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Abstract: The complex interplay among genetic, epigenetic, and environmental variables is the basis
for the multifactorial origin of age-related macular degeneration (AMD). Previous results highlighted
that single nucleotide polymorphisms (SNPs) of CFH, ARMS2, IL-8, TIMP3, SLC16A8, RAD51B,
VEGFA, and COL8A1 were significantly associated with the risk of AMD in the Italian population.
Given these data, this study aimed to investigate the impact of SNPs in genes coding for MIR146A,
MIR31, MIR23A, MIR27A, MIR20A, and MIR150 on their susceptibility to AMD. Nine-hundred and
seventy-six patients with exudative AMD and 1000 controls were subjected to an epigenotyping
analysis through real-time PCR and direct sequencing. Biostatistical and bioinformatic analysis was
performed to evaluate the association with susceptibility to AMD. These analyses reported that the
SNPs rs11671784 (MIR27A, G/A) and rs2910164 (MIR146A, C/G) were significantly associated with
AMD risk. Interestingly, the bioinformatic analysis showed that MIR27A and MIR146A take part in the
angiogenic and inflammatory pathways underlying AMD etiopathogenesis. Thus, polymorphisms
within the pre-miRNA sequences are likely to affect their functional activity, especially the interaction
with specific targets. Therefore, our study represents a step forward in the comprehension of the
mechanisms leading to AMD onset and progression, which certainly include the involvement of
epigenetic modifications.

Keywords: AMD; miRNAs; epigenetics; susceptibility; inflammation; choroidal neovascularization;
neurodegeneration

1. Introduction

The network of interactions between genetic and non-genetic factors has been so far investigated in
several multifactorial disorders, including neurodegenerative, cardiovascular, and retinal diseases [1].
Interestingly, the prevalence of these pathologies is directly correlated to the progressive ageing of
populations, which represents a common triggering factor associated with the onset and evolution
of complex disorders [1–3]. In this context, the advancement of biomedical research and the
application of artificial intelligence systems have been crucial to elucidate the impact of genes,
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epigenetic modifications, aging, nutrition, drugs, microbiomes, and other environmental factors
on health and disease [2]. Such an experimental approach has been very successful in the study of
age-related macular degeneration (AMD). In fact, a large number of population-based studies on
AMD have identified several genetic and non-genetic variables affecting susceptibility and disease
outcome [4–7]. Furthermore, previous results have highlighted prominent differences concerning
genetic and non-genetic contributors to AMD within the Italian cohort compared to worldwide
populations [8–11]. Among genetic variables, single nucleotide polymorphisms (SNPs) of CFH,
ARMS2, IL-8, TIMP3, SLC16A8, RAD51B, VEGFA, and COL8A1 are significantly associated with a
higher risk of AMD in the Italian cohort, accounting for the 23% of disease susceptibility, in contrast
to the 46–71% observed across global populations [8,12]. As expected, non-genetic factors (age, diet,
and smoking habit) are associated with AMD, covering the 10% of disease susceptibility in the Italian
population, in contrast to the 19–37% reported in other cohorts [8,12]. The analysis of gene–gene and
gene–environment interactions revealed that AMD-associated genes may be involved in the induction
of angiogenesis; alteration of extra-cellular matrix (ECM) remodeling mechanisms and of Bruch’s
Membrane (BrM) integrity and permeability; modification of retinal pigment epithelium (RPE) and
photoreceptor cell activities; and over-activation of inflammatory and immune responses [1,5,8,13].
The alteration of these mechanisms helps exacerbate the damage caused by aging and environmental
factors, leading thereby to the onset and the advancement of AMD. Altogether, these data provided
an overall picture of AMD susceptibility in the Italian population, composed of genetic contributors
(23%) and non-genetic contributors (10%). The remaining 67% is still a matter of investigation. In
this perspective, epigenetic modifications represent the most promising factors, given their ability
to modulate gene expression in response to external stimuli without modifying the DNA sequence.
In particular, epigenetics can operate through DNA methylation, histone modification (acetylation
and deacetylation), chromatin remodeling, and non-coding RNA-mediated gene silencing (miRNAs),
which altogether create and maintain a heritable chromatin structure and allow access to nuclear
transcription factors [1]. Among all, MiRNAs are the mostly investigated in complex disorders,
given their function throughout the human genome and different tissues. MiRNAs consist of small
22-mer oligonucleotides that regulate gene expression by targeting specific mRNA. More than 60% of
human genes contain conserved miRNA binding sites, although structural and sequence variants are
known to affect the miRNA–mRNA affinity (by creating, disrupting, or altering the miRNA specific
binding ability). In this context, most of the variants are SNPs localized either within the sequence,
encoding the miRNAs, or within the 3′-UTR of their target genes. These variants essentially impact
the transcriptional profile of target genes as well as the miRNA–mRNA interactions [14]. Given these
premises, the present work aimed to study the genes coding for MIR146A, MIR31, MIR23A, MIR27A,
MIR20A, and MIR150 in order to search for variants contributing to AMD. These miRNAs were
selected on the basis of literature data concerning their role of in AMD etiopathogenesis, especially
those involved in angiogenic, inflammatory, and cell survival processes in response to external stimuli
(oxidative stress, ageing, and nutrient intake) [13,15].

