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Abstract: Accumulating studies have shown that long non-coding RNAs (lncRNAs) are involved
in many biological processes and play important roles in a variety of complex human diseases.
Developing effective computational models to identify potential relationships between lncRNAs
and diseases can not only help us understand disease mechanisms at the lncRNA molecular level,
but also promote the diagnosis, treatment, prognosis, and prevention of human diseases. For this
paper, a network-based model called NBLDA was proposed to discover potential lncRNA–disease
associations, in which two novel lncRNA–disease weighted networks were constructed. They were
first based on known lncRNA–disease associations and topological similarity of the lncRNA–disease
association network, and then an lncRNA–lncRNA weighted matrix and a disease–disease weighted
matrix were obtained based on a resource allocation strategy of unequal allocation and unbiased
consistence. Finally, a label propagation algorithm was applied to predict associated lncRNAs for
the investigated diseases. Moreover, in order to estimate the prediction performance of NBLDA,
the framework of leave-one-out cross validation (LOOCV) was implemented on NBLDA, and
simulation results showed that NBLDA can achieve reliable areas under the ROC curve (AUCs) of
0.8846, 0.8273, and 0.8075 in three known lncRNA–disease association datasets downloaded from the
lncRNADisease database, respectively. Furthermore, in case studies of lung cancer, leukemia, and
colorectal cancer, simulation results demonstrated that NBLDA can be a powerful tool for identifying
potential lncRNA–disease associations as well.
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1. Introduction

In recent years, accumulating evidence studies have shown that non-coding RNAs (ncRNAs) are
involved in various biological processes in the human body [1–3], and particularly long non-coding
RNAs (lncRNAs), as a class of important heterologous ncRNAs with a length greater than 200 nt, play
critical roles in various human biological processes such as chromatin modification, cell differentiation,
proliferation and apoptosis, translational and post-translational regulation, and so on [4–6]. Moreover,
mutation and disorder of lncRNAs may cause a broad range of complex human diseases [6,7].
For example, researchers have found that lncRNA-UCA1 will be expressed at high levels in lung
cancer, bladder cancer, breast cancer, and colorectal cancer [8]. LncRNA HOTAIR can promote the
malignant growth of human liver cancer stem cells by downregulating SETD2 in liver cancer stem
cells [9]. Hence, detecting potential lncRNA–disease associations can not only help us understand
the pathogenesis of human diseases at the molecular level, but also further facilitate the diagnosis,
treatment, and prevention of human diseases [10].
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Currently, with the rapid development of bioinformatics, some lncRNA–disease association
databases such as LncRNADisease [11] and Lnc2Cancer [12] have been established successively.
However, the number of known lncRNA–disease associations in these databases is far from meeting the
needs of modern medical researches, due to traditional biological experiment methods for discovering
potential relationships between lncRNAs and diseases that are very expensive and time-consuming [13].
Therefore, more and more researchers have devoted efforts to constructing computational models to
identify potential relationships between lncRNAs and diseases. For instance, Chen and Yan [14]
proposed a semi-supervised learning method called LRLSLDA to identify possible associations
between lncRNAs and diseases. Yu et al. [15] presented a computational model which they called
NBCLDA based on the naive Bayesian classifier to explore potential relationships between lncRNAs
and diseases. In contrast to the above machine learning-based models, according to the assumption that
functionally similar lncRNAs show similar interaction patterns with similar diseases, Sun et al. [16]
proposed a computational model, RWRlncD, in which a global network was constructed first based on
disease similarity, lncRNA functional similarity, and known lncRNA–disease associations, and then
a random walk with restart method was implemented on the newly constructed global network to
infer potential lncRNA–disease associations. Yao et al. [17] proposed a new computational model
called LncPriCNet, in which a heterogeneous random walk was designed on a multi-layer composite
network consisting of genes, lncRNAs, phenotypes, and associations between them to prioritize
lncRNAs that are potentially associated with diseases. In all the above random walk-based models,
it is obvious that only known lncRNA–disease associations are considered. In contrast to that,
based on known lncRNA–miRNA and miRNA–disease associations, Chen [18] proposed a novel
computational model called HGLDA to calculate potential association probabilities between lncRNAs
and diseases, in which a hypergeometric distribution test was applied for each lncRNA–disease pair
to indicate whether the lncRNA and disease significantly shared common miRNAs. Zhao et al. [19]
developed a distance correlation set-based computational model, DCSMDA, to predict potential
miRNA–disease associations, in which a tripartite miRNA–lncRNA–disease network was constructed
through integrating disease similarity, miRNA similarity, and lncRNA similarity.

