL 46, we observed temporal up-regulation of proteins 
in the 40–45 kDa molecular weight range for whole-cell extracts when culturing in fermenters at a 
controlled pH of 4.0 versus optimum growth pH of 6.3. Up-regulation of proteins in this size range 
was not detected in SDS-PAGE gels of the cytosolic fraction, but was routinely detected following 
growth at low pH in whole cells and cell debris obtained after bead beating and centrifugation, 
indicating a cell surface location. N-terminal sequencing and in silico analyses showed sequence 
similarity with proteins in the L. casei group (L. casei, L. paracasei and L. rhamnosus) which were 
variously annotated as uncharacterized proteins, surface antigens, possible TrsG proteins, CHAP 
(cysteine, histidine-dependent amidohydrolases/peptidases)-domain proteins or putative 
peptidoglycan D,L-endopeptidase due to the presence of a CwlO domain. This protein is a 
homologue of the p40 (Msp2) secreted protein of L. rhamnosus LGG, which is linked to probiotic 
functionality in this species, and is phylogenetically related to structurally-similar proteins found in 
Enterococcus, Streptococcus and Bifidobacterium species, including the glucan-binding (GbpB), surface 
antigen (SagA) proteins detected in pathogenic group A streptococci species as secreted, 
immunoglobulin-binding (SibA) proteins (also named PcsB). Three-dimensional (3D) modelling 
predicted structural similarities in the CHAP proteins from the L. casei group and streptococcal 
species, indicating retention of overall architecture despite sequence divergence, and an implied 
retention of function during evolution. A phylogenetically-related hydrolase also contained the 
CwlO domain with a NLPC_P60 domain, and showed similar overall but distinct architecture to the 
CHAP proteins. We concluded that the surface-located, CHAP protein in L. casei is up-regulated 
during long-term exposure to acidic conditions during growth but not during acid shock. 
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1. Introduction 

The gram-positive lactic acid bacteria (LAB) belong to several genera in the phylum Firmicutes, 
including Lactococcus, Enterococcus, Oenococcus, Pediococcus, Streptococcus and Lactobacillus. LAB have 
in common the ability to convert sugars into lactic acid either homo- or hetero-fermentatively (the 
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latter potentially producing ethanol, aldehydes and mixed acids in addition to lactic acid). They 
occupy a variety of ecological niches in nature, notably associated with human and animal 
gastrointestinal tracts (GIT) and mucosal surfaces, and have been used traditionally in the production 
of fermented meat, plant and dairy products [1,2]. Fermented foods are preserved through 
acidification, and LAB help develop flavour and aroma qualities in food, particularly during the 
ripening phases of fermented milk products [3,4]. Lactobacillus comprise one of the largest genera of 
the LAB, with 237 species currently reported in the list of prokaryotic names with standing in 
nomenclature (http://www.bacterio.net/lactobacillus.html). Several Lactobacillus species are used in 
food fermentations as starter cultures, which have a primary function of rapid acidification of the 
food matrix, while others occur as non-starter LAB (NSLAB) which develop as part of the food 
microbiota in maturing cheeses [5]. While comprising a minor part of human GIT microbiota [6,7], 
probiotic species of Lactobacillus confer human health benefits [8–10], with documented impacts 
involving immunostimulation and antagonism towards pathogenic microbes through competitive 
exclusion, which involves their ability to attach to GIT epithelium cells and mucins [11,12]. Many of 
the probiotic traits of Lactobacillus species are associated with cell surface structures and surface plus 
secreted proteins [13–15]. The cell wall forms a physical barrier outside the cytoplasmic membrane 
and is involved in functions associated with responding to external environmental stimuli [13] and 
determining cell shape plus integrity [14]: it is essential for cell survival. 

The cell wall of Lactobacillus consists of the peptidoglycan (PG) sacculus, which is made up of 
glycan chains containing N-acetylglucosamine and N-acetylmuramic acid that are attached to short 
peptides which cross-link to form a mesh-like structure. In addition to potential modification to the 
PG by O-acetylation or N-deacetylation, the surface can be decorated by teichoic acids and other 
surface polysaccharides [13]. Some species of Lactobacillus also synthesize an S-layer, which is an 
outer microcrystalline protein sheath which has been implicated in probiotic function, including 
infection control and adhesion [16–18]. The formation of the cell surface is a dynamic process, 
requiring multiple enzyme systems in the synthesis of chemical components and their assembly into 
the sacculus during growth, which involves turnover of the structures during elongation, septum 
formation and daughter cell separation [13]. PG (murein) hydrolases are a diverse group of enzymes 
(amidases, peptidases, muraminidases and glucosaminidases) [13] responsible for cleaving specific 
bonds in PG during turnover and can also lead to cell lysis [19]. Starter culture autolysis during food 
fermentations can aid the release of cytoplasmic enzymes involved in flavour development and 
provide nutrients for metabolism by NSLAB during cheese ripening or product storage, which also 
contributes to organoleptic qualities [20,21]. 

Secreted proteins detected in the extracellular culture medium of the probiotic Lactobacillus 
rhamnosus strain LGG were shown to prevent cytokine-induced apoptosis and regulate cell growth 
and survival in intestinal epithelial cells, as well as ameliorate intestinal inflammation in mice [22–
24]. These proteins were originally named p75 and p40 (based on apparent molecular weight, MW) 
but later renamed major secreted proteins (Msp1 and Msp2 respectively), with homologues detected 
in L. casei BL23 [25–27]. Bäuerl et al. [27] demonstrated muropeptide hydrolysis by p75/Msp1 in L. 
casei BL23 and used knock-out mutants to conclude that this protein was linked to cell separation, 
given that mutants formed elongated cells. Similar observations were later made for strain BL23 using 
immunolocalization to demonstrate Msp1 at cell poles during septation and to further demonstrate 
that PG was cleaved in the stem peptide, indicating D,L-endopeptidase activity [26]. Knock-out 
mutants for Msp2/p40 in strain BL23 showed no impact on growth [26], whereas similar knock-out 
mutants were not obtained in L. rhamnosus likely due to the essential nature of this protein in this 
species [25]. Several other putative PG hydrolases were identified from in silico analysis of the 
sequenced genome of BL23, including the Msp1 protein (which had a predicted MW of 49.6 kDa), 
where some were predicted as encoded by prophages [26]; the anomaly in the difference in MW of 
Msp1 experimentally detected in L. rhamnosus LGG and the cloned protein expressed in Escherichia 
coli was later attributed to glycosylation of the Msp1 protein in these species but not in L. casei [28]. 