2. Results

The screening analysis on the initial subset of samples highlighted the presence of following
polymorphisms: rs2910164 (C/G, MIR146A); rs772646842 (G/A, MIR31); rs149347978 (C/T, MIR31);
rs192240130 (T/C, MIR31); rs771610178 (G/C, MIR23A); rs11671784 (G/A, MIR27A); rs895819 (T/C,
MIR27A); and rs138052193 (-/AG, MIR150). The analysis of MIRNA20A did not report any variants,
resulting in completely wild-type both in case and control subjects. Concerning rs138052193, the
association analysis cannot be applicable because the frequency distributions did not observe the
Hardy–Weinberg equilibrium. Statistical association was significant (p < 0.05) for three SNPs within
MIR146A (rs2910164, C/G) and MIR27A (rs11671784, G/A; rs895819, T/C), respectively (Table 1). The
computation of OR revealed that the variant alleles of the SNPs were associated with an increased
susceptibility to AMD with respect to wild-type alleles (Table 1).
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Table 1. Biostatistical results concerning the association of the variants identified by sequencing of the
genes coding for the miRNAs of interest. ns: not significant; na: not available. Significant results are
highlighted in bold.

Analyzed
Variants

Genotypes Number and
Frequencies (%) in Cases

Genotypes Number and
Frequencies (%) in Controls

Allelic
p-Value

Allelic OR
(CI:95%) Impact

MIR146A
rs2910164

(C/G)

C/C: 57 (7%) C/C: 100 (10%)

0.005 RiskG/C: 303 (37%) G/C: 388 (39%) G = 1.23
(1.06–1.43)

G/G: 456 (56%) G/G: 500 (50%)

MIR31
rs772646842

(G/A)

G/G: 921 (99%) G/G:977 (99%)
ns -

G/A: 10 (1%) G/A: 10 (1%)

A/A: 0 (0%) A/A:0 (0%)

MIR31
rs149347978

(C/T)

C/C: 921 (99%) C/C:977 (99%)
ns -

C/T: 10 (1%) C/T: 10 (1%)

T/T: 0 (0%) T/T:0 (0%)

MIR31
rs192240130

(T/C)

T/T: 873 (99%) T/T:922 (98%)
ns -

T/C: 9 (1%) T/C: 18 (2%)

C/C: 0 (0%) C/C: 0 (0%)

MIR23A
rs771610178

(G/C)

G/G: 975 (99%) G/G: 940 (99%)
ns -

G/C: 10 (1%) G/C: 10 (1%)

C/C: 0 (0%) C/C: 0 (0%)

MIR27A
rs11671784

(G/A)

G/G: 742 (93%) G/G: 768 (97%)

0.001 RiskG/A: 50 (6%) G/A: 24 (3%) A = 2.29
(1.41–3.72)

A/A: 2 (1%) A/A: 0 (0%)

MIR27A
rs895819 (T/C)

T/T: 399 (52%) T/T: 495 (57%)

0.03 RiskT/C: 301 (39%) T/C: 315 (36%) C = 1.19
(1.02–1.39)

C/C: 67 (9%) C/C: 60 (7%)

MIR20A
(completely
wild-type)

- - na -

MIR150
rs138052193

(-/AG)

541 (62%) 608 (67%)
na -

323 (37%) 272 (30%)

9 (1%) 27 (3%)

