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Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloška cesta 7; SI-1000 Ljubljana,
Slovenia; jovana_nikolajevic@yahoo.com (J.N.S.); miodrag.janic@kclj.si (M.J.)
* Correspondence: miso.sabovic@kclj.si; Tel.: +386-15228032; Fax: +386-15228070

Received: 13 February 2019; Accepted: 4 March 2019; Published: 9 March 2019
����������
�������

Abstract: In diabetic patients, cardiomyopathy is an important cause of heart failure, but its
pathophysiology has not been completely understood thus far. Myocardial hypertrophy and
diastolic dysfunction have been considered the hallmarks of diabetic cardiomyopathy (DCM),
while systolic function is affected in the latter stages of the disease. In this article we propose
the potential pathophysiological mechanisms responsible for myocardial hypertrophy and increased
myocardial stiffness leading to diastolic dysfunction in this specific entity. According to our
model, increased myocardial stiffness results from both cellular and extracellular matrix stiffness
as well as cell–matrix interactions. Increased intrinsic cardiomyocyte stiffness is probably the most
important contributor to myocardial stiffness. It results from the impairment in cardiomyocyte
cytoskeleton. Several other mechanisms, specifically affected by diabetes, seem to also be significantly
involved in myocardial stiffening, i.e., impairment in the myocardial nitric oxide (NO) pathway,
coronary microvascular dysfunction, increased inflammation and oxidative stress, and myocardial
sodium glucose cotransporter-2 (SGLT-2)-mediated effects. Better understanding of the complex
pathophysiology of DCM suggests the possible value of drugs targeting the listed mechanisms.
Antidiabetic drugs, NO-stimulating agents, anti-inflammatory agents, and SGLT-2 inhibitors are
emerging as potential treatment options for DCM.
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1. Introduction

The incidence of diabetes mellitus (DM) is continuously growing, threatening to become one of the
most important health problems in the near future worldwide. Whereas the micro- and macrovascular
complications have been extensively studied in the last decades, the importance of heart failure (HF) in
diabetic patients has only recently attracted researchers’ attention. Epidemiologic studies are showing
that prevalence of HF in diabetic patients is very high, being, at least, ~30% [1,2]. HF is twice as
prevalent in diabetic men and up to 6 times more prevalent in diabetic women, than in a comparable
nondiabetic population [3,4]. Studies also consistently show that HF is a major cause of hospitalizations
and important predictor of increased mortality in diabetic patients [5,6].

Diabetic patients are commonly affected by a specific type of cardiomyopathy, named diabetic
cardiomyopathy (DCM), in order to emphasize its specific etiology and presentation, and to distinguish
it from other forms of cardiomyopathy. According to the European Society of Cardiology and European
Association for the Study of Diabetes guidelines, DCM is defined as ventricular dysfunction that occurs
in the absence of coronary atherosclerosis and hypertension in diabetic patients [7]. The prevalence of
DCM is estimated to be ~1.1% in general population and 16.9% in diabetic population [8]. It should be
kept in mind that diabetic patients also suffer from other types of cardiomyopathy, such as ischemic or
hypertensive cardiomyopathy that have different underlying pathophysiology and clinical course.
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Clinically, DCM presents as heart failure with preserved ejection fraction (HFpEF). Myocardial
hypertrophy and diastolic dysfunction have been considered the hallmarks of DCM, whereas systolic
function is affected in the latter stages of the disease [9]. Structural myocardial changes can be detected
early in the disease course, even before its first clinical manifestation. The first visible structural
change is slight myocardial hypertrophy accompanied by perivascular and interstitial fibrosis as well
as collagen deposition [10,11]. In addition to macroscopic remodeling, cardiomyocytes also undergo
microscopic and ultrastructural changes [12].

Different imaging tools could be used for diagnosis of DCM based on morphological
characteristics and assessment of cardiac function. Echocardiography is the most widely used imaging
modality for assessment of cardiac morphology as well as systolic and diastolic function due to its
availability and low cost. Diastolic function is determined by using pulse wave doppler for assessing
transmitral and pulmonary venous flow, tissue doppler imaging (TDI) for assessing myocardial tissue
velocities during the cardiac cycle, and measuring of the left atrial volume [13]. It enables not only
an estimation of diastolic function but also a follow-up of disease progression from mild diastolic
dysfunction (impaired relaxation) to advanced stages (pseudonormalization or restriction). Cardiac
magnetic resonance imaging (CMRI) has recently emerged as a useful imaging tool for diagnosing
various structural and functional disorders of the myocardium including diastolic dysfunction and
myocardial steatosis. Due to their capability to detect myocardial metabolic abnormalities, CMRI and
positron emission tomography (PET) may be useful in the diagnosis of DCM [14].

In this review we have tried to elucidate the mechanism of DCM in a somewhat different way,
i.e., by constructing a new model that describes the underlying mechanisms and their connections, all
responsible for the development of diastolic dysfunction. This is made possible through knowledge
gained from important recent data from new clinical and basic studies as well as through translation
of previous knowledge and concepts of vascular pathology to the myocardial pathology in diabetic
patients. We believe that similar fundamental processes underlying myocardial and vascular pathology
in these patients exist.

2. Pathophysiological Process Underlying Diabetic Cardiomyopathy

Different parts of myocardium are involved in the pathophysiological process of DCM:
cardiomyocytes, extracellular matrix (ECM), and interactions between and among them. Based
on the knowledge of vascular wall involvement in vascular stiffness in diabetic patients, we propose
that cardiomyocytes probably have a pivotal role in inducing the process of myocardial stiffening.
Namely, we believe that investigations of complex mechanisms should start with identification of
the initial pathological process. The proposed mechanism of DCM development and progression is
illustrated in Figure 1.

As mentioned above, hypertrophy is one of the first visible structural changes in DCM. DM
itself promotes cardiomyocyte hypertrophy and contractile dysfunction as well as reduction in their
number [15]. Cardiomyocyte number reduction and consequent hypertrophy could be the result of
activated apoptotic mechanisms and reduced proliferation potential, hypertrophy being compensatory
in this setting [16].

The first functional change is cardiomyocyte stiffening due to their increased tone and impairment
of their cytoskeleton, both of which are induced by DM itself. Several other mechanisms, specifically
affected by DM, seem to be significantly involved in increasing cardiomyocytes’ stiffness: (i)
impairment of myocardial nitric oxide (NO) pathway, (ii) coronary microvascular dysfunction, (iii)
increased inflammation and oxidative stress, and (iv) myocardium-sodium glucose cotransporter-2
(SGLT-2) related defects.

