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Abstract: Tumor-suppressive effects of resveratrol have been shown in various types of cancer.
However, regulation of tumor microenvironment by resveratrol is still unclear. Recent findings
suggest resveratrol can potentiate its tumor-suppressive effect through modulation of the signaling
pathways of cellular components (fibroblasts, macrophages and T cells). Also, studies have shown
that resveratrol can suppress malignant phenotypes of cancer cells acquired in response to stresses of
the tumor microenvironment, such as hypoxia, oxidative stress and inflammation. We discuss the
effects of resveratrol on cancer cells in stress environment of tumors as well as interactions between
cancer cells and non-cancer cells in this review.
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1. Introduction

Plant-derived compounds are perceived to be less harmful and expected to show minimal toxicity
when used as a therapeutic agent. Until now, a number of studies have reported the tumor-suppressive
properties of resveratrol which could be isolated from peanuts, grapes and berries [1–5]. However,
little is known about the effect of resveratrol on the regulation of various factors existing in the tumor
microenvironment. Although many pre-clinical studies have shown the tumor-suppressive effects of
various phytochemicals on cancer cells, most of them failed in clinical trials [6]. The clinical trials of
resveratrol have focused primarily on colon and rectal cancer and have been performed on phase 1
or 2 of clinical studies, confirming the pharmacological effects and efficacy of resveratrol. Although
phase 3 study has not been conducted yet, the combination of conventional chemotherapeutic agents
or novel targeted therapy agents with resveratrol has suggested possibilities of resveratrol for the
treatment of refractory cancer (Table 1).
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Table 1. Information on resveratrol clinical trials in cancer.

Cancer Type Sample Size
and Phase Dose Status Result Year Identifier Ref.

Colon cancer n = 11, phase 1

Resveratrol tablets; for 14 days,
(80 mg/day or 20 mg/day) or
grape powder (120 g/day or
80 g/day)

Completed

Expression of Wnt target genes was inhibited
in normal colonic mucosa (p < 0.03), while
Wnt target gene expression in colon cancer
tissue was not altered by resveratrol/grape
powder consumption. Consumption of grape
powder (80 mg/day) showed the most notable
decrease in Wnt target gene expression in
normal colonic mucosa (p < 0.001).

From 2005 to 2009 NCT00256334 [7]

Colon and rectal
cancer n = 20, phase 1 Resveratrol; for 8 days prior

to colorectomy Completed N/A From 2006 to 2009 NCT00433576 N/A

Follicular
lymphoma n = 45, phase 2

Merlot grape juice 100 %;
for 16 weeks, 660 mL or 495 mL
every second day

Unknown N/A From 2007 to 2009 NCT00455416 N/A

Colorectal cancer
and hepatic
metastases of
colorectal cancer

n = 9, phase 1 Oral administration of SRT501;
5.0 g/day for 14 days Completed

Consumption of SRT501 (micronized
resveratrol formulation) was well-tolerated.
SRT501 showed better absorption and
availability, compared to non-micronized
resveratrol. A significant increase in caspase-3
expression by 39% was observed in malignant
hepatic metastases.

From 2008 to 2009 NCT00920803 [8]

Multiple myeloma n = 24, phase 2 Oral administration of SRT501;
5.0 g/day for 20 days Terminated

Twenty-four multiple myeloma patients were
treated with or without bortezomib. Since
there was unexpected renal toxicity, the study
was terminated early. Also SRT501 treatment
showed minimal efficacy.

From 2009 to 2010 NCT00920556 [9]

Neuroendocrine
tumor n = 7, N/A

Oral administration of
resveratrol; 5.0g/day for a total of
three cycles

Completed N/A From 2011 to 2018 NCT01476592 N/A

Liver cancer n = 0, Phase 1 Resveratrol; 1 g /day for 10 days
prior to liver resection Withdrawn N/A From 2015 to 2016 NCT02261844 N/A

Lymphangioleio-
Myomatosis n = 25, phase 2

Resveratrol;250 mg/day (first
8 weeks), 500 mg (next 8 weeks),
1000 mg/day for 8 weeks.

Recruiting N/A From 2018 to 2020
(estimated) NCT03253913 N/A

Note: N/A denotes information not available.
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In order to obtain a full grasp on the efficacy of a plant-derived compound as a tumor-suppressive
agent, the effect of the compound should be tested and recognized not only in cancer cells but
also in non-cancer cells that are important constituents of the tumor microenvironment. In addition,
tumor microenvironmental factors such as hypoxia and inflammation often promote cancer progression
so the effect of nutraceuticals on cancer cells exposed to such stress should be examined.