A statistical association analysis was also performed considering the genotypes of the risk
variants. As shown in Table 2, the association was significant for the rs2910164 and rs11671784
genotypes, reporting a higher susceptibility to AMD for heterozygous and homozygous variant classes.
Concerning rs11671784, the precise OR value cannot be computed for the AA genotype because was
not found in our control subjects. The association analysis was not significant for rs895819. Moreover,
the evaluation of dominant and recessive models highlighted a positive association with genotypes
carrying at least one risk allele of rs2910164 and rs11671784 (Table 2). Even in this case, the OR for the
rs11671784 recessive model cannot be reliable because of the lack of homozygous variant genotypes.
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Table 2. Statistical association analysis considering the genotypes of the risk variants and dominant
and recessive models. ns: not significant, na: not available. Significant results are highlighted in bold.

Analyzed Variants Genotype p-Value Genotypic OR
(CI:95%)

Dominant Model
OR (CI:95%)

Recessive Model
OR (CI:95%)

MIR146A
rs2910164 (C/G) 0.019

GC = 1.38
(1.00–1.96)
GG = 1.60
(1.12–2.26)

1.50 (1.10–2.10) 1.23 (1.02–1.48)

MIR27A
rs11671784 (G/A) 0.003

GA = 2.15
(1.31–3.54)
AA = na

2.24 (1.36–3.67) na

MIR27A
rs895819 (T/C) ns - - -

Bioinformatic analysis reported that MIR146A binds different target genes, including CFH, IL-6,
HTRA2, and IRAK1. Interestingly, rs2910164 maps within the seed sequence of MIR146A, suggesting
that the presence of the variant allele could alter the miRNA–mRNA binding affinity. Moreover, the
interrogation of PolymiRTS reported that the variant allele (G) of rs2910164 may disrupt the binding
site for IL-6 and create new ones for HTRA2 and IRAK1. The Vienna RNAFold algorithm allowed us
to predict the impact of wild-type and variant sequences of MIR146A on the secondary structure of
the pre-miRNAs (hairpin structure). In particular, the sequence containing the variant allele (G) of
rs2910164 (MIR146A) showed a pre-miRNA secondary structure characterized by a lower minimum
free energy (MFE =−43.44 Kcal/mol) with respect to the hairpin structure predicted with the wild-type
sequence (containing the C allele, MFE = −40.49 Kcal/mol) (Figure 1).
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Figure 1. (A) Predicted hairpin structure of the pre-miR-146a with the rs2910164_wild type allele (C).
(B) Predicted hairpin structure of the pre-miR-146a with the rs2910164_variant allele (G). The computed
minimum free energy (MFE) of the thermodynamic ensemble is reported. The position of the SNP is
shown by the arrow. wt: wild-type.

Successively, the analysis was extended on the variants located within MIR27A. Interrogation
of bioinformatic tools revealed that miR27A binds different targets, such as SEMA6A, APBB2,
VEGFC, SPROUTY2, and PPARγ genes. Concerning the rs11671784 in MIR27A, the hairpin structure
derived by the sequence with the variant allele (A) generated a secondary structure with an MFE =
−38.76 Kcal/mol, whereas the wild-type structure (with G allele) showed an MFE = −38.24 Kcal/mol
(Figure 2A,B). The prediction of secondary structures concerning rs895819 reported that the sequence
carrying the variant allele (C) may create a structure with an MFE = −38.40 Kcal/mol (Figure 2C).
Given that both SNPs were located in MIR27A, the prediction was also performed on the sequence
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containing both the variant alleles of rs11671784 and rs895819, obtaining an MFE = −38.83 Kcal/mol
(Figure 2D).
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Altogether, these results suggest that the different MFE of the thermodynamic ensemble detected
in the variant structures may enhance the stability of the pre-miRNA-146a and pre-miRNA-27a and
the subsequent processing into the mature miRNAs. However, the MFE was found to be much more
different in miR146a variant structures compared to miR27a (−2.95 Kcal/mol vs −0.5 Kcal/mol,
respectively), suggesting that polymorphisms of MIR146A and MIR27A may affect the processing
into mature miRNAs at different levels. Their variable impact is likely to be directly related to the
positioning of the SNPs within the pre-miRNA sequence. In fact, rs2910164 is localized in the seed
sequence of the pre-miR-146a and, in turn, may influence the miRNA binding affinity with their targets,
whereas rs11671784 and rs895819 are situated in the terminal loop of the pre-miR27a, suggesting that
they may influence the expression levels of mature miR27a without substantially impair its processing
and binding affinity with target mRNAs.