Cardiomyocytes with increased intrinsic cell stiffness change their phenotype to more
fibrogenic. Hyperglycemia may also induce this fibrogenic phenotype independently of the intrinsic
mechanisms [17]. Fibrogenic phenotype of cardiomyocytes is characterized by increased synthesis
and release of cytokines that induce fibroblast proliferation and activation as well as proinflammatory
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mediators that trigger fibrosis through activation of immune cells: angiotensin II, transforming growth
factor β (TGFβ), tumor necrosis factor α (TNFα), and interleukin-1 [17].

ECM has an important role in preservation of myocardial architecture and chamber geometry [18].
Collagen fibers weave during systole and uncoil during diastole thus maintaining cardiomyocyte
alignment. Once the fibers straighten, they resist further expansion and protect cardiomyocytes from
overstretching [19]. As previously stated, myocardial ECM in patients with DCM expresses microscopic
changes such as perivascular and interstitial fibrosis as well as collagen deposition, especially collagen
types I and III [10,11,20]. This is predominantly the result of fibrogenic cardiomyocyte phenotype,
which in turn stimulates the fibroblasts to produce more collagen. The relationship between myocardial
stiffness and collagen content is not linear, suggesting contribution of additional factors in stiffness
development [21]. In addition to total amount of collagen and expression of collagen type I, myocardial
stiffness also depends on the degree of collagen cross-linking [18,22]. In diabetic patients, high levels
of advanced glycation end-products (AGEs) contribute to fibrosis and diastolic stiffening by increasing
the level of collagen cross-linking [23]. Cross-linking of collagen molecules prevents their enzymatic
degradation leading to increase in collagen amount in ECM [24].

Due to different pathophysiological mechanisms, we think that it is possible to differentiate
between cell stiffness and ECM stiffness. Changes in matrix stiffness change cell–matrix interactions
and activate cellular mechanoreceptors, thus further increasing intrinsic cell stiffness and promoting
its secretory phenotype. This pathological positive feedback loop (cell stiffness–matrix stiffness–cell
stiffness) is closed, leading to diastolic dysfunction and eventually heart failure. All pathophysiological
mechanisms mentioned above are further discussed in detail.
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Figure 1. Pathophysiological mechanisms involved in the pathogenesis of diabetic cardiomyopathy.
SGLT-2—sodium glucose cotransporter-2; NO—nitric oxide; ECM—extracellular matrix.

3. Models of Diabetic Cardiomyopathy

In order to evaluate and explore the mechanisms of DCM, several animal models were introduced.
Animals used in the studies develop diabetes that is either diet/drug-induced or transgenic [25].
Animal models provide good base for the study of DCM, but there are some differences based on
animal types and the level of insulin resistance/depletion [17].

Type 1 DM can be induced by streptozotocin (STZ), a drug that, in high doses, destructs pancreatic
β-cells, thus causing insulin-dependent state. It is used in rodent models. Animals develop accelerated
myocardial fibrosis, cardiomyocyte hypertrophy, accelerated cell death, decrease in cardiomyocyte
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contractile function, and left ventricular hypertrophy [25–27]. Similar effects, with myocardial
fibrosis and collagen accumulation, have also been demonstrated in large animal models, such
as mongrel dogs and rhesus monkeys, where insulin-dependent diabetes was induced by alloxan
administration [17,28,29]. On the other hand, transgenic mice, the so-called Akita mice, developed
diastolic dysfunction and lipotoxicity without significant cardiac fibrosis and hypertrophy [30].
Other transgenic mice models of type 1 DM have also been used, namely OVE26 and non-obese
diabetes (NOD) mice [25].

Type 2 DM animal models consist particularly of rodents, where insulin resistance/depletion
is induced either by diet or are transgenic [17]. Diet-induced animal models comprise of mice fed
with either high fat diet (HFD) or the so-called “Western” diet. The myocardial changes in these
animals are subtle and take longer to develop [25]. Nevertheless, after certain amount of time,
ventricular hypertrophy, myocardial fibrosis, and decreased cardiac contractile function develop [25,31].
Commonly used type 2 DM transgenic models consist of obesity (ob/ob) and insulin resistance, as
well as type 2 DM (db/db) models. These are usually mice with truncated leptin receptor or fully
leptin deficient. Therefore, they are resistant to central leptin effects. These mice become fat in
relatively short time, and show signs of insulin resistance and/or diabetes in further course [17].
Cardiac fibrosis, accompanied by left ventricular hypertrophy and diastolic dysfunction, has been
observed in these models [32]. It is important to note that the number of pathological features in
these type 2 DM animal models is mostly dependent on diabetes duration, i.e., observation/follow-up
period. Zucker diabetic fatty (ZDF) and Goto-Kakizaki (GK) rats largely develop similar features,
as described previously [17,25]. Direct animal models of DCM are only transgenic and include mice
with cardiomyocyte specific overexpression of the transcription factor for peroxisome proliferator
activated receptor α (MHC-PPARα) and cardiomyocyte selective insulin receptor knockout (CIRKO)
mice. Their hearts show similar characteristics as the hearts of type 2 DM patients, particularly
expressing diastolic dysfunction and reduced cardiac contractility [25,33–35].

As pathological features of DCM are similar in humans and animal models, the latter allow for
research of mechanistic pathways as well as therapeutic targets.

4. Diabetes Mellitus and Increased Intrinsic Cardiomyocyte Cell Stiffness

Morphology of cardiomyocytes is changing on both macro- and microscopic levels during the
course of DM. Histological examination of cardiomyocytes from diabetic mice showed irregular nucleus
size as well as fragmentation of actin fibers and diffuse and irregular actin deposition especially
in cortical regions [36]. Even more important is the fact that cardiomyocytes in DM change their
mechanical properties. Several parameters used to analyze changes of mechanical characteristics of
diabetic cardiomyocytes confirmed that increased cellular stiffness is an important factor in myocardial
stiffness and that resting tension (RT) is defined as the passive force at the same sarcomere length.
Increased RT is in correlation with increased myocardial stiffness [37,38] and has been reported in
animal models to be associated with both aging and obesity [39,40]. Cardiomyocytes isolated from
diabetic mice expressed increased RT compared to those from nondiabetic mice [37,38].