Plenty of experimental data support the tumor-suppressive effects of resveratrol, targeting
malignant phenotypes of cancer cells. For example, expression of extracellular matrix (ECM)-degrading
and remodeling enzymes like matrix metalloproteinase (MMP)-2 and MMP-9 are suppressed by
resveratrol [10]. Resveratrol inhibits epithelial to mesenchymal transition (EMT) processes which are
associated with chemoresistance and metastasis in multiple types of cancer [11–14]. These studies
implicate that resveratrol can suppress metastasis by targeting multiple oncogenic pathways and
regulate chemoresistance, invasion and migration of cancer cells in many adult cancer models
including breast, lung, pancreatic, skin and prostate cancer models [13,15]. Additionally, suppression
of cancer cell stemness by resveratrol has been reported, implying that this phytochemical can
decrease the heterogeneity of a cancer cell population through the inhibition of the cancer stem cell
population [16–18]. A growing body of evidence suggests that resveratrol exerts tumor-suppressive
effects on neuroblastoma, which is a common extracranial solid tumor in children [19,20]. For example,
resveratrol inhibited the growth of human neuroblastoma cancer cells (NGP and SK-N-AS cells)
in mouse xenograft models [21]. Moreover, neuroblastoma cancer cells (NB-1691 cells) exhibited
inactivation of AKT and increased cell death when resveratrol was co-treated with a glycolysis
inhibitor, 2-deoxy-D-glucose (2-DG) [22]. Thus, resveratrol has tumor-suppressive potential on models
of both adult and child cancers.

Recent studies have shown that resveratrol exerts tumor-suppressive effects, acting on both cancer
cells and non-cancer cells of the tumor microenvironment. Non-cancer cells constituting the tumor
microenvironment support cancer cells to survive under stressful conditions [23]. The current review
highlights recent findings on resveratrol, which might serve as a tumor-suppressive therapeutic agent
modulating the tumor microenvironment.

2. Resveratrol Modulating Signaling Pathways Activated by Stresses in Cancer Cells

The tumor microenvironment is extremely dynamic and unstable. Cancer cells are exposed to
various stress signals, which are associated with cancer progression. These stress conditions include
hypoxia, oxidative stress and inflammation. Accumulating evidence shows that malignant properties
are determined by the microenvironment that cancer cells are situated in. Hypoxia, oxidative stress
and inflammation have been identified as positive regulators of metastatic potential, drug resistance
and tumorigenic properties in cancer [24]. Recently, resveratrol has been suggested to suppress cancer
progression stimulated by microenvironmental stress of the tumor (Figure 1).

2.1. Hypoxia

As metastasis and resistance to drug and radiotherapy are major culprits of poor prognosis
in many types of cancer, understanding factors related to malignant phenotypes of cancer is
crucial for devising anti-cancer strategies. Hypoxia is a hallmark of the tumor microenvironment
correlated with poor prognosis in many cancer types [25–27]. The hypoxic area is created at the core
region of a tumor distant from blood vessels, caused by the rapid proliferation of cancer cells and
dysregulated angiogenic processes [28]. Under hypoxic conditions, cancer cells undergo epigenetic,
transcriptomic and proteomic reprogramming, resulting in the acquisition of malignant phenotypes.
Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor that regulates expression of over
100 genes. HIF-1α gets stabilized under hypoxia, increasing aggressive phenotypes of cancer such as
drug resistance and metastasis [29,30]. Additionally, recent findings suggest epigenetic modifications
by G9a under hypoxia is involved in the malignant progression of cancer [31–33]. These cellular and
molecular modifications enable cancer cells to survive under a hypoxic tumor microenvironment.
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Figure 1. Tumor-suppressive effects of resveratrol targeting cancer cells in the tumor microenvironment.
Various stresses in the tumor microenvironment affects cancer progression through signaling crosstalks.
The effect of resveratrol on malignant phenotypes of cancer cells caused by tumor microenvironmental
stress is summarized.