3. Discussion

The extensive research concerning the role of miRNAs as regulatory elements affecting gene
expression sheds light on the possible contribution of epigenetics to health and disease. In particular,
the main function of miRNAs consists in their ability to bind specific target mRNAs, inducing their
translational repression or degradation in response to external stimuli. During the study of miRNAs
expression profile, increasing evidence proved that polymorphisms within the DNA sequence encoding
miRNAs can modify their transcription and binding affinity with the corresponding target mRNAs. In
this context, the presence of SNPs regulating miRNA–mRNA interaction suggested the existence of a
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“genetics of epigenetics” contributing to the onset and progression of complex disorders. Therefore,
the present study aimed to investigate the variability of a set of genes coding for candidate miRNAs
involved in molecular pathways leading to AMD etiopathogenesis. Given these premises, MIR146A,
MIR31, MIR23A, MIR27A, MIR20A, and MIR150 were selected for genotyping analysis on a cohort
of 1976 Italian subjects. Three polymorphisms were found to be significantly associated with AMD,
namely, rs2910164 (MIR146A), rs11671784 (MIR27A), and rs895819 (MIR27A). These association data,
together with bioinformatic results, suggested that both MIR146A and MIRNA27A may be implicated
in AMD etiopathogenesis. In particular, up-regulated levels of miRNA146a expression have been
found in the plasma and vitreous humor of patients with AMD as well as plasma and cerebrospinal
fluid (CSF) of patients affected with Alzheimer’s Disease (AD) [16]. On this subject, CFH has already
been described in relation to MIR146A as an epigenetic modulator of CFH expression in brain and
retina. Up-regulated levels of MIR146A have been associated with decreased levels of CFH, IL-6,
IRAK1, and TRAF6 expression, suggesting that it may contribute to the alteration of innate immune
response and neuroinflammation in degenerating human brain and ocular tissues [17]. In this context,
the presence of rs2910164 in the seed sequence of MIR146A may alter its binding affinity with its
mRNA targets, as shown by the disruption of IL-6 binding site and the creation of new binding sites
for IRAK1 and HTRA2. The homonymous proteins encoded by IL-6 and IRAK1 have been investigated
as two key modulators of inflammation together with IL-8 [18]. Both IL-6 and IRAK1 have been
proposed as potential targets ofMIR146A, which thereby may be able to control the activation of
NF-kb pathway and the related immune/inflammatory responses occurring in ageing processes and
age-related disorders, including AMD [18,19]. Interestingly, HTRA2 is supposed to be involved in
the death of RPE cells occurring in AMD, by inducing apoptosis under cellular oxidative stress and
disrupting mitochondrial homeostasis [20]. This gene belongs to the HTRA serine protease family,
including HTRA1, which is one of the first loci to be associated with AMD because of the strong linkage
disequilibrium (LD) with AMRS2. In addition, HTRA2 has been linked to Parkinson’s Disease (PD),
suggesting that it may represent a common triggering factor of both disorders [21].

The prediction analysis performed with the RNAfold algorithm revealed a −2.95 Kcal/mol
difference in the MFE of the thermodynamic ensemble of the structure predicted for the variant
pre-miRNA-146a compared to wild type. This analysis indicated that the variant allele may enhance
the stability of the pre-miRNA-146a hairpin and, consequently, its processing into the mature MIR146A.
Altogether, these results suggest that the rs2910164 is likely to modify the binding affinity and the
final production of mature MIR146A. As a result, variants of MIR146A may alter the interaction with
mRNA targets (especially, CFH, IL-6, IRAK1, and HTRA2) and, consequently, contribute to exacerbate
inflammatory signaling and immune response over activation typical of AMD. Interestingly, the
uncontrolled regulation of these molecular mechanisms has also been related to the variability of genes
(namely, CFH, ARMS2/HTRA1, IL-6, IL-8, COL8A1, SLC16A8, and VEGFA) associated with a specific
susceptibility to exudative AMD [1].

Given its modulatory effect on immune and inflammatory response, MIR146A polymorphisms
have also been associated with several other disorders, including cancer, psoriasis, psoriatic arthritis,
diabetes, and cardiovascular disorders [22–26]. The dynamic interactive roles of MIR146A could also
be useful to investigate the relationship between AMD and the co-occurrence of late-onset disease
conditions, especially cardiovascular diseases, autoimmune diseases, diabetes, chronic kidney disease,
AD, and PD [1,27].