According to available data, cytoskeleton changes contribute substantially to increased cellular
stiffness observed in DM. The cytoskeleton consists of complex network of filaments and tubules that
transmit mechanical and chemical stimuli within and between cells. The cytoskeleton is also involved
in maintaining cell stability by organizing the cell content [41]. Atomic force microscopy (AFM) is
increasingly being used to measure cytoskeletal components as well as viscoelastic properties of living
cells. This method enables quantification of changes in the myocyte sarcolemma, sarcomeric skeleton
and cytoskeletal proteins including actin, tubulin, and titin. On the other hand, it allows measurement
of elastic modulus of living cells [42,43]. A recent study using AFM showed that the elastic modulus of
diabetic cardiomyocytes was significantly increased compared to nondiabetic ones. They also observed
changes in actin organization, diffuse irregular actin deposition, and disordered and broken actin
filaments in diabetic cardiomyocytes. They concluded that changes in intrinsic mechanical properties
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were probably not related to the contractile state of the cell proteins, but rather to direct changes of
material properties caused by diabetes itself. The same study also revealed higher adhesive force in
diabetic cardiomyocytes than in nondiabetic ones, suggesting increased number and/or activation
state of adhesion molecules on the cell surface [36].

Normal functioning of cardiomyocytes depends on the precise control of Ca2+ levels during
the contraction–relaxation cycle [44]. Depolarization of cardiomyocyte membrane leads to opening
of voltage-dependent L-type Ca2+ channels allowing Ca2+ ions to enter the cell. The increasing
intracellular level of Ca2+ triggers further Ca2+ release from sarcoplasmic reticulum (SR) via Ca2+

release channels (ryanodine receptors). Lowering of cytoplasmic concentration of Ca2+ allows
cardiomyocyte relaxation in diastole. During relaxation Ca2+ concentration returns to diastolic level
mainly by reuptake of Ca2+ to SR by sarco/endoplasmic reticulum Ca2+-ATPase 2 (SERCA2) as well
as the sarcolemmal Na+-Ca2+ exchanger and the sarcolemmal Ca2+ ATPase. SERCA2 has the most
important role in maintaining Ca2+ levels during relaxation as it accounts for approximately 70% of
the reuptake of Ca2+ [45].

Expression of the SERCA2 is decreased in DM due to glucose toxicity and increased oxidative
stress [36,46,47]. Reduced SERCA2 expression leads to decrease of recaptured Ca2+ and lowering
of SR Ca2+ content. Consequently, less Ca2+ is available for the next contraction causing impaired
cardiomyocyte contractility. On the other hand, increased cytoplasmic Ca2+ level during diastole leads
to impaired cardiomyocyte relaxation observed in DCM [46,48]. However, some authors proposed that
increased cell stiffness is independent from membrane Ca2+ channels and cytosolic Ca2+ concentration,
since increased cardiomyocyte stiffness was confirmed at different intracellular Ca2+ levels [36].
This suggests that disordered cytoskeletal organization caused by DM itself is a fundamental process
underlying increased cell stiffness in DCM.

Structural and functional changes in titin—a sarcomeric protein that acts as a molecular spring,
maintains sarcomere stability, and determines passive myofilament distensibility—are also directly
affected by DM. Mechanical properties of titin depend on its isoform composition as well as
post-translational modifications such as phosphorylation and disulfide bonding caused by oxidative
stress [49]. Two titin isoforms are present in the cardiac muscle: the smaller N2B isoform, which
is constituted only of N2B element, and the larger N2BA isoform, which contains both N2B and
N2A elements. In human cardiomyocytes the N2BA:N2B isoform ratio is approximately 30:70.
Cardiomyocytes from diabetic patients express higher N2BA:N2B titin isoform ratio, which is
considered more compliant than those found in nondiabetic cardiomyocytes. Nevertheless, titin-based
passive tension of diabetic cardiomyocytes is increased compared to nondiabetic ones. This is probably
due to altered titin phosphorylation caused by both insulin deficiency/impaired insulin signaling and
increased disulfide bonding caused by increased oxidative stress in DM [50].

5. Nitric Oxide and Increased Contractile State of Cardiomyocytes in Diabetes

NO signaling is thought to be impaired and directly implicated in the pathophysiology of DCM.
NO is formed by NO synthase (NOS), which has three isoforms that are all present in cardiomyocytes:
endothelial NOS (eNOS), neuronal (nNOS), and inducible (iNOS). These are compartmentalized
in different parts of cardiomyocytes [51,52]. eNOS is localized in the caveolae and responsible for
constitutive production of NO that reduces heart rate, contraction and oxygen consumption while
increasing diastolic relaxation. Additionally, it has an antiapoptotic action and inhibits aggregation
and adhesion of platelets. Its vasodilatory action is mediated through guanylate cyclase activation.
Neuronal NOS is located at the sarcoplasmic reticulum where it regulates several receptor activities,
namely SERCA2, ryanodine receptor, and the L-type Ca2+ channel. Under basal conditions, eNOS
and nNOS are responsible for NO production that attenuates inotropic responsiveness and promotes
relaxation of the cardiomyocyte. These NO functions are protective. eNOS activity is typically reduced
in patients with diabetes, leading to the lack of NO [53]. In rare cases, NO can also play a detrimental
role when it is present in excess amounts in the cardiomyocytes. In situations like hyperglycemia,
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oxidative stress, and hyperinsulinemia, iNOS can additionally produce large toxic amounts of NO.
High amounts of NO lead to contractile dysfunction, while in the case of substrate limitation, iNOS can
be uncoupled and starts to produce reactive oxygen and nitrate species. This leads to the environment
of high oxidative stress and inflammation, causing direct tissue damage on one hand and, on the
other hand, the nitration of actin and other cytoskeleton proteins and channels, altering their structure
and having detrimental effect on the contractile function. Similar eNOS uncoupling has also been
described in diabetic myocardium, also with destructive effects [51,53,54]. Summing up, NO has a very
important role in the diabetic myocardium. While in controlled limited amounts, it acts protectively,
allowing for efficient cardiomyocyte relaxation, on the other hand, when it is exhausted or in excess,
it makes the microenvironmental shift that causes switch to “reduced relaxation-increased contraction”
state of cardiomyocytes, thus contributing to increased myocardial stiffness.