Inspired by the above-mentioned state-of-the-art methods, a network-based computational model
NBLDA was proposed for this paper to predict potential lncRNA–disease associations based on the
assumption that functionally similar lncRNAs show similar interaction patterns with similar diseases.
In NBLDA, two new networks were constructed first based on known lncRNA–disease associations
and Gaussian interaction profile kernel similarity for lncRNAs and diseases, and then we assigned
an attraction that is proportional to kβ to each node in the network, where k is the degree of the node
and β is a freely adjustable parameter. Moreover, considering that traditional mass diffusion-based
algorithms focused on unidirectional mass diffusion only, we further applied a consistence-based
mass diffusion algorithm via bidirectional diffusion on NBLDA to predict potential lncRNA–disease
associations by adopting a label propagation algorithm. Finally, in order to estimate the prediction
performance of NBLDA, the framework of leave-one-out cross validation (LOOCV) was implemented,
and simulation results show that NBLDA can achieve reliable AUCs of 0.8846, 0.8273, and 0.8075 in
LOOCV based on three versions of known lncRNA–disease association datasets downloaded from the
lncRNADisease database, respectively, which demonstrates the excellent prediction performance of
NBLDA. In addition, in case studies of lung cancer, leukemia, and colorectal cancer, simulation results
show that there are 9, 10, and 7 out of the top 10 predicted disease-related lncRNAs of these three kinds
of diseases having been validated by evidence from studies in the PubMed literature and Lnc2Cancer
database, respectively, which further indicates NBLDA has a satisfactory prediction performance in
discovering potential lncRNA–disease associations as well.
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2. Results

2.1. Performance Evaluation

In order to estimate the prediction performance of NBLDA, and described in this section,
we implemented LOOCV on NBLDA based on known lncRNA–disease associations downloaded from
the LncRNADisease database. While implementing LOOCV, each known lncRNA–disease association
was left out in turn as a test sample and the other remaining known lncRNA–disease associations were
taken as training samples. Moreover, all lncRNA–disease pairs without known relevance evidences
were considered as candidate samples. Thereafter, we obtained the ranking of each test sample within
all candidate samples according to their scores predicted by NBLDA, and then, the test sample was
regarded as successfully predicted if its ranking exceeded a given threshold. Furthermore, the receiver
operating characteristic (ROC) curves were drawn based on true positive rate (TPR, sensitivity) and
false positive rate (FPR, 1-specificity) obtained at different thresholds. Here, the sensitivity represents
the proportion of test samples with a ranking higher than the given threshold to all positive samples,
whereas 1-specifcity indicates the ratio between candidate samples with a ranking above a given
threshold and all candidate samples. Then, the areas under the ROC curve (AUCs) were further
calculated to evaluate the predictive performance of our model NBLDA, and it is obvious that the
larger the value of AUC, the better the prediction performance of NBLDA will be.