Over MIR146A, SNPs of MIR27A (rs11671784 and rs895819) were significantly associated
with AMD in our cohort. MIR27A encodes the homonymous miRNA, which is expressed in
highly vascularized tissues and is involved in cell cycle regulation, proliferation, apoptosis, and
differentiation [28]. MIR27A has been found to be up-regulated in choroidal neovascularization
(CNV), acute lymphoblastic leukemia, acute myeloid leukemia, and hepatocarcinoma [28,29]. This
relationship may be explained by the fact that MIR27A seems to play a key role in angiogenesis.
In fact, it may promote the proliferation and migration of endothelial cells by directly binding and



Int. J. Mol. Sci. 2019, 20, 1578 7 of 11

repressing SPROUTY2 and SEMA6A target proteins, which normally act as anti-angiogenic factors by
exerting a negative regulation of the VEGF-mediated signaling [29]. On this subject, the prediction
analysis performed with the RNAfold algorithm revealed a very small difference (~0.5 Kcal/mol)
in the MFE of the thermodynamic ensemble of the pre-miRNA-27a structure predicted for both the
associated variants (rs11671784 and rs895819) with respect to the wild type. This analysis indicated
that these variant alleles have a very slight impact on the stability of the pre-miRNA-27a hairpin and,
consequently, its processing into the mature MIR27A. However, these polymorphisms may still modify
the expression levels of mature miR27a, resulting in a different modulatory effect on its mRNA targets,
as shown by the studies performed on gastric cancer susceptibility [30,31]. Bioinformatic analysis
revealed supporting data concerning the possible association between MIR27A and AMD. In fact,
MIR27A was shown to bind several target genes, including SEMA6A, VEGFC, APBB2, and PPARγ.
These results suggest that the interaction with SEMA6A and VEGFC may contribute to the activation of
angiogenic pathways specific of exudative AMD. In this context, it is important to remark that VEGFA,
IL-8, and COL8A1 genes have also been indicated as key regulators of angiogenic mechanisms and
have been associated with a higher susceptibility to AMD [1,5,13]. On the other hand, APBB2 has been
extensively described in relation to its association with late-onset AD because of its role in processing
amyloid precursor protein (APP) into β-amyloid [32]. Recent evidence hypothesized that APBB2
production may increase the formation and deposition of toxic β-amyloid both in neuronal and retinal
cells [33,34]. In this perspective, the potential interaction between MIR27A and APBB2-related mRNA
may contribute to the activation of etiopathogenetic pathways shared in AMD and neurodegenerative
disorders. The possible relationship between AMD and the MIR27A-mediated regulation of PPARγ

expression may be explained by the anti-inflammatory/anti-angiogenic role of PPARγ as inhibitor of
VEGF expression in exudative AMD [35]. PPARγ dysregulation has been reported in several disorders
characterized by over-activation of inflammatory response, including obesity, diabetes, atherosclerosis,
and cancer [28].

Altogether, these data suggested that polymorphisms in MIR27A and MIR146A may finally
contribute to the exacerbation of angiogenic and inflammatory pathways underlying AMD
etiopathogenesis (Figure 3). However, functional assays are necessary to validate the real impact of
rs2910164, rs11671784, and rs895819 on the biogenesis, transcription, and function of mature MIR146A
and MIR27A.
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In conclusion, the present study represents a step forward in the comprehension of the
mechanisms leading to AMD onset and progression, which certainly include the involvement of
epigenetic modifications. The availability of epigenetic biomarkers such as miRNAs could be crucial
to better understand the main signatures influencing the individual risk profile for exudative AMD.
In this context, epigenetic profiles should be combined with AMD-specific genetic and non-genetic
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features in order to create a web-based platform addressed to provide patients with preventative and
precision medicine strategies [36,37].

