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Abstract: The development of target-fishing approaches, aimed at identifying the possible protein
targets of a small molecule, represents a hot topic in medicinal chemistry. A successful target-fishing
approach would allow for the elucidation of the mechanism of action of all therapeutically interesting
compounds for which the actual target is still unknown. Moreover, target-fishing would be essential
for preventing adverse effects of drug candidates, by predicting their potential off-targets, and it
would speed up drug repurposing campaigns. However, due to the huge number of possible protein
targets that a small-molecule might interact with, experimental target-fishing approaches are out
of reach. In silico target-fishing represents a valuable alternative, and examples of receptor-based
approaches, exploiting the large number of crystallographic protein structures determined to date,
have been reported in the literature. To the best of our knowledge, no proper evaluation of such
approaches is, however, reported yet. In the present work, we extensively assessed the reliability
of docking-based target-fishing strategies. For this purpose, a set of X-ray structures belonging
to different targets was selected, and a dataset of compounds, including 10 experimentally active
ligands for each target, was created. A target-fishing benchmark database was then obtained,
and used to assess the performance of 13 different docking procedures, in identifying the correct
target of the dataset ligands. Moreover, a consensus docking-based target-fishing strategy was
developed and evaluated. The analysis highlighted that specific features of the target proteins
could affect the reliability of the protocol, which however, proved to represent a valuable tool in
the proper applicability domain. Our study represents the first extensive performance assessment
of docking-based target-fishing approaches, paving the way for the development of novel efficient
receptor-based target fishing strategies.

Keywords: target fishing; docking; reverse screening; consensus docking

1. Introduction

The development of target-fishing (TF) approaches, aimed at identifying the possible protein
targets of a small molecule, still represents a current topic in medicinal chemistry. Computational
approaches are conventionally focused on studying the interactions of multiple drug-like molecules
with a single protein target, and they are successfully employed in virtual screening (VS) campaigns for
identifying novel ligands for the target of interest [1,2]. Differently, computer-aided reverse screening
methods, also known as in silico TF, are increasingly being used to identify the most likely protein
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target of a query ligand [3]. TF methods are highly valuable for predicting the bioactivity of a query
small molecule, or elucidating the mechanisms of action of all therapeutically interesting compounds,
for which the actual target is still unknown. Therefore, TF strategies have found multiple applications
in the fields of drug discovery and biomedical research [4].

Reverse screening approaches also represent important computational techniques for identifying
new macromolecular targets of existing drugs or active compounds, and for analyzing their functional
mechanisms or side effects [5]. In fact, in silico TF strategies can find application in drug repositioning
campaigns, thus saving huge amount of money that have been estimated for the successful launch
of a single new drug [6-8], as well as in off-target effect predictions [9,10]. However, off-targets can
also be responsible for the beneficial secondary effects of existing drugs and drug candidates. It has
been proven that each known drug has, on average, six different molecular targets on which it exhibits
activity [11]. In this sense, polypharmacology, i.e., the ability of for small molecules to interact with
multiple protein targets, acquire particular interest for rationally designing more effective and less
toxic drugs [12]. Actually, polypharmacology can be highly desirable in the treatment of cancer and
other complex diseases that involve the functional modulation of multiple proteins [13].

Due to the huge number of possible protein targets that a small molecule may interact with,
experimental TF approaches are out of reach, since they involve time-consuming, and above
all, expensive biological assays [14]. Taking into consideration the continuous development
of computational techniques, in silico TF strategies represent a valuable alternative to classic
high-throughput screening (HTS) approaches. These computational methods may be divided into
two classes according to their underlying principles: ligand-based methods such as shape-based
screening and pharmacophore screening, and receptor-based strategies, namely reverse docking [15].
In the absence of receptor X-ray structures, the above-mentioned ligand-based methods allow for the
identification of potential protein targets of a query molecule, based on the hypothesis that similar
ligands bind similar targets. Therefore, either the molecular structure or the shape of the query
molecule, or its key pharmacophore features, are compared with those of compounds that are known
to be active toward certain targets [16]. Then, the known targets of the ligands that best satisfy the
similarity criteria can be considered as potential targets of the query molecule. The advantage of
ligand-based TF approaches relies on the fact that no structural knowledge of the target receptors is
needed for their application. However, only protein targets for which active compounds have been
experimentally identified and reported in literature can be taken into account, using these approaches.
Moreover, the efficacy of these methods is hampered by the structural diversity between the query
molecule and the known ligands; therefore, a true target of the query ligand is likely to be successfully
predicted only if structurally related active compounds have already been discovered.