We implemented NBLDA on three kinds of datasets under the framework of LOOCV. Moreover,
we compared NBLDA with two state-of-the-art computational models such as KATZLDA [20] and
LRLSLDA [14] on these three same datasets. Here, KATZLDA is a KATZ measurement model
for lncRNA–disease association prediction based on known lncRNA–disease associations, disease
similarity, and lncRNA similarity. LRLSLDA is a semi-supervised model that used Laplacian
regularized least squares to predict potential lncRNA–disease associations by incorporating lncRNA
expression profiles. As a result, NBLDA, KATZLDA, and LRLSLDA achieved AUCs of 0.8846, 0.8257,
and 0.7886 on DS1, respectively (Figure 1a), AUCs of 0.8273, 0.7945, and 0.7714 were obtained on DS2,
respectively (Figure 1b), and AUCs of 0.8075, 0.7781, and 0.7602 were obtained on DS3, respectively
(Figure 2). It is obvious that our model NBLDA had better prediction performance than KATZLDA
and LRLSLDA in LOOCV on both of these three kinds of datasets. In addition, during simulation,
we found that the best AUCs were obtained at β = −0.1, which indicates that reducing the attractions
of nodes with higher degrees can further improve the prediction accuracy of our model NBLDA, and
this conclusion is consistent with previous studies [21].
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Figure 1. We compared the prediction performance of NBLDA with two classical methods for 
lncRNA-disease association prediction (KATZLDA and LRLSLDA). (a) Areas under the ROC curve 
(AUCs) achieved by NBLDA, KATZLDA, and LRLSLDA based on the dataset of DS1; (b) AUCs 
achieved by NBLDA, KATZLDA, and LRLSLDA based on the dataset of DS2. 
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Figure 1. We compared the prediction performance of NBLDA with two classical methods for
lncRNA-disease association prediction (KATZLDA and LRLSLDA). (a) Areas under the ROC curve
(AUCs) achieved by NBLDA, KATZLDA, and LRLSLDA based on the dataset of DS1; (b) AUCs
achieved by NBLDA, KATZLDA, and LRLSLDA based on the dataset of DS2.
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Figure 2. AUCs achieved by NBLDA, KATZLDA, and LRLSLDA based on the dataset of DS3.

2.2. Case Studies

Currently, cancer is one of the leading causes of human death worldwide, and is also a problem
that modern medicine has not yet overcome [22–24]. To further evaluate the predictive performance
of NBLDA, we implemented the case studies of lung cancer, leukemia, and colorectal cancer
described in this section. During simulation, for any given investigated disease, those related known
lncRNA–disease associations in DS1 were used as training samples for model learning. As a result,
we list in Table 1 the top 10 disease-related lncRNAs predicted by NBLDA and the evidence to support
these predicted results provided by the Lnc2Cancer database and the studies in the PubMed literature.
Moreover, we show the accuracy of the top 10 related lncRNAs for the three diseases predicted by
NBLDA, KATZLDA, and LRLSLDA, respectively (Figure 3). It is worthwhile to emphasize that
only the lncRNA–disease pairs not included in DS1 were considered as verification candidates for
simulation in our case studies.

Lung cancer is one of the most common cancers in the world with extremely high morbidity
and mortality rates [25]. Over the past 50 years, the morbidity rate and the mortality rate of lung
cancer have significantly increased in many countries, and these rates for male patients are the first
among all malignant tumors [26,27]. In particular, the five-year survival rate for lung cancer patients is
only about 15%, and about 1.4 million people die of lung cancer each year [28]. In order to better and
more effectively promote the treatment of lung cancer, more and more studies have focused on the
deregulation of protein-coding genes to identify oncogenes and tumor suppressors [29]. Recent studies
have shown that lncRNAs are important for the development and progression of lung cancer [30].
We implemented NBLDA to reveal possible lung cancer-associated lncRNAs and, as illustrated in
Table 1, simulation results show that there are 9 out of the top 10 predicted lncRNAs having been
validated by the Lnc2Cancer database and related studies in the literature. For example, lncRNA
PVT1 was expressed at high levels in lung cancer cells, which promoted proliferation of non-small cell
lung cancer cells by regulating LATS2 expression [31]. LncRNA NEAT1 expression was significantly
upregulated in lung cancer cells, and NEAT1 significantly accelerated tumor growth in vivo [32].
LncRNA TUG1 was expressed at low levels in lung cancer cells, which is involved in lung cancer cell
growth by regulating LIMK2b via EZH2 [33].