4. Material and Methods

4.1. Study Cohort and DNA Extraction

This study enrolled 1976 individuals, including 976 exudative-AMD cases and 1000 control
subjects. Cases were selected from the Ophthalmology Unit of the PTV General Hospital of Rome, U.O.
Oculist Foundation IRCCS “Cà Granda” Maggiore General Hospital of Milan, Department of Clinical
Physiopathology of the University of Turin, and Department of Clinical Science of Sacco Hospital of
Milan. The control subjects were recruited from the UOSD SIMT and the Ophthalmology Unit of the
PTV General Hospital of Rome. Clinical data referred to the recruited subjects are summarized in
Table 3. The study was approved by the Ethics Committee of the “Tor Vergata”, University of Rome
(reference number: 16.15, approved on 23 January 2015). The study was performed according to the
Declaration of Helsinki, and all participants provided signed informed consent. Blood samples were
obtained from all subjects in order to extract genomic DNA. Genomic DNA extraction was performed
using the EZ1 Advanced XL automated extractor and the EZ1 DNA Blood 200 µL Kit (Qiagen, Valencia,
CA, USA) according to manufacturer’s instructions.

Table 3. Collection of data concerning the subjects enrolled in the study.

Data Cases Controls

Age ±77 years old ±72 years old

Sex F: 54%
M: 46%

F: 56%
M: 44%

Type of CNV Type 1:53%
Type 2: 47% -

4.2. Genotyping Analysis

Initially, a subset of samples was subjected to a screening analysis for the research of candidate
variants (SNPs) located within MIR146A (5q33.3); MIR31 (9p21.3); MIR23A (19p13.12); MIR27A
(19p13.12); MIR20A (13q31.3); and MIR-150 (19q13.33). The selection of the miRNAs to be studied was
performed on the basis of literature data and their target mRNAs predicted by bioinformatic analysis.
Prominent attention was given to miRNAs targeting genes that are known to be associated with
exudative-AMD or biological pathways involved in disease onset and progression. The screening was
performed by direct sequencing with BigDye Terminator v3.1 and BigDyeXTerminator kit according to
the manufacturer’s instructions. Samples were run by capillary electrophoresis on ABI3130xl (Applied
Biosystems, Warrington, UK) and analyzed by sequencing analysis (version 5.3, Applied Biosystems,
Foster City, CA, USA). Successively, the identified variants were genotyped on the whole study cohort,
utilizing TaqMan chemistry and a 7500 fast real-time PCR device according to the manufacturer’s
instructions (Applied Biosystems, Warrington, UK). The genotyping results were interpreted using
Sequence Detection System 2.1 software (Applied Biosystems, Warrington, UK). Each real-time PCR
run was performed using a negative control and three positive control samples previously confirmed
by direct sequencing.

4.3. Biostatistical and Bioinformatic Analysis

The genotyping results were subjected to biostatistical analysis to evaluate associations with
AMD. First, the genotyping data reported in our cohort were tested to confirm the Hardy–Weinberg
equilibrium (p > 0.05). Afterwards, the association between the genotyped SNPs and AMD was
measured by calculating the p-value (p). The statistical associations were considered significant when
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p < 0.05 based on the 95% confidence interval. The strength of the associations was determined by
calculating the odd ratio (OR). All the statistical analyses were performed using the SPSS program,
version 23 (IBM Corp, Armonk, NY, USA).

Bioinformatic analysis was performed to select and annotate the miRNAs of interest and evaluate
the secondary structure of the corresponding pre-miRNAs, the MFE, and the molecular pathways
in which the associated miRNA may be involved. To this purpose, miRbase, microRNA.org, and
TargetScanHuman tools were used to select and annotate the miRNAs of interest and their related
mRNA targets [38–40]. PolymiRTS tool (version 3.0, University of Tennessee Health Science Center,
Memphis, USA) is a database that gathers polymorphisms (SNPs and indels) in microRNA (miRNA)
seed regions and miRNA target sites that may affect miRNA–mRNA interactions and, in turn,
miRNA-mediated gene expression [41]. In this work, PolymiRTS database was utilized to evaluate the
in silico impact of miRNA variants detected by screening analysis. The Vienna RNAfold algorithm
(ViennaRNA package 2.0) was utilized to predict the secondary structures of pre-miRNAs (hairpin
structure) and compute the MFE of the thermodynamic ensemble (∆G) [42]. In particular, wild-type
and variant miRNA sequences were tested by RNAfold tool in order to evaluate differences in MFE
that could affect miRNAs biogenesis and potential binding affinity. Normally, the pre-miRNA structure
with lower MFE is expected to be thermodynamically more stable and enhance the processing of the
mature miRNA.
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