6. Inflammation and Oxidative Stress in Cardiomyocytes in Diabetes

DM is considered to be a complex metabolic disorder, characterized by increased levels of
oxidative stress and inflammation. It has been widely accepted that complex relationship between
oxidative and nitrosative stress and proinflammatory mechanisms plays a very important role in the
development of micro- and macrovascular diabetic complications. Better understanding of DCM
pathophysiology led to the realization that these mechanisms also participate in the pathogenesis
of DCM.

Hyperglycemia is considered to be the most important factor causing increased oxidative
stress in DM. Hyperglycemia, accompanied by insulin resistance and hypertriglyceridemia, limits
cardiomyocytes’ ability to use glucose as an energy source, increasing the utilization of free fatty
acids (FFAs) and leading to increased production of reactive oxygen species (ROS) [55]. The major
sources of ROS production in myocardium are mitochondria in cardiomyocytes, endothelial cells and
neutrophils [56]. Non-mitochondrial sources, including nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase, xanthine oxidase, and microsomal P-450 enzyme activity, could also substantially
contribute to increased ROS production [57]. Increased levels of ROS could lead to cellular damage
through several mechanisms, including oxidative modification of proteins, modulating the production
and function of NO, as well as modulation of intracellular signaling pathways leading to cellular
hypertrophy, apoptosis, and necrosis [58,59]. Increased oxidative stress in the myocardium is associated
with oxidative modification of proteins involved in contractility, excitation–contraction coupling,
protein folding, antioxidant defense, fatty acid and glucose metabolism, and Ca2+ handling [60]. Finally,
oxidative damage could also alter the architecture of the ECM by activating matrix metalloproteinases
and promoting formation of AGEs [57,61].

Apoptosis and necrosis of cardiomyocytes and endothelial cells are also important features
of DCM, leading to reduced number of cardiomyocytes and expansion of extracellular space [62].
Apoptosis does not cause scar formation and accumulation of interstitial collagen, while necrosis
is associated with widening of extracellular space and increased deposition of collagen leading to
increased fibrosis and ECM stiffness [63].

Hyperglycemia is also responsible for chronic low-grade inflammation, which is commonly
associated with DM [64]. Inflammatory signaling in cardiomyocytes usually occurs as an early
response to myocardial injury and is accompanied by an increased formation of mitochondrial and
cytosolic ROS. Increased oxidative stress and inflammation cause activation of nuclear transcription
factor-κB (NF-κB), which is known to induce collagen and fibronectin synthesis and production of
inflammatory cytokines [65]. NF-κB could induce overexpression of a wide range of proinflammatory
cytokines including interleukins (such as TNFα, interleukin-1β, interleukin-6, and interleukin-8),
chemokines (i.e., monocyte chemotactic protein-1 (MCP-1)), adhesion molecules (i.e., selectins and
adhesion molecules: intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-
1 (VCAM-1)) and the migration of leukocytes into the myocardium [65–68]. These effects have been
observed not only in cardiomyocytes but also in coronary endothelial and smooth muscle cells,
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as well as in fibroblasts [55]. Increased production of proinflammatory mediators leading to fibroblast
proliferation and activation is responsible for increased myocardial fibrosis which is an important
contributor to increased myocardial stiffness in DCM.

7. Coronary Microvascular Dysfunction in Diabetes

DM directly causes coronary microvascular dysfunction, characterized by diminished vasodilatory
response to different stimuli. It is caused by several mechanisms: endothelial dysfunction per se
(deranged ratio between local vasodilators, particularly low NO content, and vasoconstrictors),
dysfunction of coronary smooth muscle cells, sympathetic dysfunction (increased α-adrenergic
responses that are proconstricting), and consequent microvascular remodeling (replacement of
functional with less functional tissue) [69,70]. The mentioned processes are based on local inflammation
induced by hyperglycemia, mitochondrial fragmentation and dysfunction, ROS production, as well
as nitrotyrosine production; these processes all lead to endothelial cell dysfunction, characterized
by expression of VCAMs and selectins, leading to migration of leukocytes into the subendothelial
space. Subendothelial leukocytes are responsible for further ROS production as well as potentiation of
inflammation [70]. These mechanisms are similar to those described in the previous chapter. Together
they damage the endothelial cells further and cause diminished NO bioavailability. Consequently,
the vasodilatory response of the coronary vessels is reduced [69,71]. The latter, together with increased
profibrotic cytokine signaling, may contribute to the reduced number of coronary arteries and increase
in myocardial fibrosis, seen in DCM. The vicious cycle is thus completed. Coronary microvascular
dysfunction, through described mechanisms, leads to microvascular ischemia. This, in turn, results
in impaired coronary flow reserve that leads to cardiomyocyte injury and fibrosis, responsible for
diastolic dysfunction [71]. In the milieu described, the processes are perpetuating one another, leading
to overt heart failure.

8. Various Transporters and Substrate Metabolism in Cardiomyocytes in Diabetes

Optimal functioning of myocardium depends on production of adequate amount of adenosine
5′-triphosphate (ATP), produced predominantly by mitochondrial oxidative phosphorylation and,
to a lesser extent, glycolysis [72]. The most important source of energy in healthy myocardium is
oxidation of FFA, as it provides up to 70% of the resynthesized ATP, but other substrates (glucose,
lactate, amino-acids, and ketone bodies) can also be used for ATP production [72,73]. DM is associated
with wide spectrum of myocardial metabolic derangements affecting both fuel supply and utilization.

Glucose is hydrophilic, thus unable to travel through the cardiomyocyte plasma membrane by
passive diffusion. Consequently, it is transported via two distinctive types of glucose transporters,
i.e., facilitative glucose transporters (GLUT) and SGLTs [74]. GLUTs belong to a major facilitator
superfamily that comprises 14 members. They are encoded by the SLC2A gene, and their expression
is tissue-specific. The most abundant, i.e., 70% of all GLUT transporters in the heart, is GLUT-4. It is
located mainly in intracellular membrane compartments and is translocated to the surface when
stimulated, i.e., by insulin, hypoxia, catecholamines, etc., when it can increase glucose influx into
the cardiomyocytes by 10- to 20-fold [75]. Additionally, GLUT-1 is also present in large amounts,
its concentration falling from the neonatal period to adulthood. It is responsible for basal glucose
transport and its expression is additionally stimulated by chronic hypoxia or long term fasting [76].
SGLTs, encoded by SCL5A genes (altogether 12), are all Na+/substrate cotransporters (transporting
sugars, inositols, lactate, choline, urea, proline, and ions). Six genes are expressed in the human heart.
The most expressed is SGLT-1, which colocalizes with GLUT-1 in the sarcolemma. It regulates the
uptake of glucose due to hormonal stimuli [77]. On the other hand, SGLT-2s have not been found in
human cardiomyocytes [78].