The cytotoxic effect of resveratrol on cancer cells under hypoxia has been reported. Castrated male
BALB/cSlc-nu/nu mice bearing human prostate cancer cells (LNCaP cells) fed on a resveratrol diet
(4 g/kg AIN-93G diet) showed significantly reduced tumor size, compared to the tumor of mice fed
on a control diet. In tumors of mice fed on a resveratrol diet, HIF-1α expression was downregulated
and nuclear localization of β-catenin was suppressed [34]. The hypoxic tumor microenvironment is
associated with low pH conditions because hypoxia increases the rate of glycolysis, just followed by
lactic acid production, making tumors more acidic than normal tissues. Interestingly, the cytotoxic effect
of resveratrol is augmented in cancer cells under low pH conditions. Under low pH conditions, growth
inhibition, internucleosomal DNA fragmentation and apoptosis were promoted after resveratrol
treatment on human pancreatic cancer cell lines (Capan-2 and Panc-28 cells), but not on normal
epithelial cells (HPDE cells). Taken together, resveratrol can target cancer cells exposed to low pH
conditions [35]. This is a good example of taking advantage of the tumor microenvironment to
eradicate cancer cells.

While a number of studies show that HIF-1α is negatively regulated by resveratrol, there is a
report, showing resveratrol as a positive regulator of HIF-1α [36–38]. Treatment with resveratrol
increased HIF-1α expression, triggering pseudo-hypoxic responses. This in turn, triggered p53
expression and apoptosis in murine prostate cancer TRAMP cells [38]. In general, cell death is
induced when cancer cells are exposed to resveratrol. However, hypoxia signalings are affected in a
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context-dependent manner, depending on cells/tissues, so the mechanisms of action in response to
resveratrol might be specific to cells/tissues.

Even synthetic small-molecule inhibitors designed to target the specific oncogenic signaling
of cancer, show limited efficacy. So there could be limitations in using resveratrol as a naturally
occurring compound and as a sole tumor-suppressive agent in clinical settings. Studies have been
conducted to investigate the drug-sensitizing effect of resveratrol on hypoxic cancer cells when used
in combination with other therapeutic agents [39,40]. Hypoxia induces doxorubicin resistance by
increasing the expression of carbonyl reductase 1 (CBR1), an enzyme that converts doxorubicin into
a less effective form, in cancer cells. Resveratrol downregulated HIF-1α expression occurs at the
protein level, but not at the transcript level in human breast cancer cells (MCF-7 cells). Suppression of
HIF-1α-induced CBR1 by resveratrol (10 µM) increased the sensitivity of hypoxic breast cancer cells to
doxorubicin, making the hypoxic cancer cells sensitive to doxorubicin as shown in normoxic cancer
cells [39]. Moreover, hypoxia-induced radioresistance is attenuated by resveratrol in human hepatoma
cells (HepG2) through SirT1 activation and c-Myc downregulation, while resveratrol treatment did not
alter the radiosensitivity of normoxic hepatoma cells [40].

Metastasis is associated with the poor prognosis of cancer and accumulative evidence proposes
that hypoxia is an important driver of cancer metastasis. Studies have shown resveratrol can inhibit the
metastatic progression of cancer cells enhanced by hypoxia. In human pancreatic cancer cells (BxPC-3
and Panc-1), resveratrol suppressed hypoxia-induced migration and invasion, downregulating HIF-1α
protein expression [36]. Additionally, resveratrol decreased hypoxia-induced phosphorylation of
STAT3 in human glioma cells (U251 and U87). A decreased p-STAT3 level by resveratrol led to an
increase in the miR-34a level, suppressing migration and invasion of the cancer cells [41]. Human colon
carcinoma cells (Lovo cells) treated with resveratrol showed a reduction in the HIF-1α protein level
under hypoxia. Suppression of HIF-1α expression and stability by resveratrol decreased the metastatic
potential of Lovo cells [42]. Metabolic alteration of cancer cells under hypoxia has been reported.
Lysophosphatidic acid (LPA) is a phospholipid that is involved in the regulation of various cellular
signaling. LPA is associated with malignant progression in many types of cancer [43–46]. Studies
have suggested an increase in the LPA level in response to hypoxia [44,47]. As shown in the hypoxic
tumor microenvironment, LPA is enriched in malignant ascites of patients with ovarian cancer as
well. HIF-1α and vascular endothelial growth factor (VEGF) are upregulated by hypoxia-induced
LPA signaling in human ovarian cancer cells (OVCAR-3 and CAOV-3). However, activation of HIF-1α
and VEGF signaling pathways and subsequent migration of the ovarian cancer cells by LPA were
attenuated by resveratrol [48]. Thus, resveratrol shows efficacy on cancer cells under hypoxia by
modulating HIF-1α-related signaling pathways, resulting in induction of apoptosis, suppression of
metastatic potential, such as migration and invasion and enhancement of drug sensitivity in many
types of cancer.