While characterizing the acid tolerance of a dairy strain of L. paracasei, GCRL 46, we noted the 
up-regulation of cell-associated proteins following culture under controlled fermentation conditions 
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at low pH. We argue that these culture conditions may better represent how cells are exposed to acidic 
environments during food processing and product storage in the dairy industry (noting that yogurt pH 
is normally 4–4.6 and cheese pH is 5.1–5.5, https://www.foodqualityandsafety.com), in contrast to acid 
shock conditions where there is a considerable and established literature for LAB [1,29]. One up-
regulated protein was identified as equivalent to p40/Msp2. Given the increasing number of available 
genome sequences in LAB, and the Bacteria more generally, and improvements in bioinformatic tools 
for protein analysis over the last few years, we revisited the broader phylogenetic relationships between 
this and another structurally-similar PG hydrolases in this strain. The two related but distinct enzymes, 
which share a common CwlO domain, which is commonly found in PG hydrolases, and similar domain 
layout, are divergently related to proteins occurring broadly in the Firmicutes and their bacteriophages, 
prophages or plasmids, with the p40/Msp2 homologue showing modelled structural similarities to 
Streptococcus homologues (SibA-CHAP, SagA and PcsB proteins). The CHAP-CwlO protein was only 
detected in a limited number of Lactobacillus species. The PcsB protein has been proposed as a candidate 
for new pneumococcal vaccine development, given that it is essential for normal cell growth and is 
highly conserved in this genus [30]. Understanding the relationship between the structural similarities 
between conserved homologues in other genera, such as the probiotic Lactobacillus species, will inform 
the discussion on this matter. 

2. Results 

2.1. Confirmation of Speciation 

All strains were confirmed as Lactobacillus species using PCR primers described by Dubernet et 
al. [31,32]. GCRL 46 was originally classified as L. paracasei [32] based on rRNA VI region sequencing. 
However, while intergenic spacer region sequencing can differentiate between L. rhamnosus and other 
L. casei group members [33] differentiation between L. casei and L. paracasei using similar approaches 
is problematic [34]. Recent large-scale analysis of genes in the core genome of this group indicated 
that the type strain for L. casei, ATCC 393, plus a small group of genetically-related strains, constitute 
a clade which the authors recommend remain designated as L. casei [35]. Other strains not within this 
clade, which are historically named L. casei and L. paracasei, form a distinct, separate clade (A) and it 
was recommended that all of these strains be renamed L. paracasei. Despite the majority of strains in 
this clade demonstrating >98% average nucleotide identity (ANI) similarity to each other, and to the 
L. paracasei type strain ATCC 25302 and ATCC 334 (from our ANI analysis of all L. casei and L. 
paracasei genomes available in the IMG database), the issue of nomenclature remains unresolved. In 
the present study, we use the names L. casei and paracasei synonymously and use the species names 
that have occurred in prior literature for consistency; broader in silico analysis against published 
genomes of the L. casei group members classified GCRL 46 in clade A and we refer to this strain as L. 
paracasei in the text. 

2.2. Acid Resistance 

Previous characterization of L. paracasei GCRL 46 in shake-flask culture using buffered media 
indicated the optimal pH for growth was 6.5 [36]: the maximum specific growth rate in fermenters 
indicated a similar optimum at pH 6.3 (Figure S1) and growth kinetics were determined for culture 
at pH 4.0 and uncontrolled pH conditions (Figure S2 shows an example for growth at optimal pH). 
L. acidophilus ATCC 4356 was selected to benchmark acid resistance of L. paracasei GCRL 46 as this 
strain has been reported as acid tolerant and showed greater resistance than L. casei strains tested in 
parallel [37]. Figure 1a shows that the % cell survivors declined rapidly at pH 2 after 0.5 h exposure 
for ATCC 4356 and viable cells were not detected within 1 h for both ATCC 4356 and GCRL 46. At 
pH 2.5, clear differences in rate of decline in viability were seen, where GCRL 46 retained higher cell 
viability over a longer period relative to ATCC 4356, indicating greater tolerance to acidity (Figure 
1b). When cells from different growth phases of GCRL 46 were assessed for acid resistance, cells from 
mid-exponential growth were more acid sensitive than cells from earlier and later stages of culture. 
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This is consistent with stationary phase cells entering a general stress state which results in stress 
cross-protection, as shown in L. plantarum [38]. 

 
Figure 1. Acid resistance and impact of growth phase on resistance. Panel (a): overnight MRS cultures 
of L. acidophilus ATCC 4356 (♦ and ■) and L. paracasei GCRL 46 (▲ and X) were diluted into MRS at 
pH 2 (dashed lines) or 2.5 (solid lines) and viable counts determined every 30 min to determine % 
survivors relative to time zero. Panel (b): strain GCRL 46 was cultured in fermenters without pH 
control, growth monitored by OD600 (♦) and samples taken after inoculation then hourly to 
determine % survivors (X) after 2 h in MRS broth at pH 2.5. 

2.3. Growth at Low pH Induces Synthesis of Cell Surface Proteins 

L. paracasei GCRL 46 was harvested hourly from fermenters for cultures with set pH of 6.3 and 
4.0 and proteins in whole cell preparations separated on SDS-PAGE (Figure 2a,b). Comparing the 
temporal expression of proteins under the two growth conditions showed that a major, broad band 
in the molecular weight (MW) range 40–45 kDa became increasingly dominant across the growth 
cycle at pH 4.0, which is not apparent in the parallel series at 6.3. Other proteins in the MW range 30-
50 kDa were also relatively up-regulated at pH 4.0 during late exponential and at stationary phases 
but were comparatively minor proteins. The relative intensity of protein bands was determined by 
scanning gel images using UN-SCAN-IT gel imaging software for the up-regulated protein band at 
pH 4.0 and for the multiple protein bands in the equivalent region (MW 38–45 kDa) for extracts of 
cells cultured at pH 6.3 (Figure S3). At pH 6.3, proteins in this MW range did increase across the 
growth cycle but to a lesser extent than at pH 4.0 and several minor proteins (% density relative to 
total) of similar MW were observed. 

Time-course experiments were also performed using different culture conditions, including 
maintaining pH at 6.3 until late exponential growth then not controlling the pH to stationary phase; 
growing cultures to exponential phase then shifting to pH 4.0; or not controlling the pH throughout 
the growth cycle (Figure S4): in all of these cases, greater synthesis of proteins in the MW range 40–
45 kDa was observed, similar to the control at pH 4.0 run in parallel. Spiking pH from 6.3 to 4.0, then 
returning to pH 6.3, did not produce similar changes in protein profiles in this size range, confirming 
that up-regulation of protein expression was linked to growth at low pH and likely also linked to 
protein synthesis late in the growth cycle (see Figure S4). 

Stationary phase cells of GCRL 46 were subsequently lysed by bead beating and fractionated by 
centrifugation to remove cell debris plus unbroken cells from the released proteins (cytosolic 
fraction). The corresponding whole cells, cell debris and the cytosolic fractions were compared on 
SDS-PAGE (Figure 2c). Although a major band in the 40–50 kDa was seen in whole cells and the cell 
debris fraction, the same protein band was not dominant in the cytosolic fraction. This indicated that 
the proteins in that band were removed during centrifugation and suggested that the proteins were 
bound in surface structures pelleted during centrifugation. 
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Figure 2. SDS-PAGE gel images for GCRL 46 cells cultured at pH 6.3 or 4.0. Cells were cultured 
anaerobically in fermenters at set pH of pH 6.3 (panel a) and 4.0 (panel b), sampling hourly from 
inoculation (lanes 2–13) and at 24 h (lanes 14) for analysis of whole cell preparations. Size markers are 
shown in lane 1. The red line shows where parallel gels have been joined to visualize these data; the 
white arrow indicates initial up-regulation of a protein band of approximately 42 kDa. Panel (c) shows 
(left to right) whole cells, cell debris after centrifugation and the cytosolic fractions for cells culture at 
pH 4.0 for 24 h. The black arrow points to the ca. 42 kDa protein band. 

