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Abstract: The rat is an important model animal used frequently in biological researches exploring the
correlations between gut microbiome and a wide array of diseases. In this study, we used an extended
ancestral-state reconstruction algorithm to predict the functional capabilities of the rat gastrointestinal
microbiome. Our results indicate an apparent tendency toward metabolic heterogeneity along
the longitudinal and transverse axes of the rat gastrointestinal tract (GIT). This heterogeneity was
suggested by the enriched small-molecule transport activity and amino acid metabolism in the
upper GIT, the aerobic energy metabolism in the stomach and the mucolysis-related metabolism in
the lower GIT mucus layer. In contrast to prior results, many functional overlaps were observed
when the gastrointestinal microbiomes of different hosts were compared. These overlaps implied
that although both the biogeographic location and host genotype were prominent driving forces in
shaping the gastrointestinal microbiota, the microbiome functions were similar across hosts when
observed under similar physicochemical conditions at identical anatomical sites. Our work effectively
complements the rat microbial biogeography dataset we released in 2017 and, thus, contributes to a
better understanding and prediction of disease-related alterations in microbial community function.
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1. Introduction

Symbiotic microorganisms located inside and on the surface of the host body provide many
biological functions that are not encoded in their host genome [1]. The complementary functions are
generally considered as ecosystem services which are crucial to maintaining the host physiological
homeostasis [2]. In recent years the gut flora has attracted increasing attention in several fields and is,
now, even considered a hidden organ [3], as its collective metabolic activity is somewhat equal to a
virtual organ and profoundly influences the host health and disease in both direct [4–6] and indirect
manners [7–10].

In the past decade, encouraged by the progress in high-throughput sequencing technology
and new developments in bioinformatics, the scientific community has continuously and gradually
investigated the gut microbial communities underlying biological functions observed in human- [11,12]
and host-associated [13,14] habitats. In 2008, the National Institutes of Health (NIH) initiated the
Human Microbiome Project (HMP), which aimed to characterise the microbiota within 5 main human
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body habitats (i.e., airway, skin, oral, gut and urogenital) from the aspects of community structure and
metabolic potential [15]. In 2010, the MetaHIT project released the first human gut microbial gene
catalogue established by metagenomic sequencing [16]. In 2015, the Beijing Genomics Institute (BGI)
released the first mouse gut microbial gene catalogue [17]. These catalogues have since served as
valuable references for numerous studies. However, most of these studies used functional gene sets
derived from faecal samples, although the appropriateness of using faeces as a proxy for the whole
gastrointestinal tract (GIT) remains unconfirmed.

In 2017, our research group released the first microbial biogeography of the rat GIT,
which systematically characterised the baseline microbial structure, membership, diversity and ecology
in this long-standing biomedical research animal model [18]. By comparing different niches along
the length of the rat digestive tract, we concluded that faecal samples could not fully represent the
microbiota throughout this tract, at least, in terms of taxonomic profiling. In an ecosystem such as
the GIT, the collective function is co-determined by the population composition and the activities
of each component. The potential metabolic activities of a microbe are encoded by its genome, and
many host-associated microorganisms, even those only distantly related, may share functional genes
and, thus, thrive in the hash gastrointestinal (GI) environment [16]. The HMP also indicated that
the community function remained relatively stable, despite dramatic variations in the community
structure [19].

Therefore, in this study, we took the next step and predicted the functional capabilities of the
rat GI microbiome using an extended ancestral-state reconstruction algorithm [20] and projected
these functions onto a Kyoto Encyclopaedia of Genes and Genomes (KEGG) orthology and pathway
framework [21] to address the following questions: (i) What complementary ecosystem service
functions do microbial residents provide along the length of the rat digestive tract? (ii) Does the faecal
functional profile fully represent those of other GI segments? (iii) To what extent dose heterogeneity in
the community composition reflect the differences in the community function across biogeographic
locations and hosts?

2. Results and Discussion

The rat genome was published in 2004 and was the third mammalian genome sequenced [22]
after the human [23] and mouse genomes [24]. However, the rat intestinal microbiome, as its second
genome, was not comprehensively characterised until 2017. Our previously published rat microbial
biogeography filled this gap and suggested that the stratification of microbial community and the shift
in microbial metabolites might interact, serving as both cause and effect [18].

2.1. Metabolic Heterogeneity in the Community Function

In present study, we aimed to characterise the rat GI microbiome from the perspective of a
functional potential. Based on a total of 6009 KEGG orthologue (KO) annotations, we observed an
apparent tendency toward a metabolic heterogeneity along the longitudinal and transverse axes of the
rat GIT. This tendency was intuitively displayed on the principal component analysis (PCA) ordination
plots (Figure 1A–C), where samples were grouped by different biogeographic factors such as the
anatomic region (adonis: R2 = 0.47; p ≤ 0.001), subsite (adonis: R2 = 0.60; p ≤ 0.001) and niche location
(adonis: R2 = 0.24; p ≤ 0.001). The first principal component (PC1) explained 53.75% of the total
heterogeneity and parsed out the niche locations of the samples, while the second principal component
(PC2) explained 18.8% and mainly parsed out the anatomic regions.
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Figure 1. The spatial heterogeneity in the rat microbial community functions: a principal component 
analysis (PCA) based on the Kyoto Encyclopaedia of Genes and Genomes (KEGG) orthologue (KO) 
profiles of gut microbiome across the rat gastrointestinal tract (GIT), where potential relationships 
between metabolic variability and sample metadata are highlighted in panels A to C by different 
colorations. The permutational multivariate analysis of variance (PERMANOVA) results reveal the 
grouping of samples from the same (A) sampling site (adonis: R2 = 0.60), (B) anatomic region (R2 = 
0.47) and (C) niche location (R2 = 0.24). The p-value of the Monte Carlo permutation test is shown on 
the lower left. The percentages of variation explained by first principal component (PC1) and second 
principal component (PC2) are listed along the axes representing them. The top 10 KOs driving the 
heterogeneity are indicated in panel A. For different anatomic regions, the major contributing 
operational taxonomic units (OTUs) and their contributions to these KOs are shown in panel (D). 

Figure 1. The spatial heterogeneity in the rat microbial community functions: a principal component
analysis (PCA) based on the Kyoto Encyclopaedia of Genes and Genomes (KEGG) orthologue (KO)
profiles of gut microbiome across the rat gastrointestinal tract (GIT), where potential relationships
between metabolic variability and sample metadata are highlighted in panels A to C by different
colorations. The permutational multivariate analysis of variance (PERMANOVA) results reveal the
grouping of samples from the same (A) sampling site (adonis: R2 = 0.60), (B) anatomic region (R2 =
0.47) and (C) niche location (R2 = 0.24). The p-value of the Monte Carlo permutation test is shown
on the lower left. The percentages of variation explained by first principal component (PC1) and
second principal component (PC2) are listed along the axes representing them. The top 10 KOs driving
the heterogeneity are indicated in panel A. For different anatomic regions, the major contributing
operational taxonomic units (OTUs) and their contributions to these KOs are shown in panel (D).

The KOs acting as the strongest drivers of this trend in heterogeneity are plotted as loadings on
the PCA plot, with the arrow lengths proportional to their contributions (Figure 1A). In the second
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quadrant, 4 KOs point to the colonic mucosal samples, indicating that these KOs play significant roles
in the local agglomeration of these samples. Here, 3 KOs, K02025, K02026 and K02027, constituted
the elements of a putative multiple sugar transport system, while the fourth, K03088, was an RNA
polymerase factor. Similarly, K02025, K02026 and K03088 are also enriched in the mouse gut microbial
gene catalogue and drive the separation of the human and mouse gut microbiomes [17]. By partitioning
the metagenome functional contributions, we found that the major contributing operational taxonomic
unit (OTU) to this ATP-binding cassette (ABC) transporter belonged to the Clostridium cluster XIVa,
in which many species produce butyrate and specifically colonise the mucins close to the intestinal
epithelium [25].

In the first quadrant, 6 KOs point to the small-intestinal samples. Three of these KOs, K03293,
K03294 and K08659, might be involved in the catabolism of free small peptides and amino acids from
the upper GIT digestive residue [26]. Interestingly, the corresponding contributing OTUs all belonged
to Lactobacillus, although the OTU ranks varied between different KOs (Figure 1D). Studies on gut
microbiota have rarely reported the proteolytic activity of Lactobacilli in GIT. However, Lactobacillus
strains have occasionally been used as starter cultures to eliminate gluten toxicity [27] and to ferment
meat products [28] in the field of food microbiology, suggesting that Lactobacillus species may play
specific roles in rat small-intestinal habitats. Based on our prior phylogenetic prediction result,
the molecular species participating in this process were probably Lactobacillus intestinalis, L. hominis,
L. johnsonii, L. taiwanensis, L. gasseri and L. saniviri [18]. Additionally, OTU214919, which was previously
annotated as Turicibacter, comprised a major contributory phylotype in the orthologous gene family
K07024, with a much higher degree of intersubject variation regarding contributions (note: Turicibacter
is another predominant genus throughout the rat digestive tract).

However, the permutational multivariate analysis of variance (PERMANOVA) result revealed that
the individual subject was no longer a significant categorical factor (adonis: R2 = 0.09; p = 0.18) with
respect to community function, in contrast to the situations regarding structure and membership [18].
To some extent, this weakened stratification was in line with the HMP results, which showed the
taxonomic variety versus metabolic stability within a healthy population [19].

2.2. Module-Centric Metabolic Reconstruction of the Rat Gastrointestinal (GI) Microbiome

A KEGG pathway module is a collection of manually defined, tight functional units which
allow a higher-level grouping of KO gene families into pathways or functional classifications [29].
To summarise the community function of the rat GIT at a higher level, 6009 KOs were collapsed into
125 metabolic modules via a parsimony approach. The abundance varied significantly in at least one
sampling site in more than half (75/125, 60%) of these detected modules, demonstrating the uniqueness
of various GI niches (Figure 2A and Table S1). Generally speaking, the structural complexes that
processed the environmental information were prevalent in the upper GIT. These complexes were
principally transporters of small molecules (saccharides: M00194, M00197, M00201, M00207, M00276
and M00277; polyols: M00200; phosphates: M00222; amino acids: M00230, M00232, M00235 and
M00237; peptides: M00333, M00348 and M00349; mineral and organic ions: M00185, M00193, M00299,
M00300 and M00319). This phenomenon suggests an active exchange of materials and information
between commensal microbiota and the digestive milieu, wherein the macromolecules in foodstuffs
are broken down, leading to a relative abundance of free small molecules [30].
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Figure 2. The modular difference in metabolic landscapes across the sampling sites and niche 
locations: The cladograms illustrate the differentially abundant metabolic modules under the KEGG 
BRITE hierarchy, determined using the linear discriminant analysis (LDA) effect size (LEfSe) and 
colored by their most abundant (A) sites and (B) locations in the rat GIT. The dot size is proportional 
to the global relative abundance of the corresponding module. In panel (A), the whole GI axis was 
involved in biomarker mining, whereas in panel (B), only the adjacent mucosal and luminal 
compartments from the large intestine were involved. Around the cladogram are located 8 heatmap 
rings, where the saturation of each cell represents the average relative abundance of each module in 
different sampling sites (from within outward: caecal contents; proximal-, middle-, distal-colonic 
contents; caecal mucus; and proximal-, middle- and distal-colonic mucus). All relative abundances 
are z-score normalized in the radial direction for visualization. The complete lists of modules are 
presented in Table S1 and S2. 

We previously found that the rat core microbiota evolved from an aerobic to facultative 
anaerobic to obligatory anaerobic metabolism along the longitudinal axis [18], in accordance with 
imaging observations of the oxygen gradient throughout the GIT [33]. This tendency was also 
evident when biomarkers of community function were mined at different sampling sites; here, 
functional modules involved in aerobic heterotrophic metabolism (M00008, M00009, M00011, 
M00012, M00115, M00144 and M00149) were prevalent in the stomach. Besides the longitudinal axis, 
in the radial direction, an intraluminal oxygen gradient further extends radially from the mucosal 
tissue interface into the lumen [34]. In the rat lower GIT, both the mucus layer and lumen are densely 
populated by various microorganisms, which separately form topologically distinct co-occurrence 
networks [18]. To compare the functions of these closely adjacent compartments, the linear 
discriminant analysis (LDA) effect size (LEfSe) system was applied only to mucosal and luminal 
samples from the large intestine, limiting pairwise comparisons performed between the same 
subsites. The results demonstrated a dramatic abundance variance in approximately a third (39/121, 
32.2%) of the modules detected in these samples (Figure 2B and Table S2). Specifically, modules 
associated with aerobic metabolism (M00009, M00011, M00144, M00149, M00156 and M00159) were 

Figure 2. The modular difference in metabolic landscapes across the sampling sites and niche locations:
The cladograms illustrate the differentially abundant metabolic modules under the KEGG BRITE
hierarchy, determined using the linear discriminant analysis (LDA) effect size (LEfSe) and colored
by their most abundant (A) sites and (B) locations in the rat GIT. The dot size is proportional to the
global relative abundance of the corresponding module. In panel (A), the whole GI axis was involved
in biomarker mining, whereas in panel (B), only the adjacent mucosal and luminal compartments
from the large intestine were involved. Around the cladogram are located 8 heatmap rings, where the
saturation of each cell represents the average relative abundance of each module in different sampling
sites (from within outward: caecal contents; proximal-, middle-, distal-colonic contents; caecal mucus;
and proximal-, middle- and distal-colonic mucus). All relative abundances are z-score normalized in
the radial direction for visualization. The complete lists of modules are presented in Tables S1 and S2.

Furthermore, the majority of amino acid metabolic modules (M00016, M00017, M00022, M00033,
M00034, M00035, M00036 and M00045) were also prevalent in the upper GIT. In addition to the
bacterial proteasome module M00342, this prevalence might be associated with the ordination result
of PCA (Figure 1A). However, the module M00018, which comprises serine and threonine metabolism,
was abundant in the caecal mucus layer, likely because active bacterial mucolysis within this habitat
involves the breakdown of serine- and threonine-rich O-linked mucins [31]. The hydroxyl groups
of these amino acids are always linked to various uronic acid-rich oligosaccharide side-chains [32],
and the corresponding metabolic module M00061 was also detected abundantly in the proximal-colonic
mucus layer.

However, in some cases, our attempts to tile a whole pathway suggested the simultaneous
existence of alternative modules with distinct internal structures but identical outlines enabling them
to fill the same metabolic gaps. In the rat GI microbiome, we identified several such biological
situations. For example, either the mevalonate (M00095) or non-mevalonate (M00096) module could
perform terpenoid backbone biosynthesis; the former and the latter were enriched in the upper (i.e.,
jejunal contents) and lower GIT (i.e., proximal-colonic contents), respectively. Similar phenomena
were also observed for the modules M00157 (bacterial F-type ATPase; enriched in jejunal contents)
and M00159 (prokaryotic V-type ATPase; enriched in middle-colonic contents). These results suggest
that when facing various survival challenges, the microbiota inhabiting different GI niches might use
distinct strategies to complete the pathway.
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We previously found that the rat core microbiota evolved from an aerobic to facultative anaerobic
to obligatory anaerobic metabolism along the longitudinal axis [18], in accordance with imaging
observations of the oxygen gradient throughout the GIT [33]. This tendency was also evident when
biomarkers of community function were mined at different sampling sites; here, functional modules
involved in aerobic heterotrophic metabolism (M00008, M00009, M00011, M00012, M00115, M00144
and M00149) were prevalent in the stomach. Besides the longitudinal axis, in the radial direction,
an intraluminal oxygen gradient further extends radially from the mucosal tissue interface into the
lumen [34]. In the rat lower GIT, both the mucus layer and lumen are densely populated by various
microorganisms, which separately form topologically distinct co-occurrence networks [18]. To compare
the functions of these closely adjacent compartments, the linear discriminant analysis (LDA) effect
size (LEfSe) system was applied only to mucosal and luminal samples from the large intestine,
limiting pairwise comparisons performed between the same subsites. The results demonstrated a
dramatic abundance variance in approximately a third (39/121, 32.2%) of the modules detected in
these samples (Figure 2B and Table S2). Specifically, modules associated with aerobic metabolism
(M00009, M00011, M00144, M00149, M00156 and M00159) were over-enriched in the mucus layer,
whereas those associated with anaerobic metabolism (M00001 and M00002) were under-enriched.

The GI microbiome is an important supplier of vitamins [35]. Here, we observed elaborate supply
patterns in different biogeographic niches. Modules associated with the biosynthesis of vitamins B2,
B3 and B12 (M00125, M00115 and M00122, respectively) were prevalent in the upper GIT, whereas
those associated with the biosynthesis of the vitamins B1, B5, B7 and B9 (M00127, M00119, M00123
and M00126, respectively) were prevalent in the lower GIT. Particularly, a pairwise comparison of the
microbial metagenomes in the mucus layer and lumen revealed a high abundance of the pyridoxal
biosynthesis module M00124 (vitamin B6; cofactor for many enzymes with amino acid substrates [36])
in the former, suggesting ubiquitous proteolytic activities in this niche location.

2.3. Functional Overlaps in the Murine GI Microbiome

Previously, we compared the GIT microbiota of different rodents and concluded that the rat
biogeographic map might serve as a new reference for digestive tract-related disease research [18].
In this study, we reanalysed the datasets [37–41] using the identical computational steps applied to
rats to further investigate the GIT microbial metabolic similarities and differences among various
mammalian hosts. Unsurprisingly, the human samples had the lowest nearest sequenced taxon
index (NSTI; mean = 0.094 ± 0.088 (standard deviation)), followed by the rat (0.122 ± 0.039),
mouse (0.213 ± 0.065) and woodrat samples (0.218 ± 0.05).

When these samples were mapped on the same PCA plane, a lot of overlaps were observed
among different murine hosts (Figure 3A) in contrast to the prior ordination result calculated from
the phylotype abundances [18]. This observation was also confirmed when the ecological distances
between samples from different hosts were calculated. Here, the Euclidean distances calculated
from the OTU abundances were significantly higher than those calculated from the KO profiles
(nonparametric paired Wilcoxon-signed-rank test, p < 2.2 × 10−16). Furthermore, regarding the
functional overlap, human GI microbiome was more similar to the rat microbiome than the mouse
microbiome within the large-intestinal mucus layer (5405 overlapping KOs between humans and
rats versus 4583 overlapping KOs between humans and mice). The pattern of overlap resembled
the pattern observed when the human and mouse gut catalogues were compared at the KO level
(4969 overlapping KOs between humans and mice) [17].
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Figure 3. The similarities and differences in metabolic potentials among the GI microbiomes from
different hosts: the PCA based on the KO profiles of GI microbiome used 227 samples form mice, rats
and woodrats, grouped by (A) host genotype (adonis: R2 = 0.27; p ≤ 0.001) and (B) anatomic region
(R2 = 0.09; p ≤ 0.001) in different colorations. The percentages of variation explained by PC1 and
PC2 are listed along the axes representing them. The top 10 KOs driving the difference are indicated
in panel (B). In panel (A), the normal confidence ellipses cover 67% of the samples belonging to the
corresponding hosts. The insert graph on the upper left summarizes the Euclidean distances between
samples from the same region but different hosts, calculated from KO profiles and OTU abundances
respectively. The bar height represents the median inter-sample distance and the error bars range from
the 25th to 75th quantile. The insert graph on the lower left shows the Venn diagrams demonstrating
the functional overlaps between different mammalian hosts in the large-intestinal mucosal microbiome.

Besides the host genotype (adonis: R2 = 0.27; p ≤ 0.001), the anatomic region was also identified
as a relatively weak categorical factor (R2 = 0.09; p ≤ 0.001) and was mainly parsed out during
PC1 (56.71% variation explained). Coincidently, some of the loading KOs (K02025, K02026, K02027,
K03088 and K01834) in rats also appeared on the PCA plot when 2 other rodents were considered
(Figure 3B). In the third quadrant, K02025, K02026, K02027, K06147 and K09687, which comprise an
ABC transporter, again pointed to the large-intestinal samples, while K01834 still pointed toward
the small-intestinal samples in the fourth quadrant. Moreover, K12373, which corresponds to a
beta-hexosaminidase involved in keratan sulfate degradation, fell into the second quadrant, suggesting
that this orthologous gene family plays a major role in the bacterial mucolysis specific to the mouse
large-intestinal microbiome.

3. Materials and Methods

The raw reads of 75 samples sequenced during our prior project, PRJNA324666 [18],
were downloaded from the NCBI Short Read Archive (SRA). The quality control and operational
taxonomic unit (OTU) picking were performed as previously described [18], whereas de novo OTUs
were removed by keeping only those with matching Greengenes IDs [42]. Chimeras (identified using
Broad Institute Chimera Slayer [43]) and singletons were also removed from the OTU table. During
OTU picking, 84.23% of reads were mapped to references at a similarity level of 97%. Given the
distances between the sequencing reads and reference seeds, however, the cluster representative
names were permuted 10 times (with replacements) within the OTU table to avoid introducing biases
when estimating the gene families present in microorganisms from the Phylogenetic Investigation
of Communities by Reconstruction of Unobserved States’ (PICRUSt) pre-calculated files [20]. Next,
the PICRUSt pipeline (version 1.1.3) was used to predict the sample-wide KEGG orthologue (KO)
profiles based on the 10 permuted tables and to estimate the contributions of each OTU to the given
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KOs. The average correlation between the permutations within a sample exceeded 0.99 (Spearman’s
rho). Hence, we calculated the arithmetically averaged abundances of KO groups per sample and
used these values in all the downstream analyses. We further retrieved and processed raw reads from
5 other projects (mice: PRJNA178786 (35 samples retrieved) [37], PRJEB2233 (2 samples) [38] and
figshare1499145 (85 samples) [39]; woodrats: PRJNA197212 (30 samples) [40]; and human: mgp1982
(17 samples) [41]) as described previously and above and combined these data with the KO profiles of
rat samples.

The HUMAnN pipeline (HMP Unified Metabolic Analysis Network; version 0.99) [44] was
selected to reconstruct the metabolic modules and thus collapse the predicted functions into a higher
level. The parameter settings and processing modules within this pipeline were optimised for the
best overall performance as previously described [44]; here, a parsimony approach [45] was used to
conservatively assign gene sets to hierarchical metabolic modules. To normalise the sequencing depth,
we used total-sum scalings to the KO profile and module abundance matrices and thus formed the
substrate for the following statistical analyses.

Functional similarities between the samples were measured using Euclidean distances based on
the KO profile matrix. PERMANOVA was used to statistically describe the relationships between the
metabolic variability and sample metadata, and the significance of these relationships was tested using
999 Monte Carlo permutations. PCA was performed to map the KO profiles in a multidimensional
space to a 2-dimensional plane. The calculation of the Euclidean distance, PERMANOVA and PCA
were all performed using the R-package VEGAN (version 2.5-2) [46]. The PCA results were visualised
using EMPeror [47], and both sample scores and KO loadings were plotted in the same coordinates.
The LEfSe biomarker discovery tool (LDA Effect Size; version 1.0) [48] was applied to the module
abundances from HUMAnN to determine the over- or under-enriched metabolic modules in at least
one sampling site and in different niche locations; here, the alpha value of 0.01 and logarithmic
LDA score threshold of 2.0 were applied. The metabolic modules were hierarchically organised in
a dendrogram according to the KEGG BRITE database and visualised using GraPhlAn (Graphical
Phylogenetic Analysis; version 1.1.3) [49]. Venn diagrams describing the function overlaps between
hosts were constructed using the R-package VennDiagram (version 1.6.20 https://CRAN.R-project.
org/package=VennDiagram).

4. Conclusions

In summary, we comprehensively characterised the putative biological functions of the rat
GI microbiome, which complemented our previously released microbial biogeography project [18].
The rat digestive system composes many different niches with distinct physicochemical conditions
and immune responses. We observed a number of specific functional clades ubiquitous within
and characteristic to each of these niches. This spatially functional heterogeneity was consonant
with our prior phylotype-based analysis, which revealed the tendency of GIT microbiota to form a
stratified community structure and membership [18]. From the perspective of community function,
we thus further confirmed that the faecal gene set cannot represent the full ecosystem service
repertoire provided by the entire rat GIT microbiome. Furthermore, a comparison of the GI microbial
metagenomes from different hosts revealed many functional overlaps. This phenomenon implies
that although the GI microbiota is shaped significantly by the host genotypic background, many
microbiome functions are shared across hosts, consistent with the similar physicochemical conditions
at identical anatomical sites.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/5/
1232/s1. Table S1. Modules differentially abundant in at least one sampling site as determined by LEfSe. Table S2.
Modules differentially abundant in different niche locations as determined by LEfSe.

Author Contributions: Conceptualization, D.L. and H.C.; methodology, D.L.; software, D.L.; formal analysis,
D.L.; resources, H.C., J.Z., H.Z. and W.C.; writing—original draft preparation, D.L.; writing—review and editing,
H.C.; visualization, D.L.; funding acquisition, H.C., J.Z., H.Z. and W.C.

https://CRAN.R-project.org/package=VennDiagram
https://CRAN.R-project.org/package=VennDiagram
http://www.mdpi.com/1422-0067/20/5/1232/s1
http://www.mdpi.com/1422-0067/20/5/1232/s1


Int. J. Mol. Sci. 2019, 20, 1232 9 of 11

Funding: This study was supported by the National Natural Science Foundation of China (31820103010, 31722041),
the Fundamental Research Funds for the Central Universities (JUSRP51702A), the National First-Class Discipline
Program of Food Science and Technology (JUFSTR20180102) and the Program of Collaborative Innovation Center
of Food Safety and Quality Control in Jiangsu Province.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gill, S.R.; Pop, M.; DeBoy, R.T.; Eckburg, P.B.; Turnbaugh, P.J.; Samuel, B.S.; Gordon, J.I.; Relman, D.A.;
Fraser-Liggett, C.M.; Nelson, K.E. Metagenomic analysis of the human distal gut microbiome. Science 2006,
312, 1355–1359. [CrossRef]

2. Costello, E.K.; Stagaman, K.; Dethlefsen, L.; Bohannan, B.J.M.; Relman, D.A. The application of ecological
theory toward an understanding of the human microbiome. Science 2012, 336, 1255–1262. [CrossRef]

3. O’Hara, A.M.; Shanahan, F. The gut flora as a forgotten organ. EMBO Rep. 2006, 7, 688–693. [CrossRef]
4. Manichanh, C.; Rigottier-Gois, L.; Bonnaud, E.; Gloux, K.; Pelletier, E.; Frangeul, L.; Nalin, R.; Jarrin, C.;

Chardon, P.; Marteau, P.; et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a
metagenomic approach. Gut 2006, 55, 205–211. [CrossRef]

5. Xavier, R.J.; Podolsky, D.K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007, 448,
427–434. [CrossRef]

6. Wong, S.H.; Zhao, L.; Zhang, X.; Nakatsu, G.; Han, J.; Xu, W.; Xiao, X.; Kwong, T.N.Y.; Tsoi, H.; Wu, W.K.K.;
et al. Gavage of Fecal Samples from Patients with Colorectal Cancer Promotes Intestinal Carcinogenesis in
Germ-Free and Conventional Mice. Gastroenterology 2017, 153, 1621–1633. [CrossRef]

7. Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D.; et al. A metagenome-
wide association study of gut microbiota in type 2 diabetes. Nature 2012, 490, 55–60. [CrossRef]

8. Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut
microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031. [CrossRef]

9. Qin, N.; Yang, F.; Li, A.; Prifti, E.; Chen, Y.; Shao, L.; Guo, J.; Le Chatelier, E.; Yao, J.; Wu, L.; et al. Alterations
of the human gut microbiome in liver cirrhosis. Nature 2014, 513, 59–64. [CrossRef]

10. Foster, J.A.; Neufeld, K.-A.M. Gut–brain axis: How the microbiome influences anxiety and depression. Trends
Neurosci. 2013, 36, 305–312. [CrossRef]

11. Turnbaugh, P.J.; Hamady, M.; Yatsunenko, T.; Cantarel, B.L.; Duncan, A.; Ley, R.E.; Sogin, M.L.; Jones, W.J.;
Roe, B.A.; Affourtit, J.P.; et al. A core gut microbiome in obese and lean twins. Nature 2009, 457, 480–484.
[CrossRef]

12. Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.;
Bruls, T.; Batto, J.M.; et al. Enterotypes of the human gut microbiome. Nature 2011, 473, 174–180. [CrossRef]

13. Muegge, B.D.; Kuczynski, J.; Knights, D.; Clemente, J.C.; González, A.; Fontana, L.; Henrissat, B.; Knight, R.;
Gordon, J.I. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within
humans. Science 2011, 332, 970–974. [CrossRef]

14. Warnecke, F.; Luginbühl, P.; Ivanova, N.; Ghassemian, M.; Richardson, T.H.; Stege, J.T.; Cayouette, M.;
McHardy, A.C.; Djordjevic, G.; Aboushadi, N.; et al. Metagenomic and functional analysis of hindgut
microbiota of a wood-feeding higher termite. Nature 2007, 450, 560–565. [CrossRef]

15. Methé, B.A.; Nelson, K.E.; Pop, M.; Creasy, H.H.; Giglio, M.G.; Huttenhower, C.; Gevers, D.; Petrosino, J.F.;
Abubucker, S.; Badger, J.H.; et al. A framework for human microbiome research. Nature 2012, 486, 215–221.

16. Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.;
Yamada, T.; et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature
2010, 464, 59–65. [CrossRef]

17. Xiao, L.; Feng, Q.; Liang, S.; Sonne, S.B.; Xia, Z.; Qiu, X.; Li, X.; Long, H.; Zhang, J.; Zhang, D.; et al. A catalog
of the mouse gut metagenome. Nat. Biotechnol. 2015, 33, 1103–1108. [CrossRef]

18. Li, D.; Chen, H.; Mao, B.; Yang, Q.; Zhao, J.; Gu, Z.; Zhang, H.; Chen, Y.Q.; Chen, W. Microbial Biogeography
and Core Microbiota of the Rat Digestive Tract. Sci. Rep. 2017, 7, 45840. [CrossRef]

19. Huttenhower, C.; Gevers, D.; Knight, R.; Abubucker, S.; Badger, J.H.; Chinwalla, A.T.; Creasy, H.H.; Earl, A.M.;
Fitzgerald, M.G.; Fulton, R.S.; et al. Structure, function and diversity of the healthy human microbiome.
Nature 2012, 486, 207–214.

http://dx.doi.org/10.1126/science.1124234
http://dx.doi.org/10.1126/science.1224203
http://dx.doi.org/10.1038/sj.embor.7400731
http://dx.doi.org/10.1136/gut.2005.073817
http://dx.doi.org/10.1038/nature06005
http://dx.doi.org/10.1053/j.gastro.2017.08.022
http://dx.doi.org/10.1038/nature11450
http://dx.doi.org/10.1038/nature05414
http://dx.doi.org/10.1038/nature13568
http://dx.doi.org/10.1016/j.tins.2013.01.005
http://dx.doi.org/10.1038/nature07540
http://dx.doi.org/10.1038/nature09944
http://dx.doi.org/10.1126/science.1198719
http://dx.doi.org/10.1038/nature06269
http://dx.doi.org/10.1038/nature08821
http://dx.doi.org/10.1038/nbt.3353
http://dx.doi.org/10.1038/srep45840


Int. J. Mol. Sci. 2019, 20, 1232 10 of 11

20. Langille, M.G.I.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.;
Burkepile, D.E.; Thurber, R.L.V.; Knight, R.; et al. Predictive functional profiling of microbial communities
using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013, 31, 814–821. [CrossRef]

21. Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes,
pathways, diseases and drugs. Nucleic Acids Res. 2017, 45, D353–D361. [CrossRef]

22. Gibbs, R.A.; Weinstock, G.M.; Metzker, M.L.; Muzny, D.M.; Sodergren, E.J.; Scherer, S.; Scott, G.; Steffen, D.;
Worley, K.C.; Burch, P.E.; et al. Genome sequence of the Brown Norway rat yields insights into mammalian
evolution. Nature 2004, 428, 493–521.

23. Venter, J.C.; Adams, M.D.; Myers, E.W.; Li, P.W.; Mural, R.J.; Sutton, G.G.; Smith, H.O.; Yandell, M.;
Evans, C.A.; Holt, R.A.; et al. The Sequence of the Human Genome. Science 2001, 291, 1304–1351. [CrossRef]

24. Waterston, R.H.; Lindblad-Toh, K.; Birney, E.; Rogers, J.; Abril, J.F.; Agarwal, P.; Agarwala, R.; Ainscough, R.;
Alexandersson, M.; An, P.; et al. Initial sequencing and comparative analysis of the mouse genome. Nature
2002, 420, 520–562. [PubMed]

25. Van den Abbeele, P.; Belzer, C.; Goossens, M.; Kleerebezem, M.; De Vos, W.M.; Thas, O.; De Weirdt, R.;
Kerckhof, F.M.; Van De Wiele, T. Butyrate-producing Clostridium cluster XIVa species specifically colonize
mucins in an in vitro gut model. ISME J. 2013, 7, 949–961. [CrossRef]

26. Stern, M.O.; Santos, K.A.; Satter, L.D. Protein Degradation in Rumen and Amino Acid Absorption in Small
Intestine of Lactating Dairy Cattle Fed Heat-Treated Whole Soybeans. J. Dairy Sci. 1985, 68, 45–56. [CrossRef]

27. Rizzello, C.G.; De Angelis, M.; Di Cagno, R.; Camarca, A.; Silano, M.; Losito, I.; De Vincenzi, M.; De
Bari, M.D.; Palmisano, F.; Maurano, F.; et al. Highly efficient gluten degradation by lactobacilli and fungal
proteases during food processing: New perspectives for celiac disease. Appl. Environ. Microbiol. 2007, 73,
4499–4507. [CrossRef] [PubMed]

28. Fadda, S.; Oliver, G.; Vignolo, G. Protein degradation by Lactobacillus plantarum and Lactobacillus casei in a
sausage model system. J. Food Sci. 2002, 67, 1179–1183. [CrossRef]

29. Muto, A.; Kotera, M.; Tokimatsu, T.; Nakagawa, Z.; Goto, S.; Kanehisa, M. Modular architecture of metabolic
pathways revealed by conserved sequences of reactions. J. Chem. Inf. Model. 2013, 53, 613–622. [CrossRef]

30. Borgström, B.; Dahlqvist, A.; Lundh, G.; Sjövall, J. Studies of intestinal digestion and absorption in the
human. J. Clin. Investig. 1957, 36, 1521–1536. [CrossRef]

31. Gendler, S.J.; Lancaster, C.A.; Taylor-Papadimitriou, J.; Duhig, T.; Peat, N.; Burchell, J.; Pemberton, L.;
Lalani, E.N.; Wilson, D. Molecular cloning and expression of human tumor-associated polymorphic epithelial
mucin. J. Biol. Chem. 1990, 265, 15286–15293. [PubMed]

32. Salyers, A.A.; Vercellotti, J.R.; West, S.E.H.; Wilkins, T.D. Fermentation of mucin and plant polysaccharides
by strains of Bacteroides from the human colon. Appl. Environ. Microbiol. 1977, 33, 319–322. [PubMed]

33. He, G.; Shankar, R.A.; Chzhan, M.; Samouilov, A.; Kuppusamy, P.; Zweier, J.L. Noninvasive measurement of
anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and
spectral EPR imaging. Proc. Natl. Acad. Sci. USA 1999, 96, 4586–4591. [CrossRef] [PubMed]

34. Albenberg, L.; Esipova, T.V.; Judge, C.P.; Bittinger, K.; Chen, J.; Laughlin, A.; Grunberg, S.; Baldassano, R.N.;
Lewis, J.D.; Li, H.; et al. Correlation between intraluminal oxygen gradient and radial partitioning of
intestinal microbiota. Gastroenterology 2014, 147, 1055–1063. [CrossRef]

35. LeBlanc, J.G.; Milani, C.; de Giori, G.S.; Sesma, F.; van Sinderen, D.; Ventura, M. Bacteria as vitamin suppliers
to their host: A gut microbiota perspective. Curr. Opin. Biotechnol. 2013, 24, 160–168. [CrossRef]

36. Christen, P.; Mehta, P.K. From cofactor to enzymes. The molecular evolution of pyridoxal-5’-phosphate-
dependent enzymes. The Chem. Rec. 2001, 1, 436–447. [CrossRef]

37. Gu, S.; Chen, D.; Zhang, J.N.; Lv, X.; Wang, K.; Duan, L.P.; Nie, Y.; Wu, X.L. Bacterial community mapping of
the mouse gastrointestinal tract. PLoS ONE 2013, 8, e74957. [CrossRef]

38. Nava, G.M.; Friedrichsen, H.J.; Stappenbeck, T.S. Spatial organization of intestinal microbiota in the mouse
ascending colon. ISME J. 2011, 5, 627–638. [CrossRef]

39. Li, H.; Limenitakis, J.P.; Fuhrer, T.; Geuking, M.B.; Lawson, M.A.; Wyss, M.; Brugiroux, S.; Keller, I.;
Macpherson, J.A.; Rupp, S.; et al. The outer mucus layer hosts a distinct intestinal microbial niche.
Nat. Commun. 2015, 6, 8292. [CrossRef]

40. Kohl, K.D.; Miller, A.W.; Marvin, J.E.; Mackie, R.; Dearing, M.D. Herbivorous rodents (Neotoma spp.) harbour
abundant and active foregut microbiota. Environ. Microbiol. 2014, 16, 2869–2878. [CrossRef]

http://dx.doi.org/10.1038/nbt.2676
http://dx.doi.org/10.1093/nar/gkw1092
http://dx.doi.org/10.1126/science.1058040
http://www.ncbi.nlm.nih.gov/pubmed/12466850
http://dx.doi.org/10.1038/ismej.2012.158
http://dx.doi.org/10.3168/jds.S0022-0302(85)80796-7
http://dx.doi.org/10.1128/AEM.00260-07
http://www.ncbi.nlm.nih.gov/pubmed/17513580
http://dx.doi.org/10.1111/j.1365-2621.2002.tb09473.x
http://dx.doi.org/10.1021/ci3005379
http://dx.doi.org/10.1172/JCI103549
http://www.ncbi.nlm.nih.gov/pubmed/1697589
http://www.ncbi.nlm.nih.gov/pubmed/848954
http://dx.doi.org/10.1073/pnas.96.8.4586
http://www.ncbi.nlm.nih.gov/pubmed/10200306
http://dx.doi.org/10.1053/j.gastro.2014.07.020
http://dx.doi.org/10.1016/j.copbio.2012.08.005
http://dx.doi.org/10.1002/tcr.10005
http://dx.doi.org/10.1371/journal.pone.0074957
http://dx.doi.org/10.1038/ismej.2010.161
http://dx.doi.org/10.1038/ncomms9292
http://dx.doi.org/10.1111/1462-2920.12376


Int. J. Mol. Sci. 2019, 20, 1232 11 of 11

41. Stearns, J.C.; Lynch, M.D.; Senadheera, D.B.; Tenenbaum, H.C.; Goldberg, M.B.; Cvitkovitch, D.G.;
Croitoru, K.; Moreno-Hagelsieb, G.; Neufeld, J.D. Bacterial biogeography of the human digestive tract.
Sci. Rep. 2011, 1, 170. [CrossRef]

42. DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.;
Andersen, G.L. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with
ARB. Appl. Environ. Microbiol. 2006, 72, 5069–5072. [CrossRef]

43. Haas, B.J.; Gevers, D.; Earl, A.M.; Feldgarden, M.; Ward, D.V.; Giannoukos, G.; Ciulla, D.; Tabbaa, D.;
Highlander, S.K.; Sodergren, E.; et al. Chimeric 16S rRNA sequence formation and detection in Sanger and
454-pyrosequenced PCR amplicons. Genome Res. 2011, 21, 494–504. [CrossRef]

44. Abubucker, S.; Segata, N.; Goll, J.; Schubert, A.M.; Izard, J.; Cantarel, B.L.; Rodriguez-Mueller, B.; Zucker, J.;
Thiagarajan, M.; Henrissat, B.; et al. Metabolic Reconstruction for Metagenomic Data and Its Application to
the Human Microbiome. PLoS Comput. Biol. 2012, 8, e1002358. [CrossRef]

45. Ye, Y.; Doak, T.G. A Parsimony Approach to Biological Pathway Reconstruction/Inference for Metagenomes.
PLoS Comput. Biol. 2011, 5, e1000465.

46. Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 2003, 14, 927–930. [CrossRef]
47. Vázquez-Baeza, Y.; Pirrung, M.; Gonzalez, A.; Knight, R. EMPeror: A tool for visualizing high-throughput

microbial community data. Gigascience 2013, 2, 16. [CrossRef]
48. Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic

biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [CrossRef]
49. Asnicar, F.; Weingart, G.; Tickle, T.L.; Huttenhower, C.; Segata, N. Compact graphical representation of

phylogenetic data and metadata with GraPhlAn. PeerJ 2015, 3, e1029. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/srep00170
http://dx.doi.org/10.1128/AEM.03006-05
http://dx.doi.org/10.1101/gr.112730.110
http://dx.doi.org/10.1371/journal.pcbi.1002358
http://dx.doi.org/10.1111/j.1654-1103.2003.tb02228.x
http://dx.doi.org/10.1186/2047-217X-2-16
http://dx.doi.org/10.1186/gb-2011-12-6-r60
http://dx.doi.org/10.7717/peerj.1029
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Metabolic Heterogeneity in the Community Function 
	Module-Centric Metabolic Reconstruction of the Rat Gastrointestinal (GI) Microbiome 
	Functional Overlaps in the Murine GI Microbiome 

	Materials and Methods 
	Conclusions 
	References