Leukemia is a malignant clonal disease of hematopoietic stem cells, characterized by the ability
of embryonic cells to self-renew, continuously proliferate, and escape apoptosis which ultimately
inhibits the normal hematopoietic function of the human body [34,35]. In recent years, the prognosis
of leukemia patients has greatly improved. However, the five-year survival rate of patients is still
very low due to the high recurrence rate [36], and a more effective treatment method is urgently
needed for patients. In recent years, in-depth molecular identification has completely changed our
understanding of the mutations that drive disease, and related studies have shown that lncRNA plays
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a key role in the occurrence and development of leukemia [11]. We applied NBLDA to predict possible
leukemia-associated lncRNAs and, as a result, there are 10 out of the top 10 predicted lncRNAs having
been successfully confirmed by the Lnc2Cancer database and related studies in the literature (see
Table 1). For example, lncRNA H19 expression was significantly upregulated in bone marrow samples
from leukemia patients, which regulated ID2 expression by competitive binding to hsa-miR-19a/b [37].
The expression level of lncRNA MALAT1 was upregulated in acute myeloid leukemia, and MALAT1
knockdown in lung cancer cells led to upregulation of miR-101-3p expression, and then miR-101-3p
reduced myeloid cell leukemia 1 (MCL1) expression by binding to 3’-UTR. [38]. LncRNA HOTAIR
was expressed at high levels in leukemia patients, which promoted an increase in the number of white
blood cells and a decrease in the number of hemoglobin and platelets, and its overexpression indicated
a poor prognosis in patients [39].

Colorectal cancer (CRC) is one of the most common types of cancer in the United States and
the second leading cause of cancer death [40]. The average lifetime risk of developing the disease in
the United States is as high as 6% and the percentage of young patients is increasing [41]. With the
development of medical technology, the mortality rate of patients with CRC has decreased but it is not
satisfactory enough. Recent studies have shown that lncRNAs can be used as potential biomarkers
for improving treatment efficacy of CRC [42]. A case study of CRC was implemented on NBLDA to
identity potential associated lncRNAs. As illustrated in Table 1 above, it is easy to see that there are
7 out of the top 10 predicted lncRNAs having been validated to have associations with CRC based on
the Lnc2Cancer database and the studies in the PubMed literature. For example, lncRNA CCAT2 was
expressed at high levels in patients with colorectal cancer. At the same time, knockdown of CCAT2
could induce apoptosis and inhibit cell proliferation, which was a potential therapeutic target for
CRC [30,43]. LncRNA XIST could promote the proliferation of CRC cells and act as an oncogene in
CRC by targeting miR-132-3p, and its expression level was upregulated in both CRC tissue samples
and CRC cells [44]. LncRNA BCYRN1 played an oncogenic role in CRC cells by upregulating NPR3
expression levels. Therefore, BCYRN1 could be used as a promising prognostic biomarker for CRC [45].

Table 1. Top 10 potential lung cancer, leukemia, and colorectal cancer-related lncRNAs predicted by
NBLDA and confirmations for these predicted associations provided by the Lnc2Cancer database and
the studies in the PubMed literature.

Disease LncRNA Evidence (PMID) Rank

Lung cancer PVT1 26493997,28731781,28972861,27904703,29133127 1
Lung cancer NEAT1 25818739,29152741,28295289,28615056,29095526 2
Lung cancer TUG1 28069000,24853421,29277771,28121347,27485439 3
Lung cancer XIST 29130102,29339211,26339353,29337100,28248928 4
Lung cancer HULC 30575912 5
Lung cancer LINC-ROR 28459375,28516515,29028092 6
Lung cancer PANDAR 28121347,25719249 7
Lung cancer MIAT 29487526,28843520,29228680,29795987,27981551 8
Lung cancer HNF1A-AS1 27981551,29289833 9

Leukemia H19 15645136,29703210,24685695,28765931,29643943 1
Leukemia MALAT1 28713913 2
Leukemia HOTAIR 27748863,26622861,27875938,25979172,26261618 3
Leukemia MEG3 28407691,28190319,19595458,14602737,29029424 4
Leukemia PVT1 29510227,26545364 5
Leukemia GAS5 27951730 6
Leukemia UCA1 27854515,29762824,26053097,29663500 7
Leukemia TUG1 29654398 8
Leukemia XIST 7981627 9
Leukemia SNHG5 28861326,29917184 10