Conversely, receptor-based methods only rely on the structural information that are relative to the
potential target receptors. In fact, reverse docking consists of evaluating the possible binding mode of
the query molecule into the binding site of multiple protein targets, in order to identify proteins with
strong binding affinities for the query ligand that can thus be considered as its potential targets [17].
Therefore, when exploiting the large number of crystallographic protein structures that have been
determined to date [18], such a receptor-based approach represents an effective strategy for the target
prediction of a query ligand. Reverse docking approaches indeed require only the availability of a single
structure for each target to be screened, and they can be applied, regardless of the presence/absence of
the known ligands for the test targets. Moreover, reverse docking appears to be the most comprehensive
method, since it considers the key elements of both molecular shape and the pharmacophore moieties
of the query ligand in relation to the binding sites of the screened targets. Several examples of
receptor-based TF approaches have been reported in the literature [19,20]. However, to the best of our
knowledge, no proper evaluation of such an approach has been performed yet.

In the present study, taking into consideration the high potential of a reverse docking strategy
in identifying the most likely target of a query ligand, an extensive performance assessment of
docking-based TF approaches was carried out. For this purpose, a set of X-ray structures belonging to
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different targets was selected, and a dataset of compounds, including 10 experimentally active ligands
for each target, was created. A target-fishing benchmark database was thus obtained and used to assess
the reliability of 13 different docking procedures in identifying the correct target of the dataset ligands.

2. Results and Discussion

To assess the reliability of a docking-based TF strategy, we created a benchmark database,
including the X-ray structure of 60 different targets and 600 known active compounds. The selected
targets and their ligands belonged to three datasets that have been broadly used in the validation of
computer-aided drug design methods, i.e., the Directory of Useful Decoys (DUD) [21], the Maximum
Unbiased Validation (MUV) [22], and ChEMBL datasets [23] (see Materials and Methods for details).
The 60 selected targets covered a wide range of protein types, since they comprised steroid hormone
receptors (androgen, estrogen, glucocorticoid, mineralocorticoid and progesterone receptors), different
enzymes, including many kinases and hydrolases, some reductases or phosphorylases, several
transmembrane receptors coupled to G proteins (adrenergic, dopaminergic or muscarinic receptors),
and other different protein targets (Table 1). For each target, 10 active ligands were chosen among the
experimentally active compounds reported in the corresponding datasets, considering some structural
variability among them (where possible), in order to avoid any bias in docking results due to the
potential structural similarities of the ligands.

Table 1. A list of the 60 targets selected from the DUD, MUV, and ChEMBL datasets. The typology and
PDB code [18] of each target are listed in the table.

Type PDB Code Source

Acetylcholinesterase (ACHE) 1EVE
Aldose Reductase (ALR2) 1AH3

AmpC beta-lactamase (AmpC) 1XGJ
Androgen Receptor (AR) 1XQ2

Cyclic dependent Kinase 2 (CDK2) 1CKP
Cyclooxigenase 1 (COX1) 1P4G
Cyclooxigenase 2 (COX2) 1CX2
Dihidrofolate Reductase (DHFR) 2DFR
Epidermal Growth Factor Receptor (EGFr) M17

Estrogen Receptor Alpha (ERagonist) 1L21
Estrogen Receptor Alpha (ERantagonist) 3ERT
Fibroblast Growth Factor Receptor 1 (FGFrl) 1AGW

Coagulation Factor XA (FXa) 1FOR DUD

GAR Transformylase (GART) 1C2T
Glycogen Phosphorylase (GPB) 1AI8
Glucocorticoid Receptor (GR) 1M2Z
HIV-1 protease (HIVPR) 1HPX

HIV-1 reverse transcriptase (HIVRT) 1RT1
HMG-CoA reductase (HMGR) 1HWS
Heat shock protein 90 (HSP90) 1UY6

Enoyl reductase (InhA) 1P44
Mineralocorticoid Receptor (MR) 2AA2
Neuraminidase (NA) 1A4G

p38 MAP Kinase (P38 MAP) 1KV2
poly(ADP-ribose) Polymerase (PARP) 1EFY

Purine Nucleoside Phosphorylase (PNP) 1B8O
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Table 1. Cont.

Type PDB Code Source

Peroxisome proliferator-activated receptor gamma (PPARg) 1FM9
Progesterone receptor (PR) 1SR7
Retinoic acid receptor RXR-alpha (RXRa) IMVC
S-adenosylhomocysteine Hydrolase (SAHH) 1A7A
Tyrosine-protein kinase Src (SRC) 25RC
Thrombin 1BAS8

Thymidine Kinase (TK) 1KIM
Beta-Trypsin 1BJU

Vascular Endothelial Growth Factor Receptor 2 (VEGFr2) 1VR2
Cathepsin G 1KYN

Coagulation Factor XI (FXI) 4D76

Focal Adhesion Kinase (FAK) 4Q9S MUV

Muscarinic Acetylcholine Receptor M1 5CXV
cAMP-dependent Protein Kinase (PRKACA) 5BX6
Sphingosine 1-Phosphate Receptor 1 (S1PR1) 3V2W
Aurora kinase A 4750