Given that analysis of the cytosolic fraction would not have been useful in exploring the nature 
of the surface proteins upregulated by growth at low pH, proteins in whole cell lysates were 
separated by preparative SDS-PAGE and N-terminal protein sequencing performed. Although it was 
likely that the broad protein band contained several proteins, a clear N-terminal sequence was 
obtained, with only the amino acid in the eleventh position reported as equivocal: 
DTSDSIASNK(S/Q/D)ETNALLKQI. 

2.4. Characterization of the 42 kDa Acid Up-regulated Protein as a Peptidoglycan D,L-endopeptidase 

The 20 amino acid (AA) N-terminal sequence was subjected to BLASTp in KEGG, using all three 
possible amino acids in the eleventh position: matched protein sequences were only detected when 
serine was in this position, with 17 hits in L. casei group species where the proteins were variously 
annotated as hypothetical (secreted) proteins, peptidoglycan hydrolases, surface antigens, possible 
TrsG proteins and analogues of the p40 surface antigen or secreted protein of L. rhamnosus (Figure 
3a). The corresponding N-terminal regions in these proteins were closely related (branch lengths in 
the mid-point rooted phylogram of 0.05–0.06) and two clades of proteins were observed, 
corresponding to L. rhamnosus and L. casei/L. paracasei strains. 

The N-terminal sequence was used to search the genome of L. casei strains GCRL 163 and MJA 
12: a unique protein was detected in both genomes and this sequence was used in BLASTp to explore 
alignment with other Lactobacillus proteins. The phylogram for Lactobacillus species (Figure 3b) again 
showed two, closely-related clades for proteins which contained a CHAP (cysteine, histidine-
dependent amidohydrolases and peptidases) domain (Figure 3b). Within the clade containing L. casei 
and L. paracasei strains, alignment scores were >95% and protein size varied between 396 AA and 419 
AA. Multiple sequence alignment for proteins in this clade (see Figure S5 for representative 
sequences) indicated that most proteins contained a 28 AA signal sequence upstream from the N-
terminal sequence detected in GCRL 46, with the exception of the largest protein in this group, 
specified by gene locus BN194_00240 (L. casei W56, 419 AA), where this was 36 AA. Other single 
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amino acid substitutions were noted in the signal peptide, N-terminal and catalytic domain 
sequences, in addition to deletions and substitutions which accounted for MW differences. 

The CHAP-domain proteins (416 AA) in the second, closely-related clade of L. rhamnosus strains 
showed >88% sequence identity with the GCRL 163 protein. Phylogenetically the nearest neighbors 
to these CHAP-domain proteins were L. sakei and L. curvatus species (384-412 AA), although the 
alignment scores were 46–50%, indicating sequence divergence. The CHAP domain (pfam identifier 
PF05257) is commonly found in amidases, including peptidoglycan hydrolases, and is a member of 
the NLPC_P60 superfamily [39]. KEGG gene orthology indicated that these proteins, and many of 
those shown in Figure 3, are peptidoglycan D,L-endopeptidases, based on the presence of the CwlO 
motif (K21471). The CwlO motif is the only member of the cl25603 superfamily described as the 
uncharacterized N-terminal domain of peptidoglycan hydrolases: peptidoglycan lytic activity 
associated with the presence of this motif in proteins was originally described in Bacillus subtilis [40]. 

 
Figure 3. Mid-point rooted phylograms constructed using KEGG TREE for Lactobacillus 
peptidoglycan D,L-endopeptidases. Panel (a): the query sequence in BLASTp searches was the 20 
amino-acid N-terminal sequence for the acid up-regulated protein from L. paracasei GCRL 46. Panel 
(b): the query sequence was the protein identified from searching the genome of L. casei GCRL 163 
using the N-terminal sequence; other genera in this list (three examples, Enterococcus and Vagococcus 
species) were excluded. The red brackets indicate the protein groups sharing common domains, 
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CHAP or NLPC_P60 amidase. The size ranges of proteins (number of amino acids, AA) seen in 
closely-related clades are shown in parentheses; * notes a protein of 325 AA in L. paracasei subsp. 
paracasei JCM 8130 (LBPC_2403) that is likely phage-related. 

2.5. Phylogenetic Relatedness to Other Endopeptidases in Lactobacillus Species and Plasmid/Prophage 
Proteins 

Figure 3 further showed a second group of proteins with NLPC-P60 domains plus the CwlO 
motif: the L. rhamnosus proteins were distinct from the L. casei/L. paracasei proteins (73% alignment 
score) so two clades were observed again. The L. casei NLPC_P60 proteins showed an alignment score 
of 32.6% with the CHAP hydrolases (Figure S6 shows examples of sequence alignment for selected 
L. casei strains), indicating some sequence similarity in the CwlO motif but divergence in the 
endopeptidase domain region, despite the CHAP domain being in the NLPC_P60 superfamily. 
Plasmid and bacteriophage proteins (818–825 AA) were distinguishable from the smaller CHAP- and 
NLPC_P60-domain endopeptidases, although they contained domains annotated as surface antigen 
or CHAP (Figure 4), whether they were on plasmids or integrated into the genomes as prophage or 
in regions with bacteriophage remnants (e.g., LBPC_0475, GC content 46.8%). One exception was the 
325 AA protein in L. paracasei subsp. paracasei JCM 8130, gene locus LBPC_2403, which is described 
in UniProt as an uncharacterized protein with CHAP-SibA-like domains. Figure S7 provides the 
layout of genes in strain JCM 8130 around this locus and compares this with prophage and plasmid 
genome maps. The latter are typified by the presence of genes associated with integration, phage 
capsid production and packaging, plasmid/phage replication/plasmid copy number, type IV 
secretion system (VirD4, TraK, K03205) and transposases associated with specific insertion elements 
(IS). The genome region around LCPC_2403 contains several small, uncharacterized proteins in 
addition to type IV secretion system (VirD4), TrwB, TraG_C, integrases and transposases, suggesting 
plasmid or bacteriophage origin. The DNA GC content of the gene is 51.3%, which is higher than the 
average seen for genomes of L. casei group species (46.6%) [41], also suggestive of lateral and 
relatively recent acquisition of this endopeptidase in this strain’s genome. The GC content of genes 
encoding the CHAP- (BN194_00240) and NLPC_P60- (BN194_21500) domain proteins is 48% and 
46.5% respectively, suggesting that if these genes were of plasmid or bacteriophage origin, acquisition 
was not recent. Genome maps (Figure S7) indicated that the genes for both proteins are not within 
genome islands rich in plasmid- or prophage-associated genes, but BN194_00240 is close to the origin 
of replication and ‘downstream’ of prophage genes at the end of the circular genome. This genome 
layout is detected in several strains of the L. casei group, including GCRL 163, but not in all strains 
[41], and exemplifies the diversity in genome makeup in L. casei group strains. Interestingly, strain 
JCM 8130 contained three genes for CHAP-domain proteins, LBPC_0020 (CwlO-CHAP, p40 
homologue), LBPC_0475 (825 AA, phage), LBPC_2403 (325AA, transglycosylase-CHAP) as well as 
the gene specifying the CwlO-NLPC_P60 (LBPC_1969) protein. 