2.2. Oxidative Stress

The excessive production of reactive oxygen species (ROS) and dysfunctional anti-oxidation
machinery could result in increased oxidative stress in the tumor microenvironment. Cancer cells
exhibit the increased intracellular level of ROS which is associated with constitutive activation of
oncogenic signaling pathways [49]. Additionally, it has been well-documented that hypoxia and
inflammation increase ROS production in many types of cancer [24]. The anti-oxidation capacity of
resveratrol has been shown to be related to chemopreventive effect. Thus, scavenging ROS could
be the key strategy for cancer prevention as elevated ROS induces DNA damage and malignant
transformation of a cell [50].

In contrast, some studies have shown that cancer cells display increased intracellular ROS level
when treated with resveratrol [51–53]. Human cancer cell lines (MCF-7, MDA-MB-231 and H1299 cells)
showed an increase in the ROS level upon resveratrol treatment through the reduction in mitochondrial
membrane potential and PGC-1α downregulation. Increased ROS by resveratrol promoted senescence
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of cancer cells through the DLC1-mediated FoxO3a/NF-κB signaling pathway [54]. Additionally,
resveratrol synergetically induces cell death when treated with cisplatin in malignant human
mesothelioma cells (MSTO-211H and H-2452 cells) by increasing the intracellular ROS level [55].
Resveratrol suppressed autophagic flux and increased the ROS level, causing cell death in human
cholangiocarcinoma cells (QBC939 cells) [56]. Whereas, other studies demonstrated that resveratrol
reduced oxidative stress in cancer. Treatment with resveratrol-loaded nanoparticles suppressed an
increase in the ROS level by activation of the Nrf2-Keap1 signaling pathway in human lung cancer
cells (A549 cells) [57]. Therefore, resveratrol could regulate the ROS level in a cell/organ type-specific
manner. The resveratrol-delivery system could be developed and utilized for the effective treatment
of cancer.

Cancer cells show a higher basal level of ROS than normal cells by intrinsic mechanisms of cancer
cells as well as by external stimuli of the tumor microenvironment. As discussed above, hypoxia
is one of the important environmental stressors stimulating ROS production. Hypoxia-mediated
increases in ROS promotes migration and invasion of human pancreatic cancer cells (BxPC-3 and
Panc-1 cells) through activation of the Hedgehog signaling pathway and this was reversed by
resveratrol treatment [36].

Increased ROS production as a result of increased dependence on aerobic metabolism and
decreased anti-oxidant gene expressions creates a ROS-rich tumor microenvironment, activating
oncogenic signalings of cancer cells. The tumor-suppressive mechanisms by resveratrol, such as
overproduction of ROS and subsequent activation of ROS-related signaling pathways could be utilized
to develop anti-cancer strategies.

2.3. Inflammatory Signalings

Inflammation, a hallmark of the tumor microenvironment, is a major driver of cancer metastasis,
associated with poor prognosis in many types of cancer. The inflammatory microenvironment of
a tumor is caused by inflammatory cytokines including IL-1β, IL-6 and TNF-α [58]. These pro-
inflammatory cytokines are upregulated and secreted not just by immune cells but also cancer cells and
stromal cells adjacent to cancer cells in the tumor microenvironment, promoting cancer progression.
TNF-α is a pleiotropic cytokine involved in pro-apoptotic and anti-apoptotic processes [59]. Despite
its role in the induction of apoptosis, most cancer cells show resistance to TNF-α-induced apoptosis.
Additionally, studies have shown that TNF-α increases the metastatic ability of cancer cells through
activation of its downstream signaling pathways [60,61]. Also, other pro-inflammatory cytokines have
been shown to induce malignant phenotypes of cancer such as chemoresistance and metastasis [62–67].