Insulin has been shown to affect transmembrane transport of glucose by increasing transcription
of GLUT-1 and GLUT-4 transporters, promoting translocation of glucose transporter proteins to the
plasma membrane and increasing their activity [79]. Thus, in the absence of insulin activity, due to
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either insulin deficiency or insulin resistance, myocardial glucose utilization is reduced. Since glucose
cannot be utilized, there is a switch in substrate metabolism, particularly increasing the ATP production
by FFA. The latter also causes insulin resistance and decrease in GLUT-4 availability, forming a vicious
cycle [80]. On the other hand, there is an increase in SGLT-1 expression in diabetic hearts. This is
thought to be a compensatory mechanism, due to reduction in cardiac expression of GLUT-1 and
GLUT-4. This compensation is particularly seen in type 2 DM [77].

The FFAs are transported into the cardiomyocytes by passive diffusion (only a minor proportion)
or through three distinct long chain FFA transporters, i.e., CD36, plasma membrane associated fatty
acid-binding protein (FABP) and fatty acid transport protein (FATP) [81]. CD36 and FABP, CD36
acting solo or being the facilitator for the FABP, are responsible for the majority of the FFA uptake
into the cardiomyocytes. These transporters form the functional pool, as they are located on the
sarcolemma and responsible for energy uptake. Additionally, there is a storage pool localized in
the intracellular compartments that can be recruited by various stimuli, i.e., contractile activity and
insulin. When recruited, there is a vesicle mediated process that allows for the transporters to become
functional [81,82]. In DM, there is an increased amount of CD36 in the sarcolemma, which is due to
permanent relocation of this transport protein and not due to its increased expression. According to
some authors, this is the key event in development of DCM [81].

Myocardial metabolism of FFA is impaired in DM due to increased circulating levels and increased
FFA uptake due to upregulation and increased translocation of both CD36/FABP and FATP to
sarcolemma [83]. β-oxidation of FFA is also reported to be increased in DM resulting in increased
amount of acetyl-CoA, which inhibits pyruvate dehydrogenase and further decreases utilization
of glucose and lactate in diabetic myocardium [72,73]. Increased β-oxidation also facilitates the
transport of FFAs into the mitochondria, which is one of the most important regulatory steps of
FFA metabolism [73]. When mitochondrial oxidative capacity is exceeded, excessive FFAs enter
nonoxidative pathways, leading to production of toxic intermediates such as ceramide. Increased
FFA oxidation in the mitochondria is associated with increased production of ROS, causing lipid
peroxidation and impaired mitochondrial energy metabolism [84].

DM also affects the utilization of other substrates for energy metabolism: it decreases lactate
uptake due to impaired pyruvate oxidation and increases the uptake of ketone bodies (KB) [73,85].
KB, i.e., acetoacetate and 3-β-hydroxybutyrate, are energy-rich compounds which are synthetized
from FFAs in the liver. Insulin deficiency and increased amounts of counter regulatory hormones in
DM are associated with increased ketogenesis due to increased transport of FFAs into mitochondria
and their enhanced β-oxidation [86]. Excessive amounts of acetyl-CoA that cannot be included in
the tricarboxylic acid (TCA) cycle are oxidized to form KB in hepatocytes. Because acetyl-CoA is
generated through both ketone and FFA oxidation, there is a natural competition between ketones and
FFAs for contribution to the TCA cycle, which is unaffected by DM [87]. In pathological conditions,
such as poorly controlled DM, high levels of circulating KB inhibit not only the utilization of glucose
and lactate but also the utilization of FFAs—the main substrates for energetic metabolism. Diabetic
myocardium derives almost all ATP from FFA metabolism. Comparing to glycolysis, FFA utilization is
~10% less efficient at generating ATP after adjustment for oxygen consumption [88]. Consequently,
impaired energy metabolism could lead to both contractile dysfunction and diastolic dysfunction, as it
is also energy-consuming process.

DM is also associated with increased catabolism of amino acids thus limiting the availability
of amino acids for protein synthesis. Furthermore, DM is also associated with decreased RNA
concentrations and inhibited protein synthesis, thus affecting not only structural proteins but also the
contractile ones [89].

9. Sodium Glucose Cotransporter-2-Mediated Effects in Cardiomyocytes in Diabetes

Ion dysregulation, leading to deranged cardiomyocyte contraction and relaxation, is characteristic
of diabetic myocardium. Particularly, Ca2+ and Na2+ homeostasis are altered. This is due to decreased
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Na2+/K+ pump activity and Na2+/Ca2+ exchanger (NCX) activity, with concomitantly increased
Na2+/H+ exchanger (HNE) activity, leading to cytosol overload with Na2+ [90–94]. It has been found
that there is increased SGLT-1 expression in diabetic failing myocardium, while SGLT-2 transporters
were not found to be expressed in healthy or diseased cardiomyocytes. Favorable outcomes in recent
cardiovascular outcome trials with SGLT-2 inhibitors were mostly highly selective for the inhibition
of SGLT-2 (empagliflozin and dapagliflozin), and thus cannot be attributed to their effects on either
SGLT [78]. Current knowledge indicates that this SGLT-2 inhibitors’ mediated effect on improvement
of failing myocardium might be due to their direct inhibition of the HNE. This leads to decrease
in intracellular Na2+ load and increased uptake of Ca2+ to the mitochondria and its efflux into the
extracellular space (probably through NCX activity). Consequently, there is decrease in Ca2+ levels and
better Ca2+ handling during the heart cycle [78,95–97]. Some data also suggests that SGLT-2 inhibitors
directly increase phosphorylation of myofilament regulatory proteins, independently of glucose or Ca2+

metabolism modulation, thus reducing myofilament stiffness [98]. Additionally, diastolic dysfunction
improvement with SGLT-2 inhibitors was also associated with its antifibrotic action that is mediated
through the decrease of serum and glucocorticoid-regulated kinase-1 (SGK1)/Enac profibrotic pathway,
which is otherwise highly expressed and activated in diabetic hearts [99].