Beta-2 Adrenergic Receptor 3P0G
Beta-secretase 1 4RCD

Cathepsin B 3AI8

Cathepsin L 5F02

Cathepsin S 4PE6

Dopamine Receptor D3 3PBL

Glycogen Phosphorylase 3DD1

Insulin-like Growth Factor 1 Receptor (IGF1R) 5HZN ChEMBL

Leukotriene A-4 Hydrolase 5BPP
Macrophage Colony-Stimulating Factor 1 Receptor 4RTH
Muscarinic Acetylcholine Receptor M3 4DA]
OX2 orexin receptor 4S50V
Receptor-type tyrosine-protein kinase FLT3 4RT7
Renin 4RYC
Serine/threonine-protein kinase B-Raf 5]RQ
Thymidylate synthase 510Q
Tyrosine-protein Kinase ABL1 470G
Vasopressin Receptor VIR YTV

As a first step, we evaluated the ability of every single docking procedure to identify the proper
target of each dataset ligand. Therefore, the 600 compounds were docked into the X-ray structures of
all of the selected targets, and for each ligand, the docking result obtained in its “correct” target was
compared with those generated by the docking calculations in the other targets. This protocol was
applied by using 13 different docking procedures (see Materials and Methods for more details), and as
a result, a total of about 470,000 docking calculations were taken into account. The docking score value
relative to the best-ranked docking pose calculated for each ligand was considered as a parameter
to compare docking results. Basically, the docking score is a measure of the ligand—protein binding
affinity that is estimated by the docking methods, taking into account the number and type of favorable
intermolecular interactions established by the molecule within the protein binding site in the predicted
docking pose [24,25]. For each ligand, the 60 docking score values associated with the docking poses
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obtained with the 60 targets were employed to rank the potential affinities of the 60 targets for the
ligand; then, the ranking position of the true target of the ligand was calculated and used for statistical
evaluations. In fact, in the ideal case, the true target of the ligand should present the maximum affinity
(and thus the highest rank), since the score associated with the docking pose of the ligand into its true
target should be higher than those that are associated with the docking poses of the same ligand into
different targets. To assess the performance of every single docking method in identifying the correct
target of each ligand, and to compare the results obtained from different docking procedures, we
calculated the median ranking position of the ligands” own targets that were achieved by using each
docking method (see Materials and Methods for more details). Figure 1 summarizes the main results
obtained from this first docking analysis. Fred and Glide, using the standard precision (SP) method,
seemed to be the best performing docking procedures, as they both showed a median ranking position
of the true targets of 11.0, out of 60 total targets. This means that, considering the target fishing screens
performed by using each of the 600 dataset ligands as the query molecule, the correct target of the
query ligands was ranked 11th overall in the targets dataset. On the contrary, Docké6 showed the worst
performance, with a median ranking position of 20.0. Despite these differences, the results obtained
did not allow for the identification of a single promising docking procedure that was able to recognize
the correct target of a ligand in an effective manner. In fact, the calculated median values revealed that
the different docking procedures ranked the correct target of each ligand at around the top 20-30% of
the target dataset. Moreover, it is worth noting that a high standard deviation (SD), namely a large
variability of ranking position values, was observed for every tested docking procedure, indicating
that the obtained results were spread out over a wide range of values (Figure 1). This may be ascribed
to the intrinsic variability of the docking results in terms of docking poses and scores that are produced
by single methods for different ligands and targets, as already observed in our previous validation
analyses of docking procedures across different targets [26-28].
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Figure 1. Results of the first docking score analysis. The blue bars represent the median ranking
positions of true targets, calculated for each docking procedure by computing the median value of the
single score ranking positions obtained for each ligand (600 ligands docked into 60 different targets).
Grey bars stand for SD; namely, the dispersion of the ranking position values calculated for the 600
ligands in each docking procedure.