Dietary polyphenols have been studied on chronic inflammatory diseases. Resveratrol has shown
its efficacy on chronic inflammation models [68,69]. The anti-inflammatory effect of resveratrol has been
shown when a mixture of tetramethylpyrazine, curcumin and resveratrol suppresses inflammation
in the collagen-induced arthritis rat model. A decrease in the serum level of pro-inflammatory
cytokines including TNF-α, IL-1β and IL-6 was observed in the group that was given a combination of
tetramethylpyrazine, curcumin and resveratrol [70]. Exposure of human colon epithelial cells (HT-29
cells) to a combination of cytokines (IL-1β TNF-α and IFN-γ) enhanced inflammatory signalings and
ROS generation. Inflammation and ROS generation were reversed when the cells were pre-treated with
resveratrol (25 µM) [71]. Resveratrol decreased mRNA levels of iNOS, IL-8 and TNF-α, mediated by
selective binding to KH-type splicing regulatory protein (KSRP), which post-transcriptionally regulates
pro-inflammatory genes [72]. Also, resveratrol elicits the tumor-suppressive effects, suppressing
proliferation, migration and invasion in human colorectal cancer cells (HT-29 and HCT-116 cells).
In tumor xenografts, injection with resveratrol markedly reduced IL-6 level [73]. These results indicate
that resveratrol shows tumor-suppressive effects by blocking inflammatory responses of cancer cells.

Pro-inflammatory cytokines, which are rich in the tumor microenvironment can activate the NF-κB
signaling pathway of cancer cells, increasing NF-κB nuclear translocation. Anti-inflammatory effects
of resveratrol have been reported in different cells and tissues including brain and adipose tissues
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by modulating the inflammatory cytokine-mediated NF-κB signaling pathway [74,75]. In the study
that used a co-culture model of macrophages and chondrocytes, resveratrol exerted anti-inflammatory
effects by suppressing STAT3 and NF-κB signaling pathways. Using this model, they showed that
IL-1β initiated inflammation of chondrocyte and inflammatory paracrine signaling of macrophages
could be attenuated by resveratrol [76].

It is now well-recognized that activation of NF-κB signaling increases metastatic and survival of
cancer cells [77]. Resveratrol inhibits TNF-α-induced migration and invasion of cancer cells through
downregulation of NF-κB expression as well as its downstream molecules (uPA and uPAR) [78]. Also,
TNF-β could enhance cancer cell survival and drug resistance. Resveratrol chemo-sensitized human
colorectal cancer cells (HCT116 cells) to 5-FU under TNF-β inflammatory tumor microenvironment.
Co-treatment of resveratrol with 5-FU suppressed NF-κB-mediated invasion, stemness, expressions of
EMT-related genes in HCT116 cells exposed to the pro-inflammatory microenvironment [79]. Thus,
oncogenic signaling pathways under inflammatory conditions could be mitigated by resveratrol.

3. Modulation of Angiogenesis by Resveratrol

Angiogenesis is a critical process for the proliferation and survival of cancer cells. For angiogenesis,
stimulatory signals like growth factors and cytokines are necessary for the proliferation and migration
of endothelial cells. Hypoxia and nutrient depletion caused by the rapid proliferation of cancer cells
can limit tumor growth. To overcome this, cancer cells release pro-angiogenic cytokines, growth factors
and exosomes required for survival and proliferation [80]. Anti-angiogenic effects of resveratrol could
be exerted by targeting multiple oncogenic pathways in the tumor microenvironment.

3.1. Resveratrol Regulating Cytokine-Mediated Stimulation of Angiogenesis

Secreted proteins such as VEGF, basic fibroblast growth factor (bFGF) and IL-8 have been shown
to stimulate migration and proliferation of endothelial cells to promote angiogenesis [81]. Resveratrol
suppressed the secretion of IL-8/CXCL8 and VEGF in human peritoneal mesothelial cells (HPMCs).
Incubation with conditioned medium obtained from resveratrol-treated HPMCs showed reduced
proliferation and migration of human endothelial cells (HUVEC, HMVEC and HMEC-1 cells) [82].
Hepatic stellate cells, important cellular constituents of a liver, induce Gli-1 expression in human
hepatocellular carcinoma cells (HepG2). Gli-1 expression triggers angiogenesis and ROS-induced
metastasis. Treatment with resveratrol abrogated Gli-1 expression induced by hepatic stellate cells,
suppressing angiogenesis and expressions of pro-angiogenic molecules (VEGF and CXCR4) in HepG2
cells [83]. Resveratrol enhanced anti-angiogenic and anti-proliferative effects of 5-FU, which is a
chemotherapeutic agent widely used to treat cancer. Combined treatment with resveratrol and 5-FU
exhibited a marked reduction in tumor growth and the formation of microvascular vessels in B16
murine melanoma tumor. Anti-angiogenic effects induced by co-treatment with resveratrol and 5-FU
was correlated with increased p-AMPK expression. Moreover, vasodilator-stimulated phosphoprotein
(VASP) and VEGF expressions were decreased in cancer cells in the B16 murine tumors co-treated with
resveratrol and 5-FU [84]. Angiogenic responses promoted by activation of platelets was inhibited
by resveratrol. Increased VEGF secretion of platelets by adenosine diphosphate (ADP) and lung
cancer cells (A549 cells) was ablated by resveratrol [85]. These studies support that enrichment
of pro-angiogenic factors could be blocked by resveratrol in the tumor microenvironment, thereby
inhibiting blood vessel formation and tumor growth.