Although the degree of sequence identity was low, the overall domain architecture of the L. casei 
group endopeptidases was similar (Figure 4b), consisting of a signal peptide region (SP), N-terminal 
CwlO domain and a C-terminal catalytic region (CHAP or NLPC_P60). Hydrophobicity plots indicated 
likely transmembrane regions, also shown from the multiple coiled-coil regions noted in UniProt. 
Indeed, the NCBI conserved domain database (CDD) lists 1036 similar architectures with 4,442 non-
redundant entries for genes specifying SagA-like proteins (surface antigen proteins detected in 
pathogenic group A streptococci species as a secreted, immunoglobulin-binding—SibA, also named 
PcsB proteins) [42], which have structures similar to Figure 4b, dominating the Bacteria. This indicates 
broad conservation of this architecture, particularly in the Firmicutes (currently 2,753 entries). 

A CHAP-domain, glucan-binding protein in L. acidipiscus, however, showed a different 
architecture: a region containing multiple LysM motifs (approximately 40 AA globular domain) 
followed the SP, with a conserved C-terminal CHAP domain, with lower hydrophobicity in the 
coding region beyond the signal sequence. In contrast, the architecture of the 825 AA bacteriophage 
protein lacked a SP and showed hydrophobic regions around AA 175–225 (noted as a periplasmic-
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specific motif in CDD searches) and across the three catalytic domains detected, indicating a 
transmembrane location but unlikely secretion. 

 

Figure 4. Domain layout and hydrophobicity profiles of peptidoglycan D,L-endopeptidases. Domain 
names and identifiers indicated are from NCBI CDD; if detected, signal peptide region (SP) are shown. 
Panel (a): L. acidipiscus LysM-CHAP-domain glucan-binding protein (gene locus Lac1533_0489). Panel 
(b): L. casei group proteins with either a NLPC_P60 or a CHAP C-terminal domain (probable TrsG 
protein), with CwlO domains (specified by gene loci BN194_21500 and BN194_00240, respectively, with 
Kyte-Doolittle plots in this order). Panel (c): plasmid/bacteriophage TrsG protein (gene locus 
BN194_P0110); the surface antigen domain (COG3942) is identified as a CHAP domain in KEGG (pfam 
05257.16) and UniProt. Hydrophobicity scores >1.9 indicate likely transmembrane regions. 

2.6. The Two L. casei Group Peptidoglycan D,L-endopeptidases Show Different Broader Phylogeny 
BLASTp searches using the sequences for the CHAP and NLPC_P60 proteins from the genome 

of L. casei GCRL 163 as queries are shown in Figure 5. Mid-point-rooted phylograms (UPGMA, data 
not shown) for the top 100 hits indicated that, despite the low sequence alignment scores (<28%), the 
CHAP protein was most closely related to Streptococcus pyogenes and other Streptococcus species 
proteins, whereas for the NLPC_P60 protein was more closely related to similar proteins in 
Clostridium and Listeria species. When phylograms extended to the top 500 hits (Figure S8), the CHAP 
endopeptidase demonstrated relatedness to S. mutans and S. pneumoniae CHAP/SibA proteins, 
whereas Staphylococcus epidermidis proteins detected as related contained only the CHAP domain (not 
the CwlO domain) and S. aureus domain structure was LysM-CHAP, similar to the L. acidipiscus 
domain architecture in Figure 4 but in smaller proteins (265 AA). Interestingly, the phylograms (and 
a name search in UniProt) failed to detect the CHAP domain in several Lactobacillus species, including 
L. acidophilus, L. plantarum, L. helveticus, L. reuterii, L. delbrueckii and L. johnsonii. In contrast, the 
NLPC_P60 domain, which is more widely spread in the Bacteria and occurs in proteins with a variety 
of functions and accompanying domains [43], was detected in 2062 entries in Lactobacillus species in 
UniProt, including the L. acidophilus group. In the top 500 hits for this protein in a KEGG search using 
the full sequence of the protein, other genera detected included Streptomyces, Bacillus, Enterococcus 
but not Streptococcus species: while this observation may be explained by low sequence similarity and 
annotation failure, it suggests that the spread of genes, or their composite domains, through genera 
and species was different for the two cysteine peptidases. 
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Figure 5. Mid-point rooted phylograms for top 100 aligned proteins for (a) query sequence of 
CHAP/SibA-domain protein (equivalent to gene locus BN194_00240) and (b) query sequence 
NLPC_P60 domain (equivalent to gene locus BN194_21500) protein from L. casei GCRL 163. 

2.7. The Predicted Protein Structural Models Differentiate Between the Two Endopeptidase Types in L. casei 
Group Strains 
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Figure 6 shows a collage of proteins modelled using the Phyre2 platform; Figure S9 shows predicted 
metal ion binding sites for selected proteins. The crystalline structure of the S. pneumoniae CwlO-CHAP 
protein, called PcsB (named from its proposed role as a protein required for cell wall separation in group 
B streptococci), has been reported [30]. PcsB proteins have been characterized in S. mutans (GbpB) and S. 
agalactiae and homologous proteins occur in all Streptococcus and Lactococcus species (see ref. 30 and Figure 
S8). The crystalline structure is described as consisting of four features: a signal peptide, a coiled-coil 
domain (CwlO), a linker region and the catalytic domain at the C-terminus. The template for predicting 
the structures in the Lactobacillus proteins included the S. pneumoniae PcsB crystalline structure and 
hydrolases from multiple species (including Mycobacterium tuberculosis invasin protein, peptidase M23 
and cysteine proteinases in the NLPC_P60 family), all with >99% confidence (probability that the sequence 
and template are homologous) for regions aligned with templates. Models for the L. casei CwlO-CHAP 
proteins were highly similar to the S. mutans and S. pyogenes proteins. However, the L. rhamnosus 
homologues showed variability in predicted architecture, despite multiple modelling over an extended 
period – often producing models with the coiled-coil regions bunched. Figure 6 shows a proposed 
structure for the p40 protein (sequence from KEGG) and the multi-species CHAP-domain protein of L. 
rhamnosus (sequence from NCBI), where the latter shows the four features seen in streptococci structures 
but was distinct from the p40 model: the AA sequence differed by three AAs between the p40 protein in 
LGG and the multi-species CHAP-domain protein sequence, one in the signal sequence and two in the 
catalytic domain, so differences in the models cannot necessarily be explained by minor sequence 
differences. N-terminal differences in the models are in line with the observed size differences seen for the 
signal peptide (Figures S5 and S6). 

Although the general architecture of the modelled NLPC_P60 proteins showed features similar 
to the S. pneumoniae template (PDB code 4CGK), the key difference was the relative position of the 
catalytic region. Attempted modelling of another protein with an NLPC_P60 domain detected in the 
genome of L. casei (equivalent to the protein specified by gene locus BN194_02820 in strain W56, and 
protein p75 of L. rhamnosus LGG) was not successful, as 54% of the sequence was predicted as 
disordered. The LysM-CHAP protein detected in L. acidipiscus, which lacked the CwlO motif, showed 
a catalytic region (green structure in model 10) but no parallel coiled regions, consistent with the 
domains detected. 