The target-fishing performances of the different docking procedures were also evaluated in terms
of the true positive rate (TPR) and false discovery rate (FDR), in order to better verify the quality of
target prediction achieved by using the different docking methods (see Materials and Methods for
details). Specifically, the TPR is a measure of the overall target prediction reliability. In fact, the higher
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the TPR obtained by using a certain docking procedure, the higher the number of predictions in
which the correct target of the query ligand was ranked within the top 10% of the target dataset.
Conversely, the FDR is a measure of target prediction inaccuracy, since the higher its value, the higher
the overall number of incorrect targets ranked within the top 10% of the dataset. As shown in Table 2,
the percentage of TPR achieved by the tested procedures ranged from a minimum value of 22%,
obtained using Vina, up to a maximum value of 36% achieved by Fred and Glide SP, which were
confirmed to be the best performing procedures. This means that, by using these two docking methods,
true target predictions were obtained for 36% of the query ligands (i.e., for 213 out of the 600 dataset
ligands). On the other hand, high FDR values were found for all the different docking procedures,
ranging between 67% and 81%. Again, Fred and Glide SP showed the best results, being the only two
procedures with an FDR below 70%; however, these values still highlight a certain overall inaccuracy
of the target prediction, which is consistent with the high standard deviation that is observed in the
results of the different docking methods. Overall, this analysis confirmed the results highlighted by
the first evaluation, based on target ranking.

Table 2. True positive rate (TPR) and false discovery rate (FDR) values obtained for the 13 tested
docking procedures, and for the consensus docking approach. Both the TPR and FDR values are
reported as percentages of the maximum achievable values.

Docking Procedures TPR (%) FDR (%)
Autodock 27% 76%
Fred 36% 69%
Dock6 25% 79%
Glamdock 31% 73%
GlideSP 36% 67%
GlideXP 30% 73%
GoldASP 28% 73%
GoldCSCORE 29% 74%
GoldGSCORE 25% 77%
GoldPLP 31% 72%
Plants 33% 70%
rDock 28% 76%
Vina 22% 81%
Consensus Docking 36% 67%

To evaluate whether combining the results of multiple docking procedures could lead to an
improvement in target prediction capability, a consensus docking analysis [29] was performed.
As shown by previous results, a consensus docking approach can be profitably used to predict
reliable ligand binding dispositions [30], and to identify new hit compounds in virtual screening
strategies [31]. In this instance, we were interested in the effects of a consensus docking analysis
on the ability to identify the correct targets of a ligand. The docking score was again used as the
evaluation parameter; thus, a consensus scoring approach was basically followed in these analysis.
In particular, we calculated the number of docking methods (among the 13 methods used) that
were able to rank the proper targets of each ligand to within the top-scored 10% of the total targets,
defined as the consensus level (see Materials and Methods for more details). The same analysis was
applied to the 59 unrelated targets of each ligand, and for all of them, the consensus level was also
calculated. The ranking position of the proper target of each ligand with respect to the other targets
was then estimated, based on the consensus level obtained. As shown in Table 2, the consensus
docking analysis confirmed the previously obtained results. Basically, the combination of the results
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obtained by the 13 docking procedures did not cause an actual improvement in target prediction ability,
although it performed as well as the best methods tested, achieving a TPR of 36% and an FDR of 67%.
Moreover, it was observed that there was a considerable variability among the results achieved for the
different targets. For instance, AR, SAAH, and TK were identified as being the most likely targets of
their corresponding active ligands, being ranked within the first two positions of the targets dataset
(Figure 2). Conversely, INHA, D3, and FXI were only ranked among the last 15 positions of the targets
dataset (rank 45, 51 and 60 respectively); therefore, they were not identified as being possible targets of
the corresponding ligands.
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Figure 2. Results of the consensus docking (score) analysis. Blue bars represent the ranking position
(based on the consensus level, CL) estimated for the proper target of each ligand, with respect to the
others. In this picture, the median values of the target ranking positions obtained for the 10 ligands
belonging to the same target were calculated.

Consistent with these results, we observed a clear difference among the consensus level values
that was achieved by the different targets (Table 3). We envisioned that this diversity in docking
performances might rely in the different types of ligands and proteins herein taken into account. Based
on these considerations, we investigated whether some properties of the targets and/or ligands could
affect docking results, thus influencing the ability of the applied docking procedures (either alone or in
combination) in identifying the true target of a ligand.

Table 3. The consensus docking (score) results of the 60 targets. The consensus level represents the
number of docking procedures that are able to rank the proper target of each ligand into the top 10% of
the considered targets. For each target, the consensus level is the median of the single consensus values
calculated for its 10 corresponding ligands.

Target Consensus Level Target Consensus Level
ACHE 2 SRC 2
ALR2 15 THROMBIN 6
AMPC 2 TK 11
AR 12 TRYPSIN 10
CDK2 2 VEGFR2 1.5
COX1 9 ABL1 2.5
COx2 6 B-Raf 4.5
DHFR 4 Cathepsin B 1

EGFR 15 Cathepsin L 2
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Table 3. Cont.