Colorectal cancer CCAT2 29181105,27875818,28838211,26853146,23796952 1
Colorectal cancer XIST 29495975,29137332,17143621,28730777,29484395 2
Colorectal cancer BCYRN1 30114690 3
Colorectal cancer HNF1A-AS1 28791380,29145164 4
Colorectal cancer MIAT 29686537 5
Colorectal cancer ATB 25750289 6
Colorectal cancer TUSC7 27683121,28214867,23680400,28979678 10
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3. Discussion

Accumulating evidence studies have shown that lncRNAs are closely related to a variety of
biological processes. Identifying potential lncRNA–disease association not only helps us understand
the pathogenesis of disease at the molecular level of lncRNA, but also contributes to the diagnosis,
treatment, prognosis, and prevention of diseases. In this paper, we presented a computational
model NBLDA to reveal potential lncRNA–disease associations based on known lncRNA–disease
associations and Gaussian interaction profile kernel similarity for lncRNAs and diseases. We improved
the baseline algorithm of bipartite network recommendation based on the network topological
similarity of the lncRNA–disease association network and resource allocation strategy of unequal
allocation and unbiased consistence. A label propagation algorithm was then used to predict potential
lncRNA–disease associations. NBLDA achieved AUCs of 0.8846, 0.8273, and 0.8075 in the validation
framework of LOOCV based on three versions of known lncRNA–disease association datasets,
which significantly improved the previous classic models. Furthermore, we conducted case studies of
lung cancer, leukemia, and colorectal cancer, and simulation results show that there are 9, 10, and 7 out
of the top 10 predicted candidate lncRNAs having been confirmed by previous studies in the literature
respectively. As a result, both cross validation and case studies have shown that NBLDA has a good
performance in potential lncRNA–disease association prediction.

The novel and reliable performance of NBLDA is mainly attributed to the following aspects.
First, the method proposed by us is based on a classical approach that has already achieved excellent
performance in predicting associations in other biological networks. Second, considering that the
lncRNAs (or diseases) which are not associated with a given disease D (or a given lncRNA L)
may also contribute resources to D (or L), we then constructed novel networks based on known
lncRNA–disease associations and the Gaussian interaction profile kernel similarity for diseases and
lncRNAs. Third, we adopted a resource allocation strategy of unequal allocation and unbiased
consistence. Certainly, there are still some limitations in NBLDA which must be improved in the future.
First of all, the similarity measures for diseases and lncRNAs are relatively simple, and more effective
similarity measures such as disease semantic similarity, disease phenotypic similarity, and lncRNA
functional similarity can improve the performance of our model. Moreover, although the numbers of
lncRNA–disease associations data have increased compared to before, the known lncRNA–disease
associations in our dataset are still too sparse, and the performance of NBLDA can be further improved
when more lncRNA–disease associations datasets are available and more reliable types of biological
datasets are integrated. Last but not least, increasing lncRNA–disease association data can be used as
training samples for model learning with the development of biological experimental techniques.
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4. Materials and Methods

4.1. Human lncRNA–Disease Associations

Three versions of the datasets were downloaded from the LncRNADisease database (http://
www.cuilab.cn/lncrnadisease), respectively (see Supplementary materials). First, we downloaded the
2017 version of the dataset (denoted as DS1) from the LncRNADisease database, and after removing
duplicated records and associations that do not belong to human beings, we finally obtained 1695
known lncRNA–disease associations involving 314 diseases and 828 lncRNAs. Next, we downloaded
the 2015 version of the dataset (denoted as DS2) from the LncRNADisease database, and after removing
duplicated data, we finally obtained 621 known lncRNA–disease associations including 226 diseases
and 285 lncRNAs. Finally, we downloaded the 2012 version of the dataset (denoted as DS3) from
the LncRNADisease database, and after removing duplicated data, we finally obtained 293 known
lncRNA–disease associations including 167 diseases and 118 lncRNAs. Thereafter, we adopted an
adjacency matrix Y to indicate known associations between lncRNAs and diseases. In the adjacency
matrix Y, if there is a known association between lncRNA li and disease dj, then there is Y(i,j) = 1;
otherwise, there is Y(i,j) = 0. Moreover, for convenience, we further introduced ND and NL to denote
the number of diseases and lncRNAs collected above, respectively.