All of the proteins had high-confidence predicted binding sites for Zn and some for Mg, usually 
in the coiled regions; the NLPC_60 proteins had predicted metal binding also in the catalytic regions. 

 
Figure 6. Proteins were modelled using the FASTA sequences available on UniProt or KEGG 
databases and the annotated genome of strain GCRL163. The upper group (1–6) are for proteins with 
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the CwlO-CHAP domain architecture shown in Figure 4b: 1 = L. casei GCRL 163 genome sequence, 
uncharacterized protein ; 2 = L. casei W56 possible TrsG protein (BN194_00240); 3 = S. mutans SagA 
protein (Q8DWM3); 4 = S. pyogenes SibA secreted protein (Q1JJ91); 5 = L. rhamnosus p40 surface antigen 
(LGG_00031); 6 = L. rhamnosus multi-species CHAP-domain containing protein WP_064517214.1.. 
Models 7-9 are for proteins with CwlO-NLPC_P60 architecture: 7 = L. casei GCRL 163 genome 
sequence, putative peptidoglycan hydrolase; 8 = L. casei W56 surface antigen (BN194_21500); 9 = L. 
rhamnosus surface antigen (LRHMDP2_482). Model 10: L. acidipiscus LysM-CHAP architecture, 
glucan-binding protein (LAC1533_0489). Protein models are not to scale. Ribbon colours show blue 
at the N-terminal to red at the C-terminal. 

3. Discussion 

How LAB respond to stressors has been the subject of increasing research at the proteomic and 
transcriptomic level over the last 20 years, due to the importance of understanding the underlying 
mechanisms of coping with potentially-lethal or growth-limiting assaults that are encountered 
during passage through the GIT or during food fermentations [1,29]. The functional performance of 
fermented foods (acceptable organoleptic features and extent of shelf-life during storage) and 
probiotics depends on the continued viability of LAB in their environment, particularly to meet the 
FAO/WHO requirements as “live microorganisms which when administered in adequate amounts 
confer a health benefit on the host” [44]. Consequently, evaluating strain fitness for purpose has 
become increasingly important for economic and validation of health claim reasons, particularly with 
expanding markets for consumption of probiotics as dietary adjuncts [45]. Acid and bile stress 
responses are amongst the most well documented in LAB, given that survival during passage 
through the stomach is required for probiotic bacteria to exert their benefits lower in the GIT. 
Responses commonly detected in multiple species include alteration to the cytoplasmic membrane, 
where the fatty acid composition of phospholipids changes to impact membrane rigidity and 
permeability [1,29,46–48]. Despite the accumulating knowledge regarding the nature of cell wall 
hydrolases in the Firmicutes, particularly in Streptococcus species [30], and their functional role in 
probiotic Lactobacillus species [25–27,49,50], there is little documented on the regulation of this class 
of proteins in Lactobacillus or other LAB in terms of protein synthesis during exposure to stress 
[1,29,51]. Of growing interest is the make-up of LAB cell surfaces and the complement of proteins, 
including PG hydrolases, which are exposed to or occur in the external environment, as many of these 
components will impact on interactions with host cells to deliver health benefits [15,52]. In silico 
analysis of LAB genomes based on sequence homology, protein-domain searches and detection of 
motifs found in secreted, transmembrane and anchored proteins showed that the L. casei has one of 
the highest numbers of predicted surface and secreted proteins in the genus Lactobacillus [15,52]. 
However, many of the proteins are functionally uncharacterized so their potential roles at the surface 
can only be predicted from detection of conserved domains. Vollmer et al. [19] noted that assigning 
specific functions to PG hydrolases is often difficult, due to the presence of multiple enzymes 
performing similar functions relating to PG turnover (redundancy) and domains found in PG 
hydrolases occur in enzymes with other catalytic activity, as noted for NLPC-60 and CHAP domains 
which occur in presumptive PG hydrolases and are widespread in other enzymes [39,43]. Further 
challenges in predicting enzyme function arise from computational analysis leading to the 
misannotation of protein sequences which are not experimentally characterized [53] and multiple 
abbreviated names used in the literature for the same activity, as observed for the SibA/CHAP protein 
in Streptococcus species. In the present study, several proteins were observed as up-regulated when 
L. paracasei GCRL 46 was cultured in fermenters at low pH, or when the pH of the medium was 
decreased to 4.0 and sustained at this pH during culture, but similar changes were not detected when 
cells were temporarily shifted to low pH then returned to optimum (acid shock). An up-regulated, 
surface-located protein detected by N-terminal sequence analysis was variously annotated as a 
surface antigen, uncharacterized, possible hydrolase and TrsG protein in L. casei group species, L. 
casei, L. paracasei and L. rhamnosus, although the sequence identity between the L. casei/paracasei and 
L. rhamnosus clades was 88%. TrsG was originally detected in S. aureus plasmids as part of the transfer 
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machinery [54] and contains a CHAP domain (UniProt), hence the annotation of the ca. 42 kDa 
upregulated protein as TrsG. Sequence similarity determined this protein to be a homologue of p40 
(Msp2) (equivalent to the protein specified by gene locus BN194_00240 in L. casei W56), which had 
previously been reported as one of the major secreted proteins in probiotic L. casei and L. rhamnosus 
strains [25–27]. Although the other major secreted protein in the L. casei group, p75/Msp1, was 
characterized as a PG hydrolase by degradation of muropeptides [25], the role of p40/Msp2 in PG 
turnover, septation and daughter cell separation has not been fully determined in L. casei group 
species: knock-out mutants either failed to cause phenotypic changes in L. casei, due to redundancy, 
or were not generated in L. rhamnosus [25–27]. Furthermore, while Bäuerl et al. [27] could demonstrate 
some degradation of muropeptides by recombinant Msp2 and clear degradation by Msp1, zymogram 
analyses by others failed to demonstrate activity in extracellular culture fluids of L. casei BL23 for 
Msp2 (which were positive for Msp1) [26] or for recombinant Msp2 from L. rhamnosus LGG for gels 
loaded with 20 µg of purified protein [25], indicating contradictory evidence for the activity of Msp2 
as a PG hydrolase. Immunofluorescence localized Msp2 at cell poles during division of L. rhamnosus 
LGG, implicating this protein in PG turnover and daughter cell separation. Only one other PG 
hydrolase in the L. casei group has been functionally characterized as an autolysin from its 
mureinolytic activity [55], which is distinct from Msp1 and Msp2. Although transcriptomic studies 
indicated that both Msp1 and Msp2 are expressed during logarithmic growth [26], there are no other 
reports on the impact of environmental conditions on protein expression levels. We believe that the 
current work is the first report of up-regulation of a surface-located, hydrophobic, Zn-binding 
presumptive PG hydrolase, Msp2, in response to prolonged acid stress in an L. casei group species. 