Target Consensus Level Target Consensus Level
ER_ago 12 Renin 6.5
ER_ant 10.5 Glycogen Phosphorylase 2
FGFR1 1 Cathepsin S 1
FXA 7.5 Beta-secretase 1 3
GART 11.5 FLT3 5
GPB 4 McsFR-1 15
GR 11 ox2 4
HIVPR 7 D3 1
HIVRT 9 VIR 1.5
HMGA 5 Cathepsin G 1.5
HSP90 2.5 Aurora kinase A 2
INHA 0 M3 1.5
MR 12 IGFIR 2
NA 115 Leukotriene A-4 Hydrolase 5.5
P38 MAP 2.5 Thymidylate synthase 6.5
PARP 3 S1PR1 3
PNP 3 32 Receptor 1.5
PPARG 6 FXI 0
PR 11 FAK 1
RXR 12 PRKACA 2.5
SAHH 10 M1 1.5

Regarding ligands, both the molecular weight (MW) and the number of heavy atoms were
considered, in order to evaluate whether the sizes of the different molecules could affect docking
results. Moreover, the effects of charged moieties, hydrogen bonds acceptors, and hydrogen bond
donors in the dataset ligands were evaluated. To verify whether the consensus level could be positively
or negatively affected by the conformational freedom of a molecule, we calculated the number of
aromatic heavy atoms, and the fraction of sp3 carbons in all the tested compounds. Finally, we
evaluated the effects of the ligand lipophilicity on the consensus level. For this purpose, the consensus
logP value of the dataset ligands, which combines five different logP calculation methods, was obtained
through the Swiss ADME web tool [32], as previously performed [33]. The median value of each
property, calculated for the 10 ligands belonging to each target, was related to the median consensus
level that was achieved by the same target. As shown in Figure 3, no evident link was observed
between the eight considered ligand properties and the consensus level that was reached by targets.
Concerning the net charge of the ligands (Figure 3E), it is worth noting that a high consensus level
(from 10 to 12) frequently corresponded to clusters of ligands characterized by a common charged
group (all negative or positive), suggesting that such a group potentially represents an essential feature
for the ligand—protein interaction, and it has an effect on ligand binding affinity. However, no linear
trend that was able to justify a clear relationship between the charge and the consensus level was
observed (see also Figures 51-54 in the Supplementary Materials).
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are reported in the graphs, respectively.
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Regarding the targets, the volumes of the binding sites were taken into consideration, with the
aim of evaluating whether a different size of the target binding pockets could affect the docking results.
In this case, an interesting trend was observed, since the consensus level tends to be higher for targets
with small and mainly closed binding pockets. Figure 4 shows the results obtained from this analysis.
In particular, as the volume of the binding sites increased, and the binding pockets became more open
and solvent-accessible, the consensus level decreased, emphasizing the tight connection between these
properties and the target prediction ability of the docking procedures. The 10 targets that showed
a higher consensus level (open circles enclosed within the dashed square in Figure 4) belonged to
the class of steroid hormone receptors (androgen, estrogen, glucocorticoid, mineralocorticoid and
progesterone receptors) and other classes of proteins (COX1, HIVRT, RXR, SAHH, TK) that all shared
small and mainly closed binding sites. Conversely, few targets (closed dark circles in Figure 4)
significantly diverged from the common linear trend, namely NA, ER_ANT, FXA, GART, trypsin,
and PNP. For these proteins, the reported consensus level was not found to be related to the target
properties. However, we observed that the reference active ligands of all of these targets shared a
common structural moiety. For instance, the NA and GART ligands presented a negatively charged
moiety, while the ER_ANT, FXA and trypsin ligands were characterized by a positively charged group.
As shown in Figure 4, a high consensus level (8 or above) was achieved by all of these targets; we thus
hypothesized that these results were most probably due to the presence of the common charged
portion that was shared by all active ligands of the same target, which probably affected the docking
results (see also Figure 3E). Differently, the PNP ligands did not share a charged moiety; nevertheless,
they all presented a common structural portion that might have influenced the docking results as well,
although in a negative way. By excluding these six presumed outliers, a correlation coefficient of 0.59
between binding site volume and consensus level was obtained, with a P-value < 0.01.
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Figure 4. Analysis of the consensus docking results in relation to the target properties. The trend line
is displayed as a dashed blue line. Closed black circles represent targets that did not show any link
between the volume of the protein binding site and the consensus level.