On the other hand, dysregulation of metabolic pathways also plays an important role in failing
diabetic myocardium. Due to insulin resistance, metabolism is switched to increased lipolysis and
consequent fatty acid and triglyceride accumulation in the cardiomyocytes, which together with
the inhibition of glucose oxidation, leads to myocardial steatosis and cytotoxicity [78]. Additionally,
reduced glucose oxidation leads to glucose accumulation and formation of AGEs that are responsible
for increased oxidative stress and cross-linking of collagen fibers contributing to myocardial stiffness
and diastolic dysfunction [100–102]. Furthermore, mitochondrial dysfunction is present, characterized
by reduced oxidative phosphorylation and reduced production of ATP. In conjunction with fatty acids
accumulation, they enhance ROS production, leading to direct cytotoxicity and inflammation [103–105].
SGLT-2 inhibitors have been shown to directly switch myocardial energy consumption to KB and FFAs
utilization while not leading to fatty acid accumulation. KB are more energy efficient, lead to less
oxygen consumption, generate less ROS, possess antioxidant activities, and maintain mitochondrial
integrity, thus influencing almost all of the above-mentioned pathophysiologic mechanisms resulting
in increased myocardial stiffness [78,106–109].

10. Extracellular Matrix under Normal Physiology and in Pathophysiological States in
Diabetic Myocardium

Cardiac ECM is a complex network of collagen and elastin fibers, different cell types
(cardiomyocytes, fibroblasts, macrophages, leukocytes, etc.) as well as macromolecules such as
glycoproteins and glycosaminoglycans together with growth factors, cytokines, and extracellular
proteases [110]. ECM is essential for maintaining myocardial structure by connecting myocytes,
aligning contractile elements, force transmission and preventing overextending and disruption
of myocytes [24]. Nowadays, it has been recognized that ECM also has an important role in
mechanosensing and mechanotransduction as well as in regulation of cytoskeleton stress and its
morphology, as will be discussed in detail in the next section.

DM has profound effects on the expression, organization, and modification of ECM components
in many organs [111]. Increased collagen deposition—particularly collagens type I and III—is one
of the first morphological alterations of diabetic myocardium [10,11,17,20]. Fibroblasts represent
approximately two-thirds of the cells in the myocardium and play a key role in the ECM turnover
as they are involved in both synthesis and degradation of ECM components. Other populations of
matrix-embedded cells may also contribute to the fibrotic process by modulating fibroblast phenotype
and function [17]. As stated above, DM is associated with cardiomyocyte switching to fibrogenic
phenotype, which is characterized by increased synthesis and release of cytokines that induce fibroblast
proliferation and activation as well as proinflammatory mediators that trigger fibrosis through
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activation of immune cells: angiotensin II, TGFβ, TNFα, and interleukin-1 [17]. Increased collagen
synthesis is probably the most important pathophysiological mechanism of cardiac fibrosis in DCM but
increased proliferation potential of myocardial fibroblasts has also been reported in DM patients [111].
Finally, ECM degradation is also altered in DM due to decreased production and impaired activity
of matrix metalloproteinases [67]. Decreased degradation of collagen fibers contributes to collagen
accumulation and ECM fibrosis.

Experimental evidence suggests that several different mediators could also promote
DM-associated myocardial fibrosis including neurohumoral factors, inflammatory cytokines, and
growth factors, endothelin-1, adipokines, and ROS [17]. Angiotensin-converting enzyme (ACE)
inhibition is reported to be associated with reduction in collagen deposition and perivascular
fibrosis in different rat models of DCM [112]. This suggests that increased activity of
renin-angiotensin-aldosterone system (RAAS) observed in diabetic myocardium could be involved in
the pathogenesis of DCM [113].

Increased myocardial fibrosis is the hallmark of DCM but probably all ECM components are
affected by DM. Increased levels of AGEs in DM are promoting collagen cross-linking which, in turn,
prevents enzymatic degradation of collagen [23,24]. Increasing evidence suggests that AGEs could
also mediate inflammation, ROS generation, and fibrosis [17]. Changes in ECM proteoglycans content,
a decreased level of heparan sulfate, and increased levels of chondroitin and dermatan sulfate have
also been reported in DM [114].

11. Interactions between Cells and Extracellular Matrix in Diabetic Myocardium

Cells are continuously exposed to multiple external mechanical and chemical stimuli that
modulate their structure and function. As opposed to external chemical stimuli, which have long been
recognized as powerful modulators of cellular structure and function, external mechanical stimuli
have recently been considered. Mechanical stimuli could be translated into biochemical signals by a
process named mechanotransduction. The processes of mechanosensing and mechanotransduction in
cardiomyocytes are complex as cardiomyocytes respond to external mechanical forces and generate
internal mechanical forces as well. Cardiomyocytes have been shown to respond to different
mechanical stimuli, including static and dynamic and compressive and tensile stress, as well as shear
stress and substrate stiffness [115]. The mechanism by which cells sense ECM stiffness remains poorly
understood. Some authors proposed that in a stationary cell firmly attached to ECM components,
internal and external forces are equilibrated. Changing the force balance in either direction results in
cell contraction, extension or translocation [116]. It has been proposed that fibroblasts can use their
adhesion forces as sensors for the mechanical properties of their environment [117]. Based on the
available data, it seems that most important factors for mechanosensing and mechanotransduction are
integrins, focal adhesions, actomyosin contractility, and mechanosensitive ion channels [115,118].

Cytoskeleton is a complex structure responsible for maintaining cellular shape, internal
organization, and stability; because of its connections to ECM components it can transmit mechanical
stimuli both outside-in and inside-out. Transmission of the cytoskeleton forces to the ECM is
facilitated by complexes of transmembrane proteins named integrins and their associated intracellular
components. These complexes are also fundamental for sensing external mechanical forces [115].
Inside the cell, integrins are associated with proteins that link them to the actin cytoskeleton as well
as signaling proteins included in modulation of cardiomyocyte contractility [119]. Outside the cell,
integrins are associated with ECM proteins such as collagen, laminin, and fibronectin [120]. After
binding of cardiac fibroblasts to ECM, integrins cluster to form complexes called focal adhesions,
which are considered a primary mechanosensing organelle [121]. It has been shown that the size of
focal adhesions depends on mechanical stress: substrate stiffness on the one hand and cytoskeletal
forces on the other [122]. Besides integrins, numerous proteins participate in connections between the
cytoskeleton and components of ECM such as dystrophin, sarcoglycans, dystroglycans, syntrophin,
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sarcospan, and caveolin 3 [123]. Mechanical stimuli are also transmitted to the nucleus of the cell [115].
It has been reported that mechanotransduction could modulate gene expression in fibroblasts [124].