4.2. Gaussian Interaction Profile Kernel Similarity for lncRNAs and Diseases

Based on the hypothesis that functionally similar lncRNAs are always associated with similar
diseases [46], for any given lncRNAs li and lj, we can obtain the Gaussian interaction profile
kernel similarity between li and lj according to the topologic information of known lncRNA–disease
association network as follows:

Sl
(
li, lj

)
= exp

(
−γl

∣∣∣∣IP(li)− IP
(
lj
)∣∣∣∣2), (1)

γl = γl
′/

1
NL

NL

∑
i=1
||IP(li)||2, (2)

where IP(li) is the ith row of the adjacency matrix Y and represents the interaction profile of lncRNA
li with all diseases. The parameter γl is used to control the Gaussian kernel bandwidth, and γl

′ is a
bandwidth parameter that will be set to 1 according to previous work [47]. Obviously, according to
Equation (1) above, we can obtain a similarity matrix Sl based on these lncRNAs collected above.

In a similar way, for any given diseases di and dj, we can obtain the Gaussian interaction profile
kernel similarity between di and dj according to Equation (3) as follows:

Sd
(
di, dj

)
= exp

(
−γd

∣∣∣∣IP(di)− IP
(
dj
)∣∣∣∣2), (3)

γd = γd
′/

1
ND

ND

∑
i=1
||IP(di)||2, (4)

where IP(di) is the ith column of the adjacency matrix Y and represents the interaction profile of disease
di with all lncRNAs. The parameter γd is used to control the Gaussian kernel bandwidth and γd

′ is set
to 1 [47]. Obviously, according to Equation (3) above, we can obtain a similarity matrix Sd based on
these diseases collected above.

4.3. Prediction Model of NBLDA

As illustrated in Figure 4, we can model the prediction problem of potential lncRNA–disease
association as the problem of resource allocation on the lncRNA–disease bipartite network. According
to the assumption that functionally similar lncRNAs tend to show similar interaction patterns with
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similar diseases [46], it is reasonable to deduce that each lncRNA (or disease) should contribute
resources to a specific disease (lncRNA) along with its similar lncRNAs (diseases). Therefore, we can
construct a matrix SL =

{
aij

}
NL×ND

and a matrix SD =
{

bij
}

NL×ND
based on the matrices Sl, Sd, and

Y as follows:
SL = Sl ∗Y, (5)

SD = Y ∗ Sd. (6)

Obviously, according to the matrix SL, we can construct a bipartite network first, and then,
for a randomly given node ψ in the newly constructed bipartite network, supposing that ψ has been
assigned an attraction such as kβ(ψ), where k(ψ) represents the degree of node ψ in the bipartite
network and β is a freely adjustable parameter, it is obvious that β = 0 means the average allocation
of resources, β < 0 means that nodes with lower degrees are more attractive and will obtain more
resources, and β > 0 indicates that nodes with higher degrees have greater attraction and will be
allocated more resources [21]. Thus, in general, the resource allocation based on the matrix SL can be
divided into the following processes:
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way as ZD and WL, respectively.