Based on these results, the consensus docking-based TF procedure seemed to be effective for
identifying the true targets of a ligand, when its corresponding receptor was characterized by a small
and mainly closed binding site. In order to verify the reliability of these results, we calculated the
number of ligands among the 600 dataset compounds, for which the targets with small binding sites
achieved a high consensus level (above or equal to 10). In this way, we wanted to check whether the
results of the consensus docking-based TF procedure were affected by a bias, due to the fact that high
consensus levels were always achieved by targets with closed binding sites, regardless of the fact that
the query molecule was a true active ligand of that target, or a decoy. Nevertheless, we observed
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that the targets with small binding sites obtained a high consensus level only for a maximum of 50
out of the 600 ligands, corresponding to less than 10% of the cases (Figure 5). Moreover, we verified
that no single protein target reached a median consensus level (calculated by computing the median
value obtained for the whole dataset of ligands) higher than 4. These analyses confirmed the reliability
of the consensus docking-based TF protocol, at least for predictions involving targets characterized
by a small or closed binding site. In practice, our evaluations demonstrated that if the consensus
docking-based TF protocol is applied for identifying the possible targets of a certain query molecule,
and a receptor characterized by a small or closed binding site is obtained among the top-scored targets,
such a prediction should be considered as reliable, and the query molecule is likely to be an actual
ligand of the identified target. On the contrary, the prediction of a protein presenting a large or highly
solvent-exposed binding site as a possible target of the query molecule should be taken with caution,
since it is probably not sufficiently reliable.

600

500 +

400 -+

300 +

N° of ligands

200 A

100 A

AR
CcOox1
ER_AGO
GR
HIVRT
MR

PR

RXR
SAHH
TK

Figure 5. Number of dataset ligands for which target proteins with small binding sites achieved
consensus levels of greater than or equal to 10.

3. Materials and Methods

3.1. Database Generation

To evaluate the use of different docking methods in a target fishing (TF) strategy, we analyzed the
broadly used Directory of Useful Decoys (DUD) [21], the Maximum Unbiased Validation (MUV) [22]
and the ChEMBL dataset [23]. All targets presenting metal ion prosthetic groups were not considered
in this study, since the presence of ions within the protein binding site could negatively affect the
performance of some of the docking methods applied in the TF validation protocol. Similarly, all targets
for which an X-ray crystal structure was not available (unresolved protein or homology model) were
excluded from the analysis. Among the available X-ray crystal structures, only those that were
co-crystalized with a ligand bound into the protein binding site were considered. Moreover, targets
common to more than one dataset (DUD, MUV and ChEMBL) were taken into consideration only
once. Therefore, a total of 60 different targets were selected; in particular, 35 targets belonged to DUD,
six were included in MUYV, and the last 19 were part of the ChEMBL dataset. For each target considered
in this study, 10 experimentally active compounds were randomly selected among the active ligands
reported in the corresponding database; conversely, decoy compounds were not considered in this
study. A benchmark database of 600 ligands was thus created and used to assess the performance
of the 13 different docking procedures described below. Such database could be considered as an
enriched dataset, since it includes, for each target, 10 active compounds and a total of 590 different
potential decoys.
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3.2. Protein Structure Alignment

A local structure alignment and a superimposition of the binding site of the 60 targets used
in the study has been carried out using Chimera [34]. All the residues outside a range of 10 A
from the X-ray ligand were removed; then, the different binding sites were aligned by using the
Needleman-Wunsch alignment algorithm of the MatchMaker tool included in Chimera. No high
homologies among the binding sites of the 60 targets was been found, except for three pairs of proteins,
namely the two cyclooxygenase receptors COX 1 and COX 2, the two muscarinic receptors M1 and
M2, as well as the two estrogen receptor alpha structures with PDB codes 1L2I and 3ERT, which have
been both considered for the analysis, as they differ for the classes of co-crystallized and active ligands
(respectively, agonists and antagonists).

3.3. Docking Procedures

For all docking calculations, only the best scored pose was taken into account in the analysis.

Autodock 4.2.3: AUTODOCK Tools utilities [35] were employed, in order to identify the torsion
angles in the ligands, to add the solvent model, and to assign the Gasteiger atom charges to the
protein and ligands. The region of interest used by the software was defined by considering the
reference ligand as being the center of a grid box of 10 A in the x, y, and z directions. A grid spacing of
0.375 A, and a distance-dependent function of the dielectric constant were employed for the energetic
map calculation. By employing the Lamarckian genetic algorithm, the 600 selected compounds were
subjected to 20 runs of the AUTODOCK, using 2,500,000 steps of energy evaluation, and the default
value of the other parameters.

Dock 6.7: The molecular surface of the binding site was calculated by the means of MS, creating
a Connolly surface with a probe of 1.4 A radius. By means of the Sphgen program, the points of the
surface and the vectors normal to it were used to build a set of spheres with radii varying from 1.4
to 4 A, which describe the negative image of the site from a stereoelectronic point of view. Spheres
within a radius of 10 A from the reference ligand were employed to identify the docking site. For each
ligand, the software calculated 1000 orientations; among these, the best grid scored among them was
considered in this study [36]. Ligands charges were calculated by employing the AM1-BCC method,
implemented in the MOLCHARGE program.

