

Confinement Effect of Micro- and Mesoporous Materials on the Spectroscopy and Dynamics of a Stilbene Derivative Dye

4 Maria Rosaria di Nunzio ¹, Ganchimeg Perenlei ^{1,2} and Abderrazzak Douhal ^{1,*}

- 5 ¹ Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL,
 6 Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain;
- 7 mrosaria.dinunzio@uclm.es (M.R.d.N.); gana_d3@yahoo.com (G.P.)
- 8 ² On leave from Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD
 9 4001, Australia
- 10 * Correspondence: abderrazzak.douhal@uclm.es (A.D.); Tel.: +34-925-265717

11 Supplementary Materials

12

1

2

3

13 Figure S1. Normalized (to the maximum of intensity) UV-visible diffuse transmittance spectra of DCM

- 14 interacting with NaY zeolite in dichloromethane suspensions at different initial dye concentrations: 1×10^{-3}
- 15 (dashed line), 1×10^{-4} (solid line), and 1×10^{-5} (scattered-solid line) M.

16

18

21

Figure S2. Deconvolution of the UV-visible DT spectra of DCM@HY in dichloromethane suspensions at different
initial DCM concentrations: (A) 1 × 10⁻⁵ M, (B) 1 × 10⁻⁴ M, and (C) 1 × 10⁻³ M.

22	DCM@HY	H-aggregates		Monomers		J-aggregates		Free DCM	
23	[DCM]0/M	λ _{Abs} (nm)	Area (%)						
24	10-5HY	360	83	379	6	413	11	-	-
26	10-4	353, 394	76, 21	414	1	434	2	-	-
27	10-3	331, 397	63, 36	-	-	-	-	505	1

28

29 Table S1. Values of the maximum intensity wavelengths and normalized (to 100%) integral areas observed in 30 the UV-visible DT spectra of the formed species of DCM upon interaction with HY zeolite in dichloromethane 31 suspensions. The spectral components were obtained by a spectral deconvolution of the experimental data. The

- 32 error associated to the wavelength at the maximum absorption intensity (λ_{Abs}) in the deconvolution analysis is
- **33** about ~ 5 nm.

35 Figure S3. Normalized (to the maximum of intensity) UV-visible fluorescence spectra of DCM interacting with

- 36 MCM-41 in dichloromethane suspension. The initial dye concentration is 1 × 10⁴ M. For emission, the excitation
- 37 wavelengths are indicated in the Inset.
- 38

39

Figure S4. Normalized (to the maximum of intensity) UV-visible fluorescence (excitation wavelength = 370 nm)
spectra of DCM interacting with NaY zeolite in dichloromethane suspensions at different initial dye
concentrations: 1 × 10⁻³ (dashed line), 1 × 10⁻⁴ (solid line), and 1 × 10⁻⁵ (scattered-solid line) M.

44 Figure S5. Normalized (to the maximum of intensity) magic-angle emission decays of DCM in dichloromethane

45 solution upon excitation at 371 nm and observing at the wavelengths indicated in the Inset.

46

47	System	λ_{obs}/nm	τ_1/ns	a 1/%	τ2/ns	a2/%
48	System DCM/dichlorome thane	525	0.20	19	1.13	81
		550		15		85
49		575		12		88
		600		11		89
50		625		10		90
51		650		9		91

Table S2. Values of time constants (τ_i) and normalized to (100) pre-exponential factors (a_i) obtained from the fit
of the emission decays of DCM in dichloromethane solution upon excitation at 371 nm and observation as

54 indicated in the Table.

- **56** Figure S6. Normalized (to the maximum of intensity) magic-angle emission decays of DCM $(1 \times 10^{-3} \text{ M})$
- 57 interacting with HY zeolite in dichloromethane suspension. The sample was excited at 371 nm and observed at
- 58 the wavelengths indicated in the Inset.

Figure S7. Normalized (to the maximum of intensity) magic-angle emission decays of DCM (1 × 10⁻⁴ M)
interacting with HY zeolite in dichloromethane suspension. The sample was excited at 371 nm and observed at

62 the wavelengths indicated in the Inset.

63

Figure S8. Normalized time-resolved emission spectra (TRES) of DCM (1 × 10⁻⁴ M) interacting with HY zeolite
in dichloromethane suspension gated at the indicated delay times after excitation at 371 nm.

Figure S9. Normalized (to the maximum of intensity) magic-angle emission decays of DCM (1 × 10⁻⁴ M)
interacting with NaX zeolite in dichloromethane suspension. The sample was excited at 371 nm and observed at
the wavelengths indicated in the Inset.

70

Figure S10. Normalized (to the maximum of intensity) magic-angle emission decays of DCM (1×10^{-4} M)

72 interacting with NaY zeolite in dichloromethane suspension. The sample was excited at 371 nm and observed at

73 the wavelengths indicated in the Inset.

Figure S11. Normalized (to the maximum of intensity) magic-angle emission decays of DCM (1 × 10⁻⁴ M)
interacting with MCM-41 in dichloromethane suspension. The sample was excited at 371 nm and observed at
the wavelengths indicated in the Inset.

- 79
- 80
- -----
- 81
- 82

Table S3. Values of time constants (τ_i) and normalized (to 100) pre-exponential factors (a_i) obtained from the fit
of the emission decays of DCM (1 × 10⁻⁴ M) interacting with HY, NaX, NaY, and MCM-41 in dichloromethane
suspensions upon excitation at 371 nm at the observation wavelengths indicated in the Table.

- 87
- 88

		H-aggregates		J-aggregates		Monomers		Free DCM	
Host	λem	τ ₁ (± 15)	a 1	$\tau_2 (\pm 0.07)$	a 2	τ ₃ (± 0.58)	a 3	τ4 (±0.16)	a 4
	/nm	/ps	/%	/ns	/%	/ns	/%	/ns	/%
HY	435		78		20		2		-
	450		75		22		3		-
	500	79	62	0.36	26	3.87	3	1.10	9
	550		57		23		9		11
	625		53		20		10		17
NaX	435		70		29		1		-
	450		68		31		1		-
	475		65		34		1		-
	500	96	49	0.40	28	2.75	1	1.10	22
	550		43		25		2		30
	600		39		23		3		35
	650		36		20		5		39
NaY	435	-	65		31		4		-
	450		59		33		8		-
	475		55		33		12		-
	500	99	43	0.36	29	3.30	18	1.10	10
	550		40		28		20		12
	600		37		27		22		14
	650		35		27		22		16
MCM-41	450		86		13		1		-
	475		73		24		3	-	-
	500		61		35		3		1
	525	65	59	0.35	29	2.46	9	1.10	3
	550		56		26		11		7
	600		46		22		13		19
	650		41		16		15		28