Many of the features of the p40/Msp2 protein in the current report were originally described by 
Bäuerl et al. [27], who identified the presence of CHAP and CwlO (COG3883) domains, low sequence 
identity with similar proteins in Bacillus, Clostridium, Streptococcus and Listeria, and a signal peptide. 
Furthermore, these authors demonstrated that both p40 and p75 presumptive hydrolases had a 
surface and extracellular location by extraction of surface proteins with 1.5 M LiCl and detection by 
Western blotting using immune serum prepared against p40 and p75 (noting that the p40 antiserum 
cross-reacted with the p75 protein, which was also noted previously [23]). These authors also failed 
to detect both proteins in the cytosolic fraction, as observed in the current report for the control 
cultured at pH 6.3, nor in a cell envelope (cell membrane/wall) fraction despite observing several 
other cross-reacting proteins. We suggest that the cross-reactivity is due to the presence of NLPC_P60 
superfamily domains which are in both p40 and p75, despite low sequence similarity between these 
proteins including the C-terminal region (29.3%), and the other proteins detected in Western blots. 
Bäuerl et al. [27] concluded that p40 occurred exclusively in the L. casei group of bacteria. However, 
we were able to show broader phylogenetic relationships for the p40 homologue in L. paracasei GCRL 
46 and detected a structurally-related presumptive PG hydrolase which contains an N-terminal CwlO 
with a C-terminal NLPC_60 domain (specified by gene locus BN194_21500) with 34% similarity to 
the CHAP protein. Although the sequence similarity was <50%, p40 homologues were detected in a 
limited number of Lactobacillus species, including the most closely related sequence in strains of L. 
sakei and L. curvatus for proteins with the same overall domain layout and structural architecture as 
p40, indicating that p40 is not unique to the L. casei group. However, p40 homologues were not 
detected in the L. acidophilus group species although NLPC_P60-domain proteins were, as reported 
previously following in silico analysis of published genomes of L. acidophilus for detecting 
presumptive autolysins [49]. The L. casei/paracasei p40 homologue was phylogenetically most closely 
related to Streptococcus PcsB (Gbp, SibA/CHAP) proteins, whereas the CwlO-NLPC_P60 protein was 
more similar to Clostridium, Listeria and (with less similarity) Bacillus homologues. The difference in 
analysis by Bäuerl et al. [27] and the current study arises from the greater variety of Lactobacillus and 
other genomes now sequenced and the differentiation between detecting the common CwlO domain 
in structures that lack the CHAP domain but may contain the NLPC-P60 domain. There are no 
published studies on the role of the CwlO-NLPC_P60 protein in L. casei group strains, including its 
possible role in PG turnover. The modelled structure of this protein showed similarities to the p40 
protein which suggests putative PG hydrolase activity: the question of whether this enzyme, or other 
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uncharacterized PG hydrolases, complement p40 activity so that inactivation of p40 would result in 
no phenotypic changes remains a matter for further exploration through transcriptomics, proteomics 
and physiological studies. 

The CHAP domain was also detected in proteins lacking the CwlO domain, but containing other 
domains including LysM in modular structures, particularly in prophage-related proteins with 
presumptive activities related to modification of the cell wall but lacking signal peptides. 
Bacteriophage endolysins are often large proteins with multiple modular domains, including CHAP, 
which occur in phage that infect or reside in Lactobacillus, Streptococcus, Staphylococcus, Listeria and 
other genera [56]. It is likely that acquisition, and loss, of domains through exchange with phage and 
plasmid genes has contributed to the current profile of putative PG hydrolases in L. casei group 
species, given the distinct phylogeny of the two classes of CwlO-containing proteins. This is 
supported by our observation for strain L. paracasei subsp. paracasei JCM 8130, which contained 
multiple genes encoding proteins with CHAP domains, including one with GC content indicative of 
recent acquisition but with high sequence similarity to the p40 CHAP domain detected in this study 
(e-value = 4 × 10−45). It is likely that genes are exchanged regularly between phage and plasmids, as 
predicted in Bacillus species [57], but ancient acquisition of the p40 homologue in L. casei is indicated 
from GC content similar to the average for the genome. The genomes of L. casei/paracasei consist of a 
core and variable regions which make up the pan-genome, indicative of a species adapted to 
specialized environments [41,58]. Furthermore, there is evidence that the genome of L. rhamnosus 
LGG can modify during product storage indicating genetic rearrangements in genome islands 
containing insertion elements [59]. Understanding the phylogenetic origins of the domains occurring 
in PG hydrolases and the fluidity of their passage across genera may identify the key enzymes 
associated with PG synthesis and turnover in Lactobacillus species and how probiotic bacteria exert 
their beneficial effects, including pathogen exclusion in species with a similar genetic makeup and 
PG hydrolase complement. 

The regulation of PG hydrolases in cells involves a crucial balance between transcription and post-
translational control of enzyme activity, to provide sufficient expression of protein synthesis for PG 
turnover and cell separation without exerting the potentially lethal process of autolysis [19,57]. Regulation 
of expression of PG hydrolases has been extensively studied in B. subtilis, S. aureus and S. pneumoniae: the 
WalKR regulon includes PG hydrolases involved in cell separation, such as PcsB in S. pneumoniae (see ref 
30). Although the PcsB protein is well characterized and contains the putative catalytic domains linked 
with PG hydrolase activity (CwlO-CHAP), demonstrating hydrolytic activity has not been successful [30]. 
The model proposed to explain this phenomenon suggests post-translational control of activity through 
interaction between PcsB and the surface-located FtsEX complex, where the physical architecture of the 
PcsB protein and molecular distances obtained for the crystallized PcsB protein support this proposed 
interaction. In this model, PcsB is bound to the FtsEX complex and is normally inactive at the cell surface. 
As cell division occurs and septum formation progresses, two PcsB-FtsEX complexes are brought together 
across the separating cell membrane interfaces forming a dimer of the complexes, activating the 
degradation of PG and separating daughter cells. Bartual et al. [30] further propose that the highly-
abundant PcsB protein acts locally and is shed into the extracellular medium once cell separation is 
achieved, hence detection of the hydrolases as secreted proteins in streptococci. Despite relatively low 
sequence similarity between the PcsB and p40/Msp2 proteins, they are phylogenetically related and occur 
in a different lineage to the more widely-spread NLPC_P60-domain proteins. Given that the p40/Msp2 
protein is phylogenetically related to the PcsB protein, and the modelled structures in L. casei group strains 
showed high similarity with the Streptococcus PcsB/SibA/CHAP proteins PcsB, it is likely that members of 
this family of proteins will behave similarly in L. casei group and other low GC Gram positive species 
where the architecture of the proteins is conserved. The L. casei group p40 protein has not been crystallized 
nor has the mechanism of its regulation been explored, but it is likely that its location and regulation 
would be similar to Streptococcus. Accumulation of this protein at the cell surface during prolonged acid 
stress in GCRL 46 may suggest altered transcriptional regulation of expression and that p40 activity is 
insufficient to achieve cell separation alone. The CwlO-NLPC_P60 showed a similar, but distinct, 
architecture where the hydrolase ‘head’ was not in the same position relative to the coiled regions of the 
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PcsB and p40 homologue. This may be an artefact of modelling which would be clarified by protein 
crystallization and analysis of the atomic distances to determine whether the FtsEX model would apply 
to this enzyme also. The SagA/PcsB proteins are considered targets for vaccine or new antimicrobial 
development, given the essential nature of this protein in pathogenic streptococci [30]: vaccines and 
antimicrobials based on this structure would need to consider the impact on commensal, non-pathogenic 
species that reside in similar mucosal environments. 