Fred 3.0. A set of conformers, required by the software for each input ligand, was generated by
OMEGA2. Standard values were used for all sampling parameters, except for the energy window
(50.0), the maximum number of output conformers (10,000), the time limit (1200), and the RMSD value,
below which two conformations were considered to be similar (0.3 A). The region of interest for the
docking calculations was determined, so that it contained all of residues located within 10 A from the
ligand in the X-ray structure. The FRED [37] docking calculation consists of a preliminary shape-fitting
step, during which the ligand is placed into the binding site, using a smooth Gaussian potential and a
subsequent optimization phase including (a) the refinement of the positions of the ligand’s hydroxyl
hydrogen atoms (b) rigid body optimization (c) optimization of the ligand pose in the dihedral angle
space. In the last optimization step, the Chemgauss3 scoring function was employed, and after the
docking calculation, the poses were scored independently by Chemgauss4. FRED default parameters
were used, imposing high dock_resolution.

Glamdock 1.0. The GLAMDOCK docking protocol consisted of five docking runs, each comprising
650 Monte Carlo minimization (MCM) steps, with 15 steps of Levenberg-Marquardt minimization in
torsion space at each MCM step. Finally, a maximum of 40 poses were finally post-minimized by 150
steps of Levenberg—Marquardt [38].

Glide 5.0. The binding site was defined by a cubic box of 10 A in the x, y, and z directions, centered
on the reference ligand. The option, allowing only for the docking of ligands containing a defined
range of atoms, was disabled; thus, all compounds were docked independently from the number of
their atoms; whereas the GLIDE [39] defaults were used for all of the other settings. For each ligand,
two different docking analyses were performed by using the standard precision (SP) and the extra
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precision (XP) methods. The XP mode is a refinement tool that is designated to be employed only on
good ligand poses; the sampling is based on an anchor and refined growth method, and the scoring
function consists of a more complete treatment of some of the SP terms, such as the hydrophobic and
solvation terms.

Gold 5.1. The docking site was determined as the region comprising all residues within 10 A
from the ligand in the X-ray crystal structures. The possibility for the ligand to flip ring corners was
activated, while the “allow early termination” command was deactivated. The GOLD [40] defaults
were employed for all other parameters, and the ligands were subjected to 30 genetic algorithm runs.
Four different docking analyses were performed. The four fitness functions implemented in the GOLD
package, i.e. Astex Statistical Potential (ASP), ChemScore (CS), GoldScore (GS), and ChemPLP (PLP),
were used

Plants. This docking software use Ant Colony Optimization, a state-of-art global optimization
algorithm to find the minima of a scoring function representing a favorable complex structure [41].
The ChemPLP scoring function was employed to score protein-ligand interactions, as well as
intra-ligand clash terms. Default setting for all parameters were employed for the scoring function,
as well as the optimization algorithm (search speed setting: “speed1”). The region of interest used by
PLANTS [42] was determined by considering the bound ligand as the center of a grid box of 10 A in
the x, y, and z directions.

rDOCK 1.0. This docking program uses a combination of stochastic and deterministic search
techniques to generate low-energy ligand poses [43]. The docking protocol generates a single-ligand
pose, using three stages of Genetic Algorithm search (GA1, GA2, GA3), followed by low-temperature
Monte Carlo (MC) and Simplex minimization (MIN) stages. The GA stages are independent, and they
are designed to be used sequentially. The cavity within a radius of 10 A from the reference ligand was
used to represent the binding site; for all the other parameters, rDOCK defaults were employed.

Autodock Vina 1.1. All the input files (ligands and protein) originating from AUTODOCK Tools
for the AUTODOCK calculations were also used for the AUTODOCK VINA [44] calculations, including
the grid box dimension. The exhaustiveness parameter was set to 10, and the Energy_range was set
to 1, whereas all other parameters were used as their default. The scoring function implemented in
VINA combines some advantages of knowledge-based potentials and empirical scoring functions,
extracting information from both the conformational preferences of the receptor-ligand complexes
and the experimental affinity measurements.

3.4. Docking Score Evaluation

By applying the 13 docking procedures described above, each ligand was docked into the
60 protein binding sites. Initially, the docking results obtained by different docking procedures
were analyzed separately. For each docking calculation (i.e., each ligand docked into each target),
the best-scored pose was considered as the docking result. The corresponding docking scores were
collected; then, for each target, docking scores of the 600 docked ligands were normalized, based on
the minimum and maximum score values obtained (i.e., the minimum and maximum docking scores
estimated among the docking results of all 600 ligands within the particular target). Subsequently, the
aforementioned normalized score values of the 60 targets queried by a specific ligand were compared
with one another, in order to estimate the relative affinities of the 60 targets for the specific ligand, and
therefore to determine the rank position of the correct target. The ranking position of the decoy targets
for the specific ligand were thus estimated accordingly. By considering the individual ranking position
reached by the correct target for each of the 600 ligands, we calculated the median ranking position of
the targets achieved by each different docking procedure. Likewise, the standard deviation (SD) of the
obtained results was calculated. The median ranking position and SD were taken into consideration to
compare the performances of each docking procedure (see Results and Discussion for details).
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3.5. Consensus Docking Analysis