ECM is widely recognized as a regulator of cytoskeleton stress and its morphology, and it has
been demonstrated that cells modify and maintain their cytoskeleton according to mechanic stimuli
from ECM [115]. Furthermore, as written above, isolated cardiomyocytes from diabetic rats expressed
increased number and/or activation state of adhesion molecules on the cell surface [36]. This could
probably alter the process of mechanosensing, leading to inappropriate or excessive cellular response
to particular ECM stiffness. Thus, increased myocardial stiffness results from a positive feedback loop
in which increased ECM stiffness induces changes in cardiomyocyte cytoskeleton, thus contributing to
increased intrinsic cell stiffness and changing their phenotype to more fibrogenic. As a result, ECM
fibrosis and ECM stiffness continue to increase, further affecting the cardiomyocyte cytoskeleton.

Mechanosensitive ion channels, particularly calcium-related, are also recognized as potential
pathways by which cardiomyocyte could sense and respond to external mechanical loads. Increased
stretching of cells is reported to cause downregulation of SERCA2 expression, thus limiting Ca2+

reuptake from the cytosol into the endoplasmic reticulum [125]. Consequently, increased stretching
leads to increased intracellular Ca2+ concentration, thus causing increased cellular stiffness due to
impaired relaxation [46,48]. Stretch is also reported to induce an increase in ROS in a process dependent
on the membrane-bound NADPH oxidase 2 [126].

12. Potential Targets to Prevent and Treat Diastolic Dysfunction in Diabetes

The cytoskeletal properties that produce cell stiffness and lead to increased ECM stiffness with
pathological interactions between them are elements that build a pathologic vicious cycle leading
to diastolic dysfunction and heart failure. In order to prevent and treat DCM effectively, this cycle
should be stopped. There are several points where possible successful interventions can be applicable.
Large body of evidence shows that nonpharmacological interventions as well as lifestyle changes
(weight control, smoking cessation, and aerobic exercise) are associated with favorable structural and
functional cardiac changes and lower risk of heart failure in patients with DM [127,128]. Among them,
aerobic exercise seems to play the most important role in preventing HF. Randomized control trials
show that aerobic exercise improves myocardial systolic function and prevents systolic HF whereas
the results regarding its impact on diastolic dysfunction are contradictory [128,129]. Meta-analyses
show that aerobic exercise could improve diastolic dysfunction if started early in the disease course.
It has also been shown that higher intensity of aerobic exercise is associated with improved diastolic
function in patients with DM [127].

In addition to healthy lifestyle promotion, professional public’s interest is focused on the search for
pharmacological solutions to prevent and treat diastolic dysfunction. The number of medications that
are effective in systolic heart failure treatment and improve quality of life in those patients continues
to increase. On the contrary, there is still no single medication for treatment of diastolic heart failure.
Investigators tested widely used medications, such as aldosterone receptor antagonists, angiotensin II
receptor antagonists, angiotensin convertase inhibitors, beta-blockers, calcium channel antagonists,
statins, or their combinations, that were shown to be effective in diastolic dysfunction treatment in
animal models, without any significant benefit [130–133].

It is well known that good glycemic control is one of the most important actions needed to prevent
cardiovascular complications in DM [134]. Studies on rat models showed that good glycemic control
is also associated with lower prevalence of DCM due to its association with reduced cardiomyocyte
hypertrophy and reduced collagen deposition [135]. Knowing that, the first targets to prevent and
treat DCM have been sought among antidiabetic medications. So far, some representative agents of the
two bigger groups, namely SGLT-2 inhibitors and glucagon like peptide-1 receptor agonists (GLP-1RA)
have shown benefits in this regard. As discussed earlier, some SGLT-2 inhibitors seem to have a direct
effect on reducing myocardial stiffness, act antifibroticaly, switch myocardial energy consumption to
ketone bodies, and thus act favorably in improving diastolic dysfunction [78,98,99,106–109]. For two
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of these agents, namely empagliflozin and canagliflozin, it has been shown in large clinical trials
that they reduce major adverse cardiovascular events (MACE) by 14% compared to placebo [136,137].
Additionally, empagliflozin reduced the number of cardiovascular events by 38% [136], while this
number was 13% for canagliflozin [137].

Similar efficacy in reducing MACE was shown for GLP-1RAs: liraglutide and semaglutide,
namely for 13% and 26%, respectively, compared with placebo [138,139]. Liraglutide also reduced
cardiovascular mortality for 22% [138], while this effect was not observed for semaglutide [139].
The mechanisms of these effects are not clear yet, but it seems they can be attributed to the improvement
of endothelial dysfunction, reduction of blood pressure, increase in cardiomyocyte viability and
inhibition of atherosclerosis [140–144].

As our understanding of pathophysiologic mechanisms underlying HFpEF continues to increase,
more interest is focused towards medications that could interfere with some pathophysiologic
processes leading to DCM. Thus, the lack of NO in cardiomyocytes and coronary endothelium is
attracting particular interest. Riociguat and vericiguat are direct stimulators of soluble guanylate
cyclase, leading to increased synthesis of cyclic guanosine monophosphate (cGMP), which increases
NO bioavailability, resulting in systemic and pulmonary vasodilatation. Furthermore, riociguat
has protective cardiovascular effects beyond increasing NO availability, as it reduces cardiac
fibrosis, decreases left ventricular mass and atrial natriuretic peptide levels in animal models of
hypertension [145]. The number of studies on their effect on HF is limited, but it has been showed
that riociguat improves systolic function in patients with heart failure with reduced ejection fraction
(HFrEF) [146]. On the other hand, initial study on the effect of vericiguat in patients with HFpEF
showed improved quality of life but was not associated with improvement in plasma levels of
N-terminal prohormone of brain natriuretic peptide (NT-proBNP) or with ultrasonographic parameters
of diastolic dysfunction [147].