Our prior work with GCRL 46 showed that LiCl-extractable proteins were altered following 
growth at low pH [60]. The p40 protein was not seen as a major component of the LiCl extracts or 
extracellular medium [61], but the growth conditions, point of harvest, use of buffers to control pH 
(introducing osmotic pressure differences to the current report) rather than fermenters may account for 
these observations. LiCl extraction has been used to discover new putative PG hydrolases and other 
surface proteins in L. acidophilus [49,50,62]: this species has an S-layer which is implicated in forming a 
scaffold for PG hydrolases and other surface proteins, given co-extraction with the S-layer. However, 
several Lactobacillus species, including L. casei group, lack an S-layer and the concentration of proteins 
in the extracellular medium and at the surface appears to be low [49,63], hence the need to detect 
proteins by Western blotting when examining the p40 homologue in L. casei [27]. Failure to detect up-
regulation of presumptive PG hydrolases in L. casei in prior reports [47,48] is reasonably explained by 
growth conditions and methodologies used, as the normal approaches have employed acid shock rather 
than prolonged stress throughout culture at low pH, annotated functional assignment not identifying 
presumptive PG hydrolases and strains used. Future work on examining the changes in surface under 
prolonged stresses, rather than transient expression of genes responsible for immediate protection of 
cell structures and protein function, may identify a broader suite of proteins needed for continued 
growth and the recruitment of enzymes to the cell surface for the protection of PG integrity. 

4. Materials and Methods 

4.1. Bacterial Strains and Culture Conditions 

Strains of Lactobacillus were originally obtained as a gift from the Commonwealth Scientific and 
Industrial Research Organization (CSIRO), Food Science Australia laboratories (now Food 
Innovation Centre, Werribee, VIC, Australia) or purchased from the American Type Culture 
Collection (Manassas, VA, USA). Type strains used were: L. acidophilus ATCC 4356, L. casei ATCC 393 
and L. rhamnosus ATCC 7469. L. paracasei VUP 12006 was initially stored in the Victoria University, 
Werribee, VIC, Australia, culture collection [32] and was renamed GCRL 46 when re-stored in the 
University of Melbourne, Gilbert Chandler Research Laboratories, Werribee, VIC, Australia [32]. L. 
casei GCRL 163 was originally isolated from maturing Cheddar cheese [64] and its genome was 
published recently [65]. Strains were cultured routinely using de Man, Rogosa, Sharpe (MRS) broth 
(Oxoid, Thebarton, SA, Australia) or plates (1.5% agar, Oxoid) and incubated at 37 °C under anaerobic 
conditions using Oxoid jars with Gas Generating Kit BR038B. Strains were stored in glycerol storage 
broth (50% glycerol in MRS) under oxygen-free nitrogen at −20 °C as working stocks and −80 °C for 
permanent stocks or on cryobeads (Protect, Technical Service Consultants Ltd., Lancashire, UK) used 
according to the manufacturer’s instructions. 

4.2. rRNA Gene Sequencing for Species Identification 

Genomic DNA was extracted from overnight MRS broth cultures of all strains as described 
previously [32,65] using methods originally detailed in Marmur [66] or using Isolate II Genomic DNA 
extraction kits (Bioline, Taunton, MA, USA) in accordance with the manufacturer’s directions for 
Gram-positive bacteria. Several polymerase-chain reaction (PCR) primer sets were used to amplify 
regions of 16S rRNA genes and 16S-23S rRNA intergenic spacer regions (ISRs): Lactobacillus genus-
specific primers for ISRs (R16-1/LbLMA1-rev) were described by Dubernet et al. [31]; universal 
primers 16S-27F and 16S-1492R [67], as modified by Turner [68], were purchased from Sigma Aldrich 
Pty. Ltd. (Sydney, NSW, Australia); species-specific primers used were ACI16S1/ACI16S2 for L. 
acidophilus [69] and PR1/CAS2 plus PAF/536F for L. casei [69,70]. Primers described by Kwon et al. 
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[33] were also used to differentiate between L. casei (IDL11F/IDL03R) and L. rhamnosus 
(IDL04F/IDL73R). PCR amplification conditions and amplicon separation techniques are reported in 
Pepper [32] and Shah [34]. Amplicons were sequenced by Macrogen (Republic of Korea) or the joint 
Victoria University-Monash University sequencing facility (Monash University, Clayton, VIC, 
Australia). Sequences were analyzed using the Sequencher software program (Sequenchergenetics 
version 4.8, Genes Codes Corporation, Ann Arbor, MI, USA) then searched through the Basic Local 
Alignment Search Tool (BLAST) of the National Centre of Biotechnology Information (NCBI, 
available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi) or the BLASTn tool in Kyoto Encyclopedia 
of Genes and Genomes (KEGG, available online:  https://www.genome.jp/tools/blast/) to determine 
the closest matches with known 16S rRNA gene sequences. ClustalW (KEGG BLAST tools) was used 
for sequence alignment. 

4.3. Growth in Fermenters and Determination of Acid Resistance 

Culture was performed in MRS broth using fully-instrumented, water-jacketed one L Applikon 
fermenters (Enztech, Woollahra, NSW, Australia), allowing continuous measurement and control of 
temperature at 37 °C (± 0.5) and pH values (± 0.2). Set pH values in the range of 2 to 8 were achieved 
using sterile 2 M HCl or NaOH as required prior to inoculation and by automatic addition during 
culture. Media were autoclaved (30 min, 121 °C) in the vessels and sparged with oxygen-free nitrogen 
to maintain anaerobic conditions. Oxygen levels were monitored throughout using an oxygen probe 
and the volume of acid or base dosed during growth recorded. Starter cultures were prepared from 
frozen stocks by seeding 20 mL MRS broth with two cryobeads or 50 µL glycerol stock culture and 
incubating 6–8 h at 37 °C before sub-culturing 10 mL of starter culture into 200 mL of fresh medium 
then incubating overnight at 37 °C without mixing. Cells were collected by centrifugation (10,000× g, 10 
min), concentrated 10-fold in MRS and vessels seeded aseptically, in duplicate for each test condition, 
to achieve an initial optical density (600 nm) (OD600) of 0.13–0.23 (UltraSpec III UV/Vis 
spectrophotometer, Amersham Biosciences AB, Uppsala, Sweden). The vessels were stirred at 150 rpm, 
sparged with nitrogen gas (0.1 L/min), with temperature and pH maintained at set points. In some 
experiments, the set pH was changed during growth or the pH control not initiated so the pH in the 
vessels decreased over time. Samples were normally removed hourly for the determination of dry 
weight, OD600, glucose concentration and collection of cells for later protein analysis. If not used 
immediately, all samples were stored at −21 °C. Growth rates were determined using the Monod 
equation [71] and specific growth rates between time points, as well as the maximum specific growth 
rate (µmax), calculated automatically using the BASIC program first developed by Viega and Gutierrez 
[72]. 