To perform a consensus docking analysis, results obtained through different docking procedures
were compared between one another, using a previously developed protocol [29]. We then estimated
the number of docking procedures able to classify the proper target of each ligand in the top-ranked
10% of the total targets (i.e., the consensus level). In other words, we considered as positive only
those methods that ranked the correct target of a ligand in the first six positions out of the total 60.
The same procedure was applied to the 59 unrelated target of ligands, and likewise, the consensus
level was calculated for each of them. Once again, the 60 consensus level values calculated for each
ligand (for both the proper and unrelated targets) were ranked, and the ranking position of each proper
target was estimated. The median of the 600 individual ranking positions of the proper target of each
ligand was calculated. This value estimated the target prediction ability of the consensus docking
analysis (see Results and Discussion for details). Moreover, the total consensus level of each target was
calculated by considering the median consensus level values obtained for the 10 ligands of the same
target (see Table 3, Results and Discussion).

3.6. Evaluation of True Positive Rate and False Discovery Rate

The TPR of target-fishing performance has been calculated for each of the 13 docking methods
tested, as well as for the consensus docking approach, using the following equation:

nTP nTP

nTD 600 ™

where nTP is the number of true positives (i.e., the event that the true target of a ligand is ranked
in top 10% of the targets dataset), and nTD is the number of true dockings (the number of correct
ligand-protein combinations, corresponding to 600). The false discovery rate (FDR) of the target-fishing
performance has been calculated for each of the 13 docking methods tested, as well as for the consensus
docking approach, using the following equation:

nFP _ nFP
nPP 3600

@

where nFP is the number of false positives (i.e., the event that the non-true target is ranked in top 10%
of the targets dataset) and nPP is the number of predicted positives (i.e., the total number of targets
predicted in the top 10% of the targets dataset considering all 600 ligands, corresponding to 3600).
Both the TPR and FDR values were reported as percentages of the maximum achievable values.

4. Conclusions

In this study, the reliability of a docking-based TF approach was evaluated through an extensive
docking study. A benchmark dataset of 60 targets and 600 known-active ligands was generated and
used to assess the ability of 13 docking procedures for identifying the proper target of each ligand.
The distinct analyses of the different docking methods showed a performance rating corresponding to
an overall a success rate of around 25-35%, not overcoming 36% of true predictions. A performance
comparable to that shown by the best tested methods was observed by applying a consensus docking
strategy combining the results of multiple docking procedures. Although the approach did not result
in a significant improvement of protein target prediction capabilities, and it was not able to reduce
the variability of results obtained across the range of different target proteins, consensus docking
highlighted that the results of the target prediction were deeply related to the volume and shape of
the target binding site. Actually, our consensus docking-based TF protocol proved to be effective
in identifying the true target of the ligands, whose corresponding receptors were characterized by
a small and mainly closed binding site. To the best of our knowledge, this study represents the
first extensive performance assessment of a docking-based TF approach, and the first application of
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consensus docking to TF strategies. The results herein reported thus allow preliminary clues to be
figured out for the applicability domain of this receptor-based strategy, where the variability of the
results should be reduced, thanks to the higher reliability of the target predictions. Indeed, consensus
docking-based TF could be profitably applied, with the aim of evaluating the possible affinity of
a ligand of interest for a dataset of potential target receptors presenting small or enclosed binding
cavities. In this case, the protocol should only generate valuable predictions, and the proteins ranked
in the top-scored positions of the dataset used could be reliably considered to be potential targets of the
query ligand. Otherwise, the protocol could be even applied by using a comprehensive database of the
target receptors, such as a whole set of X-ray structures gathered in the Protein Data Bank, regardless
of the specific features of the protein binding sites. However, in this case, it should be considered
that the reliability of the predictions would depend on the shape and volume of the protein-binding
pockets taken into account. In particular, the probability that a protein that is suggested as a potential
target of the query ligand is an actual target receptor of that ligand would be inversely proportional to
the volume and solvent accessibility of that specific protein-binding site. We are conscious that further
evaluations on the effectiveness of this approach are still necessary, to better elucidate its strengths and
limitations, as well as to understand how to improve the reliability of this procedure, thus expanding
its range of applicability. Nevertheless, the study herein reported paves the way for the development
of efficient TF strategies, based on docking methods and their combined applications.

Supplementary Materials: Supplementary materials can be found at http:/ /www.mdpi.com /1422-0067/20/5/
1023/s1.
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