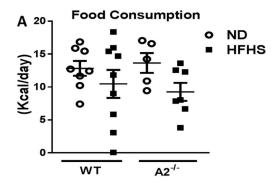
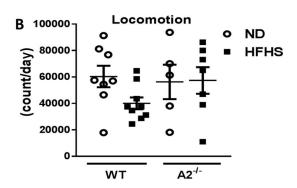
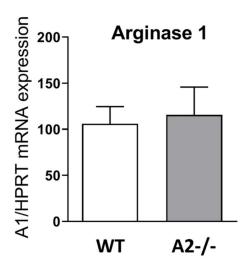
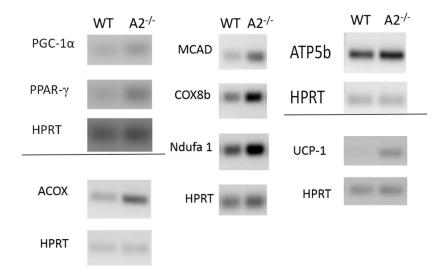

Role of arginase 2 in systemic metabolic activity and adipose tissue fatty acid metabolism in diet-induced obese mice


Reem T. Atawia¹, Haroldo A. Toque^{1,2}, Mohamed M. Meghil³, Tyler W. Benson², Nicole K. H. Yiew^{1,2,5}, Christopher W. Cutler³, Neal L.Weintraub², Ruth B. Caldwell^{2,4} and Robert W. Caldwell^{1*}


Supplementary Materials



Supplementary Figure S1. Representative Images of cytoplasmic lipid droplets stained with Oil Red O after in vitro differentiation of preadipocytes from SVF of VAT,), scale bar=50 μ m



Supplementary Figure S2. Effect of HFHS on food intake calculated as kcal of food consumed/day (A) and locomotor activity calculated as steps/day (B) in WT and $A2^{-/-}$ mice. Values are means \pm SEM, n=5-9 per group.

Supplementary Figure S3. Arginase 1 (A1) mRNA expression levels in adipocytes isolated from WT mice and mice globally lacking arginase 2 (A2-/-) fed HFHS diet for 16 weeks, determined by RT-PCR and normalized to hypoxanthine phosphoribosyl transferase (HPRT) expression. Data are presented as means \pm SEM, n =6-7 per group.

Supplementary Figure S4. Representative agarose gel electrophoresis of RT-PCR products of genes involved in fatty acid oxidation in adipocytes isolated from WT mice and mice globally lacking arginase 2 (A2-/-) on high fat-high sucrose (HFHS) for 16 weeks and normalized to hypoxanthine phosphoribosyl transferase (HPRT) expression