Supplementary materials

Chitosan hydrogel beads supported with ceria for boron removal by Kluczka J. et al.

Figure S	51 Photogra	ph of Ce-	CTS com	posite hy	vdrogel	beads.
0					/ · · · · · · ·	

Table S1 Langmuir, Freundlich, Dubinin-Radushkevich and Temkin models of adsorption isotherms.

Model	Nonlinear equation	Linear equation	Plot
L	$q_e = q_m \times \frac{B \times C_e}{1 + B \times C_e}$	$\frac{1}{q_e} = \frac{1}{q_m \times B \times C_e} + \frac{1}{q_m}$	$\frac{1}{q_e} vs \frac{1}{C_e}$
F	$q_e = K_F \times (C_e)^{1/n}$	$log(q_e) = log(k_F) + \frac{1}{n}log(C_e)$	$log(q_e)$ vs $log(C_e)$
D–R	$q_e = (X_m) \exp(-k \times \varepsilon^2)$	$ln(q_e) = ln(X_m) - k \times \varepsilon^2$	$ln(q_e) vs \epsilon^2$
Т	$q_e = \frac{R \times T}{b_T} ln \left(A_T \times C_e \right)$	$q_e = \frac{R \times T}{b_T} ln (A_T) + \frac{R \times T}{b_T} ln (C_e)$	$q_e vs ln(C_e)$

where: q_m (mg/g) and *B* (dm³/mg) are the Langmuir parameters, K_F (mg/g) and *n* are the parameters resulting from the Freundlich model, ε , Polanyi potential, x_m (mol/g) and the *k* (mol²/kJ²) are the Dubinin-Radushkevich parameters, the parameters b_T (kJ/mol) and A_T (dm³/mg) are calculated from the T model.

Table S2 Lagergren pseudo-first-order, Elovich pseudo-second-order, and Weber and Morris parabolic diffusion models of kinetics.

*				
Kinetic	Differential/Nonlinear	Linear equation	Plot	
model	equation			
Pseudo-first-	dq_e (7)	$k_1 \times t$	log(a - a) us t	
order	$\frac{dt}{dt} = \kappa_1 (q_e - q_t)$	$\log(q_e - q_t) = \log(q_e) - \frac{1}{2.303}$	$log(q_e - q_t) vs l$	
Pseudo-	dq_e	t 1 t	$\frac{t}{t}$ and t	
second-order	$\frac{dt}{dt} = \kappa_2 (q_e - q_t)^2$	$\frac{1}{q_t} - \frac{1}{k_2 \times (q_e)^2} + \frac{1}{q_e}$	$\frac{1}{q_t}$ vs t	
Parabolic	$a - k \times t^{1/2}$		a + ma + 1/2	
diffusion	$q_t = \kappa_p \times t^{-1}$	-	q_t vs ι '	

where q_t and q_e are the amounts of boron adsorbed (mg/g) at any time *t* and at the time of equilibrium while k_1 , k_2 , and k_p are the pseudo-first-order, pseudo-second-order, and the parabolic diffusion rate constants, respectively.