Acid resistance was determined using a method originally described by Gordon and Small [73], 
replacing the test broth with MRS. Duplicate MRS broths (10 mL) with initial pH adjusted to 2.0 or 
2.5 using HCl were inoculated with 50 µL of overnight MRS cultures of L. acidophilus ATCC 4356 or 
L. paracasei GCRL 46 and broths incubated at 37 °C. Samples were removed immediately after 
inoculation then every 30 min for 6 h and again at 24 and 48 h if required. Survivors were enumerated 
by plating 10-fold serial dilutions onto MRS plates in duplicate and viable counts determined after 
48 h at 37 °C. The percentage of survivors was calculated relative to time zero for each pH condition. 

To determine the relationship between growth phase and acid resistance, strain GCRL 46 was 
inoculated into fermenters with an initial pH of 6.3 and cultured without pH control. Samples were 
removed hourly during growth and 50 µL inoculated into MRS at pH 2.5 then viable counts 
determined after 2 h at 37 °C, as described above. The averages of percentage survivors were plotted 
against culture period. 

4.4. Detection of Proteins by Sodium Dodecyl Sulphate-polyacrylamide Gel Electrophoresis (SDS-PAGE) 

One dimensional SDS-PAGE was performed according to the method of Laemmli [74] using 
vertical slab systems (Modular Mini-PROTEAN® II electrophoresis system and PROTEAN® II XL, 
BioRad, Gladesville, NSW,Australia; and C.B.S. Scientific Triple Wide System, Spectrum Chemical 
MFG Corp, New Brunswick, NJ, USA) with 10% or 12% running gels and 4% stacking gel, as 
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described previously [75]. After recording OD600, 50 mL culture samples from fermenters were 
centrifuged, the supernatant removed and cells resuspended in a volume of Tris buffer (0.04 M, pH 
7) to concentrate to a standard OD600 equivalent to 15. A sample of cell suspension was added to an 
equal volume of double-strength sample buffer, mixed by vortexing and heated at 100 °C for 5 min, 
followed by centrifugation (16,000× g, 10 min) to remove unbroken cells and debris. Equal volumes 
of each whole cell extract were loaded onto SDS-PAGE gels when comparing time-course samples. 
Alternatively, cells were disrupted by bead beating using a tissue homogenizer (MSK Cell 
Homogeniser, B. Braun, Bella Vista, NSW, Australia): an equal volume of concentrated cell 
suspension and glass beads (0.10–0.11 mm diameter, Daintree Scientific, St Helens, TAS, Australia) 
were placed in a stainless-steel homogenizer bottle and treated in 30 s bursts for a total 2 min, with 
cooling on ice. The homogenate was centrifuged to remove debris (20,000× g, 4 °C, 10 min) and the 
supernatant fluid collected (cytosolic fraction). The cell debris was retained for SDS-PAGE analysis, 
resuspending in the original sample volume with single-strength sample buffer before heating at 100 
°C for 5 min and brief centrifugation (10,000× g, 5 min) to pellet beads. Protein concentration in the 
cytosolic fraction was determined by a modified Lowry assay [76] against a bovine serum albumin 
standard and equal amounts of protein (1–6 µg) loaded onto gels after heating in double-strength 
sample buffer. Following electrophoresis, proteins were detected using Coomassie Brilliant Blue R250 
or silver staining using standard protocols (http://www.protocol-online.org/, accessed from August 
1999 to 10 February 2019) and gels scanned using a Gel-Pro analyzer (Gel-Pro Version 3.0, Media 
Cybernetics, Rockville, MD, USA) to determine the molecular weight and relative density of the 
proteins. Gel images were also scanned using UN-SCAN-IT Gel Analysis software 7.1 for relative 
density (% pixels) and molecular weight estimation (Silk Scientific Inc., UT, USA). 

4.5. Protein N-terminal Sequencing 

Proteins in whole cell extracts were applied to SDS-PAGE gels in the PROTEAN II XL system 
and electrophoresed until the 31.5 kDa size standard had reached the bottom of the gel, allowing 
greater separation of proteins in the size range of 40–50 kDa. Gels were soaked in transfer buffer (10 
mM 3-[cyclohexylamino]-l-propanesulfonic acid, 10%, v/v, methanol, pH 11.0) for 5 min and 
electroblotted to polyvinylidene difluoride (PVDF) membranes [77] using a Trans-Blot® Cell (BioRad, 
Australia) according to the supplier’s instructions. Bands were visualized using Amido Black 10B 
(0.1%, w/v, in 10%, v/v, ethanol, 2%, v/v, acetic acid, 10 min), small samples of membrane excised and 
sent to the Australian Proteome Analysis Facility (APAF) (Macquarie University, Sydney, NSW, 
Australia) for N-terminal sequencing. 

4.6. Bioinformatic Analyses 

BLASTp (KEGG) of the N-terminal protein sequence, using all three combinations of the possible 
identity of the eleventh amino acid, was used for initial sequence similarity searches. This sequence 
was also used to search the annotated genomes of L. casei strains GCRL 163 and MJA 12 
(DDBJ/EMBL/GenBank accession numbers MODT01000000 and MODS01000000) [65] to obtain the 
full sequence of the protein. Sequence similarity searches were undertaken using KEGG, NCBI and 
European Molecular Biology Laboratory (EMBL) platforms, with the associated Clustal tools (W, 2.1, 
and Omega, https://www.ebi.ac.uk/Tools/msa/clustalo/) for pair-wise and multiple sequence 
alignment. Domain analysis employed the NCBI conserved domain database (CDD) [78], the KEGG 
common motif (pfam) search tool in BLASTp and the UniProt platform [79]. Phylogenetic trees were 
constructed using the KEGG phylogenetic tree pipeline ETE3 [80,81] with default settings [82]. The 
layout of genes in sequenced genomes was determined using KEGG (gene map) and the Integrated 
Microbial Genomes and Microbiomes (IMG) platform of the Joint Genome Institute (JGI, Walnut 
Creek, CA, USA) (https://img.jgi.doe.gov/, most recently accessed on 10 February 2019). Guanine-
cytosine (GC) content was calculated using the Endmemo DNA/RNA GC content calculator 
(www.endmemo.com/bio/gc.php, most recently accessed on 10 February 2019). 

4.7. Protein Architecture Modelling 
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The UniProt platform [79] was used initially to identify topological properties of proteins, 
including the presence of signal peptides, coiled regions, transmembrane signatures and catalytic 
domains. Kyte and Doolittle [83] hydrophobicity plots based on FASTA sequences from UniProt were 
performed using the Bioinformatics Resource Portal (ExPASy) of the Swiss Institute of Bioinformatics 
(SBI, https://web.expasy.org/protscale/, most recently accessed on 10 February 2019) with window 
size of 9. The Phyre2 web portal for protein modelling, prediction and analysis [84] was employed to 
generate 3D protein models using intensity mode: protein sequences were resubmitted on multiple 
occasions to confirm architecture and models with >90% of residues modelled at >90% confidence 
submitted to the 3DLigandSite server to predict potential ligand binding [85]. Models were visualized 
using the UCSF Chimera program [86] with default settings. 
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