3.2. Effect of Resveratrol on Endothelial Cells

Endothelial cells are the main type of cells, forming a blood vessel wall. During angiogenesis,
endothelial cells show a greater dependence on aerobic glycolysis [86]. Treatment with VEGF on
human endothelial cells (HUVEC cells) increased expression of proteins involved in glycolysis such
as glucose transporter 1 (GLUT1), hexokinase 2 (HK2), phosphofructokinase 1 (PFK1), pyruvate
kinase M2 isoform (PKM2), inducing tube formation and migration. However, these effects were
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reversed by resveratrol through downregulation of the glycolytic genes, suppression of ERK1/2 and
nuclear translocation of PKM2 [87]. A recent study proposes that resveratrol inhibits VEGF signaling
through direct interaction with VEGF. Resveratrol suppressed proliferation, migration, invasion
and the tube-forming capacity of endothelial cells, induced by VEGF. Blocking VEGF signaling
by resveratrol decreased ROS generation and phosphorylations of VEGF receptor-2, JNK, eNOS,
AKT and Erk, suppressing angiogenesis [88]. Both VEGF and bFGF are important stimulators of
angiogenesis. Studies have shown that resveratrol suppresses angiogenesis through the inhibition
of VEGF and bFGF [89,90]. Resveratrol inhibited the angiogenic response of murine endothelial
cells (F-2 cells) promoted by VEGF. However, the bFGF-stimulated angiogenic response was not
affected by resveratrol [91]. Intracellular accumulation of NO has been shown to play important
roles in angiogenesis [92,93]. Nitric oxide (NO) generation induced by VEGF was abolished by
resveratrol treatment in F-2 cells indicating resveratrol inhibits angiogenic responses by suppressing
NO production. Whereas, bFGF did not affect NO production in F-2 cells. This suggests that resveratrol
exerts an anti-angiogenic effect in a context-dependent manner when the endothelial cells are exposed
to different angiogenic stimuli. [91]. Thus, resveratrol could be considered as an anti-angiogenic agent
and has the potential to suppress cancer progression through the reduction of angiogenic responses
and the secretion of pro-angiogenic factors.

4. Modulation of Non-Cancer Cells in the Tumor Microenvironment by Resveratrol

Tumors are composed of not just cancer cells but normal cells, which could affect malignant
phenotypes of cancer. The major types of non-cancer cells that establish the tumor microenvironment
are cancer-associated fibroblasts (CAFs), endothelial cells and immune cells like macrophages
and T cells. Non-cancer cells in the tumor microenvironment educated by cancer cells undergo
cellular reprogramming promoting metastasis and increase resistance to anti-cancer therapy in cancer
cells [94–96]. Recent studies have revealed the impact of resveratrol on cellular components other than
cancer cells in the tumor microenvironment (Figure 2).

4.1. Cancer-Associated Fibroblasts

Fibroblasts, commonly found in connective tissues, are the major cellular component of malignant
tumors. They have specialized functions, such as the production of collagen fibers, mediation
of the immune response to a tissue injury and the acceleration of cancer progression [97,98].
Among various sub-classes of fibroblasts, studies have shown that CAFs are closely related to tumor
progression [99]. CAFs play a role in tumor metastasis, migration, tumor growth and drug resistance
in the tumor microenvironment, mediated by secretory factors, extracellular matrix proteins and
stimulatory molecules [100].