First, in the newly constructed bipartite network, each lncRNA node will allocate resources to its
neighboring disease nodes based on the attractions of its neighboring disease nodes. Here, for a given
lncRNA node, its neighboring disease nodes denote all disease nodes that have associations in SL with
this given lncRNA node, that is, all these disease nodes that have direct edges with this given lncRNA
node in the bipartite network. Thus, for a given lncRNA node lj and one of its neighboring disease
node dk, the resource pjk that the disease node dk will obtain from the lncRNA node lj can be calculated
as follows:

pjk =
ajkkβ(dk)

∑ND
t=1 ajtkβ(dt)

. (7)

Second, in a similar way as for the disease node dk, let the lncRNA node li be one of its neighboring
lncRNA nodes. Here, for a given disease node, its neighboring lncRNA nodes denote all lncRNA
nodes that have associations in SL with this given disease node, that is, all these lncRNA nodes that
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have direct edges with this given disease node in the bipartite network, then the resource qik that the
lncRNA node li will obtain from the disease node dk can be calculated as follows:

qik =
aikkβ(li)

∑NL
s=1 askkβ(ls)

. (8)

Finally, according to Equations (7) and (8) above, for any two given lncRNA nodes li and lj, we can
define the resources that li will obtain from lj as follows:

wij =
ND

∑
k=1

qik pjk =
ND

∑
k=1

ajkaikkβ(li)kβ(dk)

∑NL
s=1 askkβ(ls)∑ND

t=1 ajtkβ(dt)
, (9)

where wij indicates the resource diffusion capability from lj to li, that is, the probability that li will
be recommended because lj is selected by given disease. In addition, considering the consistency
of capability that resources move in both directions [48], we further define the resource diffusion
capability from li to lj as follows:

rij =
wji

∑NL
j=1 wji

. (10)

Then, according to Equations (9) and (10) above, we can define the sum of contribution from
resource allocation between li and lj as follows:

w′ij = wij + rij. (11)

Hence, according to Equation (11) above, we can obtain a weighted matrix WL = (w′ij)NL×NL
.

Then, we can adopt the label propagation algorithm to predict potential lncRNA–disease associations
based on the adjacency matrix Y and the weight matrix WL. First for any given disease node di in the
bipartite network, let Yi be the ith column of the adjacency matrix Y, then for convenience, we define
the lncRNAs in Yi as the initial label information of di. Next, in each iterative process, supposing that
each lncRNA node will receive information from its neighboring nodes with probability α and keep its
initial label information with probability 1 − α, we can then express the iterative process as follows:

Yt+1
i = αWLYt

i + (1− α)Y0
i , (12)

where Y0
i = Yi represents the interaction profile of disease di with all lncRNAs before the beginning

of the iterative process, and Yt
i represents the predicted label information of di at the tth iteration.

In addition, let Y0 = Y, we can then further represent the iteration process in matrix form as follows:

Yt+1 = αWLYt + (1− α)Y0. (13)

According to Equation (13) above, we will keep updating the label matrix Yt+1 until it converges
to YL:

YL = (1− α)(I − αW)−1Y0, (14)

where I ∈ RNL×NL is an identity matrix.
From the above descriptions, it is easy to see that YL is an lncRNA-oriented lncRNA–disease

association score matrix obtained based on the bipartite network that is constructed according to the
matrix SL. In a similar way, it is obvious that we can obtain another disease-oriented lncRNA–disease
association score matrix YD based on the bipartite network constructed according to the matrix SL.
Moreover, in a similar way, we can further obtain an lncRNA-oriented lncRNA–disease association
score matrix ZL and a disease-oriented lncRNA–disease association score matrix ZD based on the
bipartite network constructed according to the matrix SD as well. Subsequently, based on the



Int. J. Mol. Sci. 2019, 20, 1549 10 of 12

above newly obtained matrices such as YL, YD, ZL, and ZD, and for convenience, let FPS(i, j),
YL(i, j), YD(i, j), ZL(i, j), and ZD(i, j) denote FPS

(
li, dj

)
, YL(i, j), YD

(
li, dj

)
, SL

(
li, dj

)
, and SD

(
li, dj

)
,

respectively. We can then construct a final lncRNA–disease association score matrix FPS as follows:

FPS(i, j) =
YL(i, j) + YD(i, j) + SL(i, j) + SD(i, j)

4
, (15)

where i ∈ [1, NL] and j ∈ [1, ND].

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/7/
1549/s1.
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