Inflammation plays an important role in pathogenesis of DCM, making medications used for
reduction of systemic inflammation very interesting possible targets in prevention and treatment of
DCM. Studies on cardiac function in patients with rheumatoid arthritis treated with IL-1 receptor
blocker anakinra showed improved myocardial contractility and relaxation even after a single dose
of medication. Furthermore, anakinra administration was associated with improved coronary flow
reserve and brachial artery flow mediated dilatation (FMD) even up to 3 h after administration [148].
Another study showed that IL-1β blockade prevents deterioration of myocardial systolic and diastolic
function after myocardial infarction in animal models [149]. The first randomized controlled trial
investigating an association between anakinra and HFpEF in patients with increased parameters of
systemic inflammation has not been finished yet. Investigators are comparing effects of anakinra
(for 12 weeks) with placebo on clinical parameters, cardiovascular events, and ultrasonographic
parameters of diastolic function as well as FMD. This study included only 30 patients but it will be
very interesting to see its results [150]. As DM is characterized by increased systemic inflammation,
it could be expected that anti-inflammatory drugs could have more prominent effect in those patients
than in nondiabetic population.

Most recently, one of the newest classes of drugs in HFrEF, namely angiotensin receptor-neprilysin
inhibitors (ARNi), have also been proposed as treatment of HFpEF. Natriuretic peptides (NP)
act cardioprotectively, by inhibiting RAAS and reducing sympathetic drive with additional
antiproliferative and antihypertrophic effects. Degradation of NPs is processed by two mechanisms:
neprilysin—a degrading enzyme—and NP receptor-mediated clearance. Consequently, neprilysin
inhibition results in increased number of NPs. On the other hand, when RAAS is inhibited by
angiotensin receptor blockers, this action is enhanced with NPs, thereby providing the rationale
for combined blockade [151,152]. In HFpEF, e.g., DCM, ARNi seem to have their role as they
increase the amount of cGMP in the cardiomyocytes through indirect activation of NP receptors.
This leads to enhanced phosphorylation of titin, particularly its N2B isoform, and a consequent
decrease in cardiomyocyte resting stiffness [152]. The effectiveness of ARNi in DCM has been shown
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recently in STZ rats, which were treated with the combination of telmisartan and thiorphan, the latter
being a neprilysin inhibitor. Positive protective effects were shown in this study, namely through
reduced inflammation, antifibrotic action, and antiapoptotic action with addition of reversal of histone
acetylation in rat hearts [153]. Further studies in this field are needed in humans with HFpEF (currently
ongoing) and particularly DCM.

13. Conclusions

HF is the major cause of hospitalization and important predictor of increased mortality in patients
with DM. DCM is important cause of HF in diabetic patients but its pathophysiology has not been
completely understood so far. This is probably the main reason for the lack of effective preventive and
treatment options.

In this article we propose the potential pathophysiological mechanisms responsible for myocardial
hypertrophy and increased myocardial stiffness leading to diastolic dysfunction in patients with DM.
Our model is based on the knowledge of vascular stiffness pathophysiology, as we believe that similar
fundamental processes lead to myocardial stiffness. Based on the available data, it can be assumed that
altered mechanical properties of myocardium in DCM are not solely attributable to changes in the ECM
but also to changes in the intrinsic mechanical properties of cardiomyocytes. As those two entities
interact in maintaining myocardial structure and function, we propose that their interactions also
change in patients with DM thus further promoting development of both cellular and ECM stiffness.
DM itself is probably the most important factor affecting cellular and ECM stiffness, but several other
mechanisms should also be considered. Among them, the most important factors are impairment of
myocardial NO pathway, coronary microvascular dysfunction, increased inflammation, and oxidative
stress, and myocardium-SGLT-2-mediated effects.

Better understanding of all factors involved in pathophysiology of development and progression
of DCM would probably lead to development of new treatment options. The recently completed
studies with new antidiabetic drugs, such as SGLT-2 inhibitors, which surprisingly somehow revealed
large benefits in terms of improving heart failure in DM patients, shed a new light on an old
problem. Better understanding of complex pathophysiology of DCM suggests considering antidiabetic,
anti-inflammatory, and NO-stimulating drugs as potential new treatment options for DCM.
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ACE Angiotensin converting enzyme
AGE Advanced glycation end product
ARNi Angiotensin receptor-neprilysin inhibitor
ATM Atomic force microscopy
ATP Adenosine 5′-triphosphate
cGMP Cyclic guanosine monophosphate
CIRKO Cardiomyocyte selective insulin receptor knockout mice
CMRI Cardiac magnetic resonance imaging
DCM Diabetic cardiomyopathy
DM Diabetes mellitus
e/n/iNOS Endothelial/neuronal/inducible NO synthase
ECM Extracellular matrix
FABP Fatty acid-binding protein
FATP Fatty acid transport protein
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FFA Free fatty acid
FMD Flow mediated dilation
GK Goto-Kakizaki rats
GLP-1RA Glucagon like peptide-1 receptor antagonist
GLUT Facilitative glucose transporters
HFD High fat diet
HFpEF Heart failure with preserved ejection fraction
HFrEF Heart failure with reduced ejection fraction
HNE Na+/H+ exchanger
ICAM-1 Intercellular cell adhesion molecule-1
KB Ketone body
MACE Major adverse cardiovascular events
MCP-1 Monocyte chemoattractant protein-1

MHC-PPARα
Mice with cardiomyocyte specific overexpression of the transcription
factor for peroxisome proliferator activated receptor α

NADPH Nicotinamide adenine dinucleotide phosphate
NCX Na+/Ca2+ exchanger
NF-κB Nuclear transcription factor-κB
NO Nitric oxide
NOD Non-obese diabetic mice
NP Natriuretic peptide
NT-proBNP N-terminal prohormone of brain natriuretic peptide
PET Positron emission tomography
RAAS Renin-angiotensin-aldosterone system
ROS Reactive oxygen species
RT Resting tension
SERCA2 Sarco/endoplasmic reticulum Ca2+-ATPase 2
SGK1 Serum and glucocorticoid-regulated kinase-1
SGLT Sodium glucose cotransporter
SR Sarcoplasmic reticulum
STZ Streptozotocin
TCA Tricarboxylic acid
TDI Tissue doppler imaging
TGFβ Transforming growth factor β
TNFα Tumor necrosis factor α
VCAM-1 Vascular cell adhesion molecule-1
ZDF Zucker diabetic fatty rats
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