Resveratrol suppressed expression levels of cyclin D1, c-Myc, MMP-2, MMP-9 and Sox2, which
were upregulated by CAFs in breast cancer cells. Also, resveratrol inhibited activation of AKT and
STAT3 promoted by CAFs, thereby suppressing the expression of downstream molecules (CD44 and
Sox2) associated with self-renewal in human breast cancer cells (T74D cells) [101]. Other researchers
have investigated the effect of resveratrol on aromatase using a co-culture model of breast cancer cells
with breast adipose fibroblasts (BAFs). Testosterone is converted to estradiol by BAFs, stimulating
the proliferation of estrogen receptor-positive breast cancer cells. In the co-culture system, resveratrol
suppressed the expression of pS2 and Ki67 upregulated by testosterone, inhibiting proliferation of
human breast cancer cells (T47D cells) and BAFs [102]. However, when prostate cancer CAFs (PS30
cells) are exposed to resveratrol, they exhibit enhanced expression and secretion of oncogenic growth
factors, HGF and VEGF. Activation of the transient receptor potential ankyrin 1 (TRPA1) channel by
resveratrol which was found to be specific to PS30 cells harboring mutation at the N-terminal region of
TRPA1 led to the accumulation of intracellular calcium in PS30 cells. Treatment with TRPA1 inhibitor
(HC-030031) on PS30 abolished expression and secretion of VEGF and HGF increased by resveratrol.
In the co-culture model of human prostate cancer cells (LNCaP cells) and PS30 cells, inhibition of TRPA1
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by its inhibitor (HC-030031) sensitized LNCaP cells to resveratrol, shown by the increased apoptotic
cell death rate [103]. Therefore, resveratrol could be used as a nutraceutical targeting CAF-enriched
tumor microenvironment to increase the efficacy of other chemotherapeutic agents.Int. J. Mol. Sci. 2019, 20 FOR PEER REVIEW  9 
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Figure 2. The effect of resveratrol on cells composing the tumor microenvironment. Cellular composition
of tumor microenvironment affects cancer progression and oncogenic signaling. The effect of resveratrol
on various cell types (cancer cells, CAFs, macrophages, T cells and endothelial cells) in the tumor
microenvironment is displayed.

4.2. Macrophages

Macrophages are important cells of the immune system and are formed through the differentiation
of monocytes. The polarization of macrophages into pro- and anti-inflammatory (M1 and M2) subtypes
is affected by microenvironmental cues of tissue. In a tumor, the M1 to M2 ratio is an important factor
that affects the prognosis in many types of cancer [104,105]. The M2 subtype of macrophages are often
termed tumor-associated macrophages (TAMs). TAMs promote cancer progression and metastasis
by releasing a number of oncogenic growth factors and cytokines. This is probably because of their
essential role in the inflammatory response [106]. Therefore, studies on the relationship between cancer
cells and TAMs are crucial for understanding mechanisms of cancer progression and metastasis in
many types of cancer.
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Accumulating evidence suggests that M2 macrophages activated by cancer cells could promote
activation of STAT3, triggering secretion of several cytokines (IL-6 and IL-10) and this eventually
causes increased tumor growth and metastasis [107,108]. Resveratrol facilitates anti-tumor effects by
reducing the M2 polarization of human monocyte-derived macrophage (HMDMs). When the HMDMs
were co-treated with resveratrol and tumor-conditioned medium (TCM), the secretion of IL-10, one of
the M2-phenotype markers, was significantly lowered in comparison to the group only treated with
TCM. Also, resveratrol significantly decreased STAT3 activation in cancer cells and tumor growth [109].
Furthermore, Kimura et al. carried out experiments to see the effect of resveratrol on the production of
factors secreted from activated M2 macrophage and VEGF-C-induced capillary-like tube formation
in human lymphatic endothelial cells (HLECs). Resveratrol showed anti-tumor and anti-metastatic
effects by suppressing the expression of IL-10 and MCP-1 through downregulation of STAT3 signaling
pathways. M2 polarization was inhibited by resveratrol. In addition, resveratrol treatment suppressed
VEGF-C-induced HLEC motility, tumor growth and metastasis [110]. These studies suggest that
resveratrol suppresses M2 polarization, inhibiting tumor progression and metastasis. Therefore,
resveratrol could facilitate the tumor-suppressive effect through inactivation of TAMs.

4.3. T Cells

Resveratrol downregulates PI3K/AKT/mTOR pathway in cancer cells [111,112]. A study
demonstrated that inhibition of the PI3K pathway activated CD8+ cytotoxic T cell activity, enhancing
anti-cancer immunity [113]. This study suggested resveratrol might have the capacity to activate
immune cells selectively inducing cell death in cancer cells. Regulatory T cells are abundant
in solid tumors playing a pivotal role in regulating the homeostasis of the immune tumor
microenvironment [114]. Increased numbers of regulatory T cells in the tumor microenvironment were
negatively correlated with patient survival outcomes. Furthermore, regulatory T cells closely interact
with other cells including CAFs, M2 macrophages, myeloid-derived suppressor cells and cancer cells
in the tumor microenvironment [115–117].

Resveratrol has been shown to exert the anti-tumor effect through modulating the immune
response in various cancer types. For example, Chen et al. [118] found the immunomodulatory effect
of resveratrol on renal cell carcinoma (RCC). Resveratrol decreased regulatory T cells without the
proportional change in myeloid-derived suppressor cells upon resveratrol treatment and increased
the infiltration of activated CD8+ T cells in RCC tumors. Also, resveratrol promoted the expression
of T-helper (Th)1 cytokine, IFN-γ, while attenuating the expressions of the Th2 cytokines, IL-6 and
IL-10. Moreover, resveratrol was shown to have inhibitory effects on CD4+/CD25+ cell population
among CD4+ cells through reduction of FoxP3, a specific regulatory T cell marker in tumor-bearing
C57BL/6 mice. The mice injected with resveratrol exhibited a decrease in TGF-β production and
an increase in IFN-γ production, which led to immune stimulation [119]. Additionally, resveratrol
blocks progression and metastasis of breast cancer by inactivating tumor-evoked regulatory B cells
(tBregs). Inactivation of tBregs by resveratrol suppressed the conversion of FoxP3+ regulatory T cells
through the reduction of TGF-β production [120]. Taken together, these studies suggest that resveratrol
modulates the immune tumor microenvironment, enhancing anti-cancer activity of immune cells.

5. Conclusions and Future Perspectives

Cellular components and stress conditions giving rise to complex and dynamic properties of
the tumor microenvironment are closely associated with malignant phenotypes of cancer such as
drug-resistance and metastasis. Until now, many studies have demonstrated the tumor-suppressive
effect of resveratrol. Recently, it has become increasingly evident that resveratrol can also regulate the
tumor microenvironment, suppressing cancer progression. Although the tumor microenvironment,
which is composed of various cellular and non-cellular conditions, is extremely complicated, dissecting
components of the tumor microenvironment affecting cancer cells into a single component might be
necessary to better assess and understand the efficacy of resveratrol and other natural compounds.
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Once enough information on the effects of phytochemicals on the tumor microenvironment is
gathered, recently developed drug-testing models could be utilized before proceeding to clinical
trials. For example, a patient-derived xenograft (PDX) model, which can recapitulate complex
constituents of the tumor microenvironment, could be incorporated to test the efficacy of resveratrol.
Also, a patient-derived tumor organoid model, which is in vivo like the in vitro culture system could
be used to test the effect of resveratrol. Through these approaches, personalized medicine could be
achieved because tissues from patients with different clinical and molecular characteristics could be
incorporated. Thus, considering heterogeneous environmental cues and cellular constituents of the
tumor microenvironment, it is important to understand the effects of nutraceuticals on different types
of cells in different microenvironmental conditions.
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2-DG 2-deoxy-D-glucose
ADP Adenosine diphosphate
BAF Breast adipose fibroblasts
bFGF Basic fibroblast growth factor
CAF Cancer-associated fibroblast
CBR1 Carbonyl reductase 1
ECM Extracellular matrix
EMT Epithelial-mesenchymal transition
GLUT1 Glucose transporter 1
HK2 Hexokinase 2
HLEC Human lymphatic endothelial cell
HMDM Human monocyte-derived macrophage
HPMC Human peritoneal mesothelial cell
LPA Lysophosphatidic acid
MMP Matrix metalloproteinase
NO Nitric oxide
PFK1 Phosphofructokinase 1
PKM2 Pyruvate kinase M2 isoform
RCC Renal cell carcinoma
ROS Reactive oxygen species
TAM Tumor-associated macrophage
tBreg Tumor-evoked regulatory B cell
TCM Tumor conditioned medium
TRPA1 Transient receptor potential ankyrin 1
VASP Vasodilator-stimulated phosphoprotein
VEGF Vascular endothelial